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COORDINATE FUNCTIONS OF SPACE
FILLING CURVES

Abstract

Given a continuous function X(t) mapping [0, 1] continuously onto
[0, 1], several properties are given which this function must fulfill if there
is to be another continuous function Y (t) so that (X(t), Y (t)) takes the
unit interval onto the unit square.

Many of the references to the literature on space-filling curves can be found
in [1] where the nondifferentiability and dimension of preimages and graphs of
the historical mappings are given. Here, by coordinate functions will be meant
continuous functions X(t) and Y (t) which are assumed to take [0, 1] onto [0, 1]
so that F (t) = (X(t), Y (t)) takes [0, 1] onto the unit square. Presented here
are some properties of such X and Y which will perhaps suggest a characteri-
zation. The problem of finding a characterization should involve showing how
to construct a function X (t) given Y (t) satisfying certain properties so that
the pair form a space-filling curve.

It is convenient to consider Y (t) as given and visualize X(t) as ‘sliding’
the x-coordinate in such a way that all the points in the square are covered
by (X(t), Y (t)). With this in mind one can first observe the well known fact
that for each y ∈ [0, 1], one has Y −1(y) uncountable. Otherwise, it would not
be possible for (X(t), Y (t)) to cover the line segment Iy = {(x, y) : x ∈ [0, 1]}.
Since Y (t) is continuous, each Y −1(y) is a closed set and consists of at most
countably many line segments along with a (possibly empty) nowhere dense
perfect set and an at most countable set of points. However, it is not possible
to have the line segments cover Y −1(y) by themselves. In fact, a coordinate
function for a space-filling curve must have a nowhere dense perfect set in each
Y −1(y) which is mapped by F onto Iy = {(x, y) : x ∈ [0.1]}. This will follow
from Theorem 1.
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Theorem 1. If F (t) = (X(t), Y (t)) takes [0, 1] continuously onto [0, 1]× [0, 1]
then, for each y ∈ [0, 1], if By is the interior of Y −1(y) and Py is the perfect
part of Y −1(y)\By then X(Py) = [0, 1].

Proof. Fix y ∈ [0, 1]. Let Py and By be as above and let Ay = Y −1(y)\(Py∪
By). Then Ay is at most countable. Suppose, if possible that x ∈ X(By)\X(Ay∪
Py). Let yn → y with yn not equal to y so that x = X(tn) and yn = Y (tn);
that is, (x, yn) = F (tn). By choosing, if necessary, a sub-sequence of {tn}, the
sequence {tn} can be assumed to converge, say to to. Since to is not in By,
because this set is open and no tn belongs to it, X(to) does not equal x, a
contradiction. Thus each x is the image of a point of Ay ∪ Py and since Ay is
at most countable and X(Py) is closed, each x must be the image of a point of
Py. (This is because, if x′ ∈ X(Ay), we then have that there are x′n → x′ with
x′n ∈ X(Py) and x′n = X(t′n) with t′n ∈ Py; a sub-sequence of the t′n converges,
say to t′o, and t′o ∈ Py so that X(t′o) = lim X(t′n) = x′.)

It is somewhat intuitive that for each F (t) = (X(t), Y (t)), a space fill-
ing curve, if h is a homeomorphism from [0, 1] onto [0, 1], then F (h(t)) and
(h(X(t)), h(Y (t))) are space filling. Checking the proof indicates that a con-
siderably more general result holds.

Theorem 2. Given X(t) and Y (t) where F (t) = (X(t), Y (t)) is a space-filling
curve and any H taking [0, 1] onto [0, 1], F (H(t)) takes [0, 1] onto the square
as does (H(X(t)), H(Y (t))). Thus if H is continuous, these maps are also
space-filling curves.

Proof. Given (a, b) ∈ [0, 1]× [0, 1], if X(s) = a and Y (s) = b and H(t) = s,
then F (H(t)) = (a, b). Similarly, if X(t) ∈ H−1(a) and Y (t) ∈ H−1(b) (and
there are such t since (X(t), Y (t)) is onto the square) then H(X(t)) = a and
H(Y (t)) = b and (a, b) = (H(X(t)), H(Y (t))).

Thus, starting with basic well known space filling curves, compositions give
rise to different types of coordinate functions and curves.

However, it is not in general possible to distort the graph of a coordinate
function and be guaranteed that it is still one. For example, given the standard
Peano curve, (for an illustration, see [1] p. 36) the graph of X(t) is contained
in

[0, 1/3]× [0, 1/3] ∪ [1/3, 2/3]× [1/3, 2/3] ∪ [2/3, 1]× [2/3, 1].

If this middle part of the square is distorted into a parallelogram with vertices
at (1/3, 1/3), (1/3, 5/9), (2/3, 4/9), and (2/3, 2/3) by contracting in a linear
fashion each line segment above the points in the interval [1/3, 2/3] and letting
the function be determined by the corresponding point in the parallelogram,



Coordinate Functions of Space Filling Curves 361

the resulting function will no longer be a coordinate function. This is because
X−1(x) will not have a diameter bounded away from 0, even though each
X−1(x) will be a perfect set. Similar considerations show that for each natural
number n the inverse image of a point under a coordinate function cannot be
the union of n sets the sum of whose diameters are not bounded away from 0.

Theorem 3. If F (t) = (X(t), Y (t)) is continuous from [0, 1] onto the square,
then for any fixed natural number n and for every y ∈ [0, 1] if Py ∩ Y −1(y) =⋃n

k=1 Ak,y, then {maxk(diamAk,y) : y ∈ [0, 1]} is bounded away from 0.

Proof. If not, there are X and Y and yi and a natural number n so
Pyi
∩ Y −1(yi) =

⋃n
k=1 Ak,yi

and limi maxk(diamAk,yi
) = 0. Then choose

ai,k and bi,k so Ak,yi ⊂ [ai,k, bi,k] and diamAk,yi = bi,k − ai,k. By selecting
sub-sequences of the yi one may assume there is yo = limi yi and ak = limi ai,k

so that ak = limi bi,k also. Then X must take one of each of [ai,k, bi,k] for each
i onto an interval of length 1/n. But then one of the numbers ak will have
a sub-sequence of intervals [ai,k′ , bi,k′ ] each mapped by X onto an interval of
length at least 1/n. This contradicts the fact that X is continuous and must
have limi X(ai,k′) = limi X(bi,k′).

This last result makes it difficult to produce an X(t) given a Y (t). To have
a space-filling curve, it is not necessary to have the sets Y −1(y) large. It is not
difficult to construct a space filling curve using Theorem 2 where each Y −1(y)
and each X−1(x) are of Hausdorff dimension 0. Space-filling curves do not
have to be efficient and can spend much of the time t not filling any area at
all while the coordinate functions look somewhat like they should.

One further note: Given a function Y (t) and y ∈ (0, 1) the set My con-
sisting of those t ∈ Y −1(y) which are relative maxima for Y is an open subset
of Y −1(y) and the set Py\My must have the property stated in Theorem 1;
namely, X(Py\My) = [0, 1]. Similarly, this must hold for the set of relative
minima Ny in each Y −1(y) with y ∈ (0, 1). This follows from the same argu-
ment used in Theorem 1 with {yn} decreasing to y, (respectively, increasing
to y). Finally, these sets, Py\My for y ∈ (0, 1) and Py\Ny for y ∈ (0, 1) must
have the property described in Theorem 3.
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