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OUTER MEASURES GENERATED BY A
COUNTABLY ADDITIVE MEASURE ON A
RING OF SETS

Abstract

Let R be any ring of subsets of a set X which is not an algebra and
let A be the algebra generated by R. Suppose that p is a countably
additive measure on R and that p* is the outer measure generated by
(#,R). If X is a countable union of sets in R, then there is a unique
countably additive measure v on A which extends p, and the outer
measure generated by (v, .A) coincides with p*. If X is not a countable
union of sets in R, then there exists a family {u, : 0 < p < oo} of
countably additive measures on A such that each p, agrees with p on R.
For 0 < p < o0, let py denote the outer measure generated by (yip,.A).
Then we have pug < py < pg < pa, = p* for 0 < p < ¢ < co. Moreover,
if M and M,, respectively, denotes the o-algebra of p*-measurable and
pp-measurable sets, then M, = M; C Mo = Mo, = M for all positive
real numbers p. As examples, we give countably additive measures on
rings for which M = M; and M # M, respectively. By the outer
measures generated by p we shall mean the outer measures p* and py,
(0<p< o).

1 Preliminaries

Throughout the paper, X denotes a fixed but arbitrary nonempty set unless
otherwise stated, and P(X) denotes the power set of X. For each subset F of
X, let E€ denote the complement of E (relative to X), i.e., E€ = X — E. By
definition, a ring of subsets of X or simply a ring in X is a nonempty family of
subsets of X which is closed under the formation of unions and differences, and
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an algebra of subsets of X is a ring in X containing X. A ring in X which is
closed under the formation of countable unions is called a o-ring, and a o-ring
in X containing X is called a o-algebra. Let R be any ring in X, let R¢ be
the family of all complements of sets in R, and let A4 be the algebra generated
by R, that is, the smallest algebra containing R. Trivially A = R = R° if
XeR,and A=RURif X € R. Let R, and A, denote the family of all
countable unions of sets in R and A, respectively.

A non-negative extended real-valued set function p defined on a ring R
in X is called a measure or a finitely additive measure on R if u()) = 0 and
(AL U---UA,) = (A1) +- - -+ u(Ay) for every finite collection {Ay,--- , A}
of pairwise disjoint sets in R. A measure p on R is called a countably additive
measure if p(US,A4,) = > 07, pu(A,) for every pairwise disjoint sequence
{A,}5%, of sets in R whose union is also in R.

Let 4 be a countably additive measure on a ring R in X. For each £ C X,
define p*(E) by

W (E) = inf { S50, u(An) B C U2 A, Ay €R (n=1,2,---)}

if E can be covered by a set in R, and otherwise define u*(F) = oo following
the convention that inf ) = co. Then u* is a ( Carathéodory ) regular outer
measure on X which agrees with p on R. The outer measure p* constructed in
this way is called the outer measure generated by (u, R) (see, e.g., [2, pp.163-
165],[3, pp-32-33],[4, pp.36, 41-44]).

For ease of our argument we prove the following simple lemmas.

Lemma 1. Let R be any ring in X with X € R and A =R URC.
(i) IfA€R and B € R, then AUB € R° and ANB € R.
(ii) If A,B € R then AUB,ANB € R°.
(1)) IfA,BeAand ANB=10, then A€ R or BeR.
(iv) If {A,}22, is a pairwise disjoint sequence of sets in A, then
there is at most one set A, € R°.

Proor. Assertions (i) and (ii) follow from de Morgan’s laws. To prove (iii),
suppose that A and B are disjoint sets in R¢. Since A C B¢ € R, we have
A= ANDB° e R by (i). This contradiction proves (ii7). Assertion (iv) follows
from (it). O

Lemma 2. Let R be any ring in X. Then the following assertions are
equivalent:
(i) X €Ry;
(ii) R CR,N(Ry);
fii)) Ry 0 (Re)° £
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Proor. Suppose that X € R,. Assume first that X € R. Then R is an alge-
bra so R = R¢. Since R C R,, we have R = R C (R, )¢ so that R° =R C
Rs N (Rs)€. Next assume that X ¢ R. Then RNR¢ = 0. Let {X,,}>°, be
any sequence of sets in R such that X = U2 ;X,,. For each A € R¢, we have
ANX, € R for all n by Lemma 1 (i), so A = U2, AN X, € R,, and hence
R¢ C R,. We have R® C (R,)¢, since R C R,. Thus (¢) implies (¢7). Plainly
(#4) implies (¢éi). Now suppose that (iii) holds, and let A € R, N (R,)°. We
have A, A° € Ry, 80 X = AU A° € R,. Thus (7i¢) implies (7). O

The next lemma follows immediately from Lemma 2.

Lemma 3. LetR be any ring in X. Then X &€ R, if and only if RoN(R,)¢ =
0.

Lemma 4. Let R be any ring in X and let A be the algebra generated by R.

(i) If X €Ry—R, then Ay = R,.

(ii) If X € R,, then, for each A € Ay, one and only one of the
following alternatives holds: A € Ry or A is of the form EUF, where E € R,
FeR and ENE = 0.

Proor. For (i), suppose that X € R, —R. Since X ¢ R, we have A = RURS
so R, C Ags. Since X € R, we infer from Lemma 2 that R¢ C R, s0 A C R,.
Consequently, A, C R, and hence A, = R,. Thus (4) is established. To prove
(i), suppose that X € R,. Obviously X € R, so A = RURE. Assume that A
is an arbitrary set in A,. Then there is a pairwise disjoint sequence {A4,}>2
of sets in A such that A = U2 A,. If A, € R for all n, then A € R,. Oth-
erwise, by Lemma 1 (iv) there is exactly one set A; € R¢ such that A, € R
for all n # i, so that letting £ = Up2;A, and ' = A; we have A = FU F,
where F € R,, F € R¢, and ENF = (). If there were a set A € R, of the
form EUF, where F € Ry, F € R°,and ENF =, then F = FNA € R, so
F € R, NR°. This is a contradiction by Lemma 3. Thus (i) is established.
([l

Assume that X € R, and that £ € R,, F € R¢, and ENF # (). We have
that EUF € A, — Ry, and E—F € R,,so EUF = (E — F)UF. Note that
F—FE € (R%s = (Rs)¢ and F — E need not be in R¢. Thus we have that
every set in A, — R, is represented in at least one way as the union of disjoint

sets from R, and R¢, respectively, and that such a representation of a set in
A, — R, need not be unique, for X = FU (X — FE) for all E € R.

Example 1. Let X be a nonempty countable set, let R be the ring of
all finite subsets of X, and let A be the algebra generated by R. Trivially
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R = A= P(X) if X is finite. If X is infinite, then R, is the o-ring of all
countable subsets of X such that X € R, — R, so that R, = A, = P(X).

Example 2. Let X be any uncountable set and let R be the ring of all finite
subsets of X. Then R, is the o-ring of all countable subsets of X such that
X € R, or, equivalently, R, N (Ry)¢ = 0 by Lemma 3. Plainly R, is the
o-ring generated by R.

A set E C X is called cofinite or cocountable if E€ is finite or countable. Let
A and B denote the algebra and the o-algebra generated by R, respectively.
Then A consists of the finite and the cofinite subsets of X, i.e., 4 = R URE,
and B consists of the countable and the cocountable subsets of X, i.e., B =
Ro U (Ry)¢. Assert that A, = R, U RC. Suppose that A is any set in
As — Ry and let A= FEUF, where E € Ry, '€ R¢ and ENF = (). Since
ECF°eR,wehave E€R,s0 EUF € R° by Lemma 1 (i). Consequently,
As; — Rs = R° and hence the assertion follows from Lemma 4 (ii). We see
readily that A& B & P(X).

The next lemma is a version of Lemma 3.4.1 in [1, p.76].

Lemma 5. (cf. [5, Problem 9, p.258]) Let R be an arbitrary ring in X which
is not an algebra, let A be the algebra generated by R, and let i be any measure
on R.
(i) Define pg on A by po(E) = sup{u(4) : A C E,A € R} for all

E in A. Then pg is a measure on A such that po(E) = p(E) if E € R.

(i) For 0 < p < oo, define pu, on A by uy(E) = u(E) if E € R and
pp(E) = po(E)+p if E € R°. Then u, is a measure on A.

(ii) Every measure v on A such that v(E) = u(FE) for all E in R is
of the form p, for some p € [0, o0].

The measures p, are called the measures induced by the measure p and
parameters p € [0, c0].

Proor. We have A = R U R€. To prove (i), suppose first that £ € R. By
the definition of g, we have u(E) < po(E). For any A € R with A C F,
we have u(A) < p(F). Taking the supremum of u(A) over all such A we
obtain pg(E) < p(FE) and hence ug(E) = u(E). To prove the additivity of
o, suppose that E and F are arbitrary sets in A such that ENF = . If
E,F € R, then there is nothing to prove. Otherwise, by Lemma 1 (iii) we
can assume that £ € R and F € R° so EUF € R° by Lemma 1 (i). For
any A € R with A C FUF, we have that A = (AN E)U (AN F), where
ANE,ANF R, so

1w(A) = (AN E) + p(ANF) < p(E) + po(F) = po(E) + po(F).
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Taking the supremum of p(A) over all A € R with A C E U F we obtain
o(EUF) < po(E) + po(F). To prove the reverse inequality, suppose that
BeRand BCF. Since EUF D FUB € R, we have

n(E) + w(B) = l(EUB) < po(EUF).

Taking the supremum of p(B) over all such B we obtain ug(F) + po(F) <
to(E U F), and hence the additivity of ug follows. By induction g is finitely
additive on A, so (i) is established. To prove (ii), assume that 0 < p < oo and
that E € R, F € R¢, and ENF = (). Then EUF € R¢. By the definition of
Wp, together with (i), we have

tp(EUF) = po(EUF) +p=po(E) + po(F) +p = pp(E) + pp(F).

By an argument given in the proof of (i) we show that p, is additive on
A so it is also finitely additive on A. Thus (ii) is established. To prove
(iii), suppose that v is any measure on A which agrees with g on R, and
let £ be an arbitrary set in R¢. For any A € R with A C FE, we have
w(A) =v(A) < v(E), so po(E) < v(E). Therefore, g < v on Re. If v = pug
on R¢, we are done. Suppose that py # v on R¢. Then there is a set F' € R¢
such that po(F) < v(F), so 0 < pug(F) < oo. Define p = v(F) — po(F). We
have 0 < p < oco. Assert that v(E) = p,(E). For this, assume first that
0 < p < o0 or, equivalently, 0 < v(F') < co. We have that

V(F)=v(ENF)+ pu(F — E) < oo and po(F) = po(ENF) + po(F — E) < oo.

Since E — F,F — E € R, we also have that v(F — F) = uo(E — F) and
V(F—E) = po(F—FE). Then we have p = v(ENF)—uo(ENF). Consequently,

pip(E) = po(E) +p = po(E — F) + po(ENF) +v(ENF) — o(ENF) = v(E).

Next assume that p = oo or, equivalently, v(F') = co. Since v(F) = v(ENF)+
v(F—FE)and v(F —E) = po(F — E) < uo(F) < 00, we obtain v(ENF) = oo,
so V(E) = co. By the definition of pe, we have poo(E) = oco. Thus the
assertion holds and hence (iii) is established. (]

Lemma 6. Let R be any ring in X such that X € R and let A be the algebra
generated by R. Suppose that p is a countably additive measure on R and that

{up} are the measures on A that are induced by p and parameters p € [0, o).
Then:

(i) po is a countably additive measure on A which extends p.
(ii) If X € Ry, then ug is a unique countably additive measure on
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A which extends .

(i11) If X € R, then each p, with 0 < p < 0o is a countably additive
measure on A which extends p.

(iv) If X € R,, then every countably additive measure v on A which
extends  is of the form p, for some p € [0, o0].

Proor. For (i), suppose that {F,,}22, is a pairwise disjoint sequence of sets
in A such that £ = U2 E,, € A. Assume first that £ € R. By Lemma 1 (i)
we have FE,, € R for all n, so that by the countable additivity of u, together
with Lemma 5 (i),

po(E) = u(E) = ZZO:1 w(En,) = Zle to(En)-

Next assume that £ € R® and that A € Rand A C E. Since A = U2 ANE,,
where AN E,, € R for all n by Lemma 1 (i), we obtain again by the countable
additivity of p that w(A) = > 0°  w(ANE,) < Y07 uo(E,). Taking the
supremum of z1(A) over all such A we obtain po(E) < > 07 puo(Ey). Since o
is finitely additive on A by Lemma 5 (i), we have, for any positive integer n,
Sor wo(E) = po(Uq E;) < po(E). Letting n — oo we obtain the reverse
inequality so that (i) holds.

For (ii), suppose that X € R, and that v is any countably additive measure
on A which agrees with p on R. By part (i), v agrees with po on R. Assert
that v agrees with pug on R¢. For this, suppose that A is any set in R¢. Since
X € Ry, we have R® C R, by Lemma 2, so that there is a pairwise disjoint
sequence {A4,}52; of sets in R such that A = U2, A,,. By the countable
additivity of v and g, we obtain v(A) = Y 7 v(A,) = Y00 wo(An) =
po(A). Thus the assertion is established and hence (ii) holds.

For (iii), suppose that X ¢ R, and that 0 < p < oco. Trivially u, agrees
with ¢ on R by the definition of p,. Let {E,}52; be any pairwise disjoint
sequence of sets in A such that £ =U2E, € A. If E € R, then E, € R for
all n, so

pp(E) = u(E) = Z?:1N(En) = Z;.Lozlﬂp(En)»

since p is countably additive on R. Suppose that E € R¢. It follows from
Lemma 1 (iv), together with Lemma 3, that there is a unique set E; € R¢
such that E,, € R for all n # i. Consequently, we obtain from part (i) and the
definition of p, that

1p(E) =po(E) +p = 30" pio(En) +p = po(Ei) +p+ X2, 4i0(En)
=pp(Es) + 32, ik (En) = > o1 tp(En)-
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Thus (iii) holds. Assertion (iv) follows from Lemma 5 (iii), together with parts
(i) and (iii). O

Suppose that R is a o-ring in X which is not a o-algebra and that A is
the o-algebra generated by R. Let p be any countably additive measure on
R. By parts (i), (iii) and (iv) of Lemma 6, the measures p, (0 < p < o0) are
the only countably additive measures on .4 which extend p (see [5, Problem
9, p.258]).

Let R be any ring in X. It is easy to give an alternate, but equivalent, defi-
nition of R, : define R, as the family of unions of increasing sequences of sets
in R. Notice that R, is the smallest family of subsets of X containing R and
closed under the formation of finite intersections and countable unions. Let
be a countably additive measure on R. Define i on R, as follows : for each
A € Ry, let i(A) = limy, u(A,,), where {A4,,}52; is any increasing sequence of
sets in R such that A = U2, A,,. We show readily that i is defined unam-
biguously on R,. Furthermore, i is a unique monotone increasing, countably
additive non-negative extended real-valued set function on R, which agrees
with p on R. We also have that i(A) = sup{u(B) : B C A, B € R} for
all A in R,. For the outer measure pu* generated by (u,R), we obtain that
p*(E) = inf{i(A) : E C A € R,} if E can be covered by a set in R, and
w*(E) = oo otherwise.

Lemma 7. Let R be any ring in X such that X € R, — R and let A be the
algebra generated by R. Suppose that u is a countably additive measure on R
and that pg is the unique countably additive measure on A extending . Then

Re = Ao and i = (1) on Ry

Proor. The first equality follows from Lemma 4 (i). The set functions i and
(po) denotes, respectively, the extension of 1 to R, and o to A,. Thus both
g and (uo) are defined on R, = A,. Suppose that A is an arbitrary set in
R, and that {A,}52, is an increasing sequence of sets in R such that A =
Up2 1 Ap. By the definitions of fi and (po) we obtain that fi(A) = lim,, u(Ay)
lim,, p10(Arn) = (po)(A). Thus the lemma is established.

Theorem 1. Let X, R, A, u and uo be as in Lemma 7. Then p*(E) = py(E
forall EC X.

= O

PrOOF. Suppose that F is an arbitrary subset of X. Then E has a cover in
R, since E C X € A, = R, by the first part of Lemma 7. We obtain from
the second part of Lemma 7 that

1 (B) = inf{fi(A) : EC A€ Ry} = inf{{(1i0)(A) : EC A€ Ay} = i (E).



242 YonG TAE Kim aAND C. W. KM

Thus the theorem is established. O

Example 3. Let X denote the real line R and let R denote the ring of all
unions of finite collections of pairwise disjoint intervals [a, b), where —oo < a <
b < 00. Obviously X € R,—R. For any finite collection {[a;, b;),i =1,--- ,n}
of pairwise disjoint intervals in R, define (U4 [a;,b;)) = > (b; —a;). Then
1 is a countably additive measure on R. Let A = RURC and let ug denote the
unique countably additive measure on A which extends p. We have po(E) = 0o
for all E € R°. By Theorem 1 we have p* = p§. The outer measure p*is called
Lebesgue outer measure on R.

For any subset E of X, cardE denotes the cardinal number of F.

Example 4. Let X denote the set N of all positive integers and let R denote
the ring of all finite subsets of X. Then X ¢ R. The algebra A generated by R
consists of the finite and the cofinite subsets of X so A & R, = A, = P(X).
Suppose that p is any measure on R. Trivially u is countably additive on R.
Let pup and @ denote the countably additive measure extending p to A and
P(X), respectively. We have that uo(E) = > cpu({n}) for all E € A and
M(E) =, cpm({n}) for all E C X. Then i is a countably additive measure
on P(X) such that i(E) = p*(F) = ud(F) for all E € P(X).

Next suppose that pu(E) = cardE for all E € R. Plainly p is a measure on
R. Then the countably additive measure i on P(X) is counting measure, that
is, i(E) = n if F is finite and has n elements and i(E) = oo if F is infinite.

2 Main Result and Examples

Throughout this section we shall assume that R is an arbitrary ring in X such
that X &€ R, A is the algebra generated by R, and p is any countably additive
measure on R. Let i denote the unique extension of y from R to R, and p*
the outer measure generated by (u, R). Form the countably additive measures
tp (0 < p < o0) on A that are induced by p and parameters p € [0, o0]. For
0<p<o0,let @ denote the unique extension of y;, from A to A,, and let p;
denote the outer measure generated by (pp, A). Let M and M, (0 < p < o0)
denote the o-algebra of all p*-measurable and j-measurable subsets of X,

respectively.

Lemma 8. Define (ji)g on Ay, by (@)o(E) = @(E) if E € Ry and (f)o(E U
F)=sup{a(A): AC EUF, A€ R,} if E € Ry, F € R¢,and ENF = (). Then:

(1) (#)o(E) = (1) (E) = i(E) if E € Rq;

i
(ii) (m)o(F) = (po)(F) = po(F) if F € R¢;
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(iii) (A)o(EUF) = a(E)+po(F) if E € Ry, F € R®, and ENF = 0;
(iv) (@)o is defined unambiguously on Ay — Rey;
i

(v) (f)o(A) = (o)(A) for all Ac A,.

Proor. For (i), suppose that E € R, and that {F,}22, is an increasing
sequence of sets in R such that £ = Up2 E,. We have that (f1)o(E) =
A(E) = lim, u(Ey) = limy, po(E,) = (10)(E), so that (i) holds.

For (ii), suppose that F' € R. By the definitions of (fi)o and (uo), we have
that ()o(F) > po(F) = (uo)(F). To prove the reverse inequality, suppose
that A is any set in R, such that A C F', and let {4,,}22; be an increasing
sequence of sets in R such that A = U2 A,,. Since u(Ay,) < po(F) for all n,
we obtain that n(A) = lim,, u(A,) < po(F). Taking the supremum of fi(A)
over all A € R, with A C F we get (f1)o(F') < po(F). Thus (ii) holds.

For (iii), suppose that £ € R,,F € R¢, and ENF = (), and let A be
any set in R, such that A C EUF. Then A = (AN E)U (AN F), where
ANE, ANFeR, and ANENF = (. Since i is monotone increasing and
countably additive on R, we obtain from (ii) that

A(A) = (AN E) + (AN F) < i(B) + (Ro(F) = i(E) + po(F).

Taking the supremum of fi(A) over all such A we have that (@)o(E U F) <
i(E) + po(F). To prove the reverse inequality, suppose that B C F and
BeR. Since FUB € R, and FUB C EUF, we have that

i(E) + w(B) = i(E) + i(B) = p(EU B) < (m)o(E U F).

Taking the supremum of u(B) over all B € R with B C F we have that
B(E) + po(F) < ()o(E U F). Thus (iii) holds.

For (iv), suppose that A is any set in A, — R, and that A = E; U F; =
EyUF,, where E; € R, F; € R¢, and E;NF; = () for i = 1,2. Since Ej is the
union of two disjoint sets E1 N Ey and E; N Fy that are in R, we obtain that
ﬂ(El) = ﬂ(El N EQ) + /](El N Fg) Since F1 = (F1 N EQ) @] (Fl N Fg), where
FINEy € Ry, Fi1NFy, € RE and Fy N Ex N Fy = (), we have from (ii) and (iii)
that po(F1) = (R)o(F1) = p(F1 N Es) + puo(F1 N Fy). Consequently, again by
(iii) we obtain that

()o(Er U Fr) = i(E1) + po(F1)
= ﬂ(El n EQ) + ﬂ(El N FQ) + /](Fl N EQ) + MO(Fl n FQ).

Interchanging F; and Fy by E5 and F5, respectively, in the above equations
we see at once that (1)o(E1 U Fy) = (fi)o(F2 U F2). Thus (iv) holds.
For (v), suppose that A is any set in A, — R, of the form E U F, where
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EeR,, FeR and ENF = 0. Let {E,}5°, be an increasing sequence of
sets in R with F = U2, E,,. Since {E,, U F'}2, is an increasing sequence of
sets in A with A = U2, (E, U F), we obtain that

(10)(A) = lim pio (Er, U F)
= lim g (Ey) + po(F) = lim p(Ey) + po(F) = f(E) + po(F),

so by (iii), (uo)(A) = (B)o(A). Now Assertion (v) follows from (i) and Lemma
4 (ii). O
The simple proof of the next lemma is omitted.

Lemma 9. For 0 < p < oo, define (i), on A, by (1),(A) = a(A) if A€ R,
and (R)p(A) = (R)o(A) + p if A€ Ay~ Ro. Then :

(1) (1)p(E) = (1p)(E) = i(E) if E € Ro;
(i) (@)p(F) = (up)(F) = pp(F) if F € R
(iit) (P)p(EUF) = (up)(EUF) = i(E) +pp(F) if E € R, F € R,
and ENF = (;

(iv) (W)p(A) = (1p)(A) for all A€ A,.
For 0 < p < oo, we write fi,(A) for (),(A) = (up)(A), where A € A,.
Lemma 10. Let E be any subset of X.

(i) If E has a cover in R, then js(E) = p*(E) for all p € [0,00].
(i) If E has no cover in R, then
pyp(E) = inf{ji,(A): EC A€ Ay —R,} for all p € [0, 00].
(i1i) If E has no cover in R, then
pp(E) = pg(E) +p for all p €

(0,00), and p (E) = co.
(iv) u5(E) < py(E) < pg(E) < pio(E) =

p*(E), where 0 < p < q <
0.

Proor. To prove (i), suppose that E C C € R, and that p € [0,00]. Let C
and D denote the family of all coverings of F from R, and A,, respectively.
We have that C € C C D so by part (i) of Lemma 8 or 9,
iy (E) = inf{fi,(D) : D € D} <inf{fi,(D): D € C}
=inf{a(D): D € C} = pu*(E).
Trivially the reverse inequality holds if yu5(E) = oco. To complete the proof
of (i), assume first that 0 < p < oo and py(FE) < oo. For any € > 0, there
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is an A € A, such that E C A and fi,(A) < py(E) +e Since E C AN
C € R,, we have from part (i) of Lemma 8 or 9 that u*(E) < g(ANC) =
fp(ANC) < [p(A) < ps(E) + ¢, and hence p*(E) < pi(E), since € is an
arbitrary positive real number. Next assume that p% (E) < co. Then we have
wio(B) = inf{ficc(A) : E C A € Ay} < co. By the definition of po, we have
that peo(F) = oo for all F' € R¢, so that fis(A) = oo for all A € A, — R, by
Lemma 9 (iii). Consequently,

pio(E) =inf{fic(A) : EC A€ Ry} =inf{a(4): EC A€ R,} = p*(E)

by Lemma 4 (ii), together with Lemma 9 (i). Thus (i) is established.

To prove (ii), suppose that F has no cover in R,. Since E C X € R¢ C
As — R,, E has at least one cover from A, — R, so by Lemma 4 (ii) we
establish (ii).

To prove (iii), again suppose that E has no cover in R,. Assume first that
0 < p < oco. Since fip(A) = f(A) +p for all A € A, — R, by Lemma 9, we
obtain from (ii) that () = inf{fig(A)+p: E C A€ Ay, —Ro} = p5(E) +p.
As we noted in the proof of (i), we have that i, (4) = co for all A € A, —R,,
so that by (ii), we get p (F) = oo. Thus (iii) is established.

If F has no cover in R, then by the definition of p*, together with (iii), we
have p*(E) = u% (E) = oo. By (i), we have p*(E) = p, (E). The inequalities
in (iv) now follow from (i) and (iii). Thus (iv) is established. O

We now turn to the relations among the o-algebras M and M, with 0 <
p < oo. Since p* = pk, by Lemma 10 (iv), we obtain M = M. The next
proposition shows that M, C M for all p € [0, c0).

Proposition 1. For 0 < p < oo, every u;-measurable subset of X is p*-
measurable.

PROOF. Suppose that E' is an arbitrary u,-measurable subset of X, and let T'
be any subset of X with p*(T) < oco. Obviously T has a cover in R,, so the
same is true for TN E and T N E°, respectively. By Lemma 10 (i) we have
that py(T) = p*(T), py(T N E) = p*(T'N E), and py(T N E°) = p*(T N E°).
Consequently, by the pj-measurability of £ we obtain that

pH(T) = py(T) = p, (T N E) + pp (TN ES) = p* (TN E) + p™ (T NE),
and hence F is pu*-measurable. O

Proposition 2. For each E C X, E is p*-measurable if and only if E is
g -measurable.
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Proor. Suppose that F is p*-measurable and that T' is any subset of X with
uy(T) < oo. First assume that 7" has a cover in R,,. Then TN E and T'N E€,
respectively, has a cover in R,. Since F is u*-measurable, using Lemma 10
(i) we obtain that

uy(T) = (1) = p* (T N E) + p* (T 1 E°) = (T 1 E) + (T 1 E°),

and hence E' is pi-measurable.

Next assume that 7" has no cover in R,. By Lemma 10 (ii) there is, for any
€>0,aset A= FUG, where F € R,, G € R¢and FNG = (), such that T C A
and fig(A) < u(T) + €. By Lemma 8 we have that fig(A) = G(F) + po(G).
We show easily that there is a set H € R, such that H C G and u(G) =
A(H). Set B =F UH. We have that B € R,, B C A and fio(A) = i(B).
Since A — B = G — H is pj-measurable and since po(G) < oo, we have that
Uy (A —B) = uy(G— H) = po(G) — p(H) = 0. Since, for any C C X, pg is
countably additive on the trace of Mg on C, i.e., {SNC : S € My} (see, e.g.,
[5, Problem 2, p.291]), we have that pui(ANC) = p5(B N C). In particular,
we have that u§(ANE) = pi(BNE) and pi(AN E°) = pi (BN E°).
Consequently, using the p*-measurability of B and F, together with Lemma
10 (i), we obtain that

Wy(T) + € > io(A) = fi(B) = w* (BN E) + u*(B 1 E¥)
— 13(BNE) + (BN EY)
= 13 (A N B) 4 (AN E) > iy (T OV E) + (T 0 E°),

and hence pf(T) > pd(T N E) + pi(T N E°), since € is an arbitrary positive
real number. Thus E is pj-measurable. By Proposition 1 we establish the
proposition. U

Proposition 3. For any positive real numbers p and ¢, a subset E of X is
o, -measurable if and only if E is p;-measurable.

Proor. We assume that p # ¢. Suppose that F is p-measurable and let T" be
any subset of X. Suppose first that T has a cover in R,,. Since both TN FE and
T N E€ have covers in R, and since F is also p*-measurable by Proposition 1,
we have from Lemma 10 (i) that

(1) = p* (1) = p* (T N E) + p* (T 1 E°) = (T 1 E) + (T 0 E°).

Thus E is pg-measurable. Next suppose that 7' has no cover in R, with
py(T) < oo. By Lemma 10 (iii) we have ug(7") < co. By the assumption on
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T, at least one of the sets T'N E and T' N E° has no cover in R,. Suppose
that both of these sets have no cover in R,. Since E is uj-measurable by
Propositions 1 and 2, we obtain from Lemma 10 (iii) that

o (T) +p = py(T) = pp(T N E) + py (TN E°)
= po(TNE) + p5(T N E°) +2p = pg(T) + 2p,

so p = 0. This is a contradiction. Therefore, we can assume that 7N E has
a cover in R, and T'N E° has no cover in R,. Consequently, we have from
parts (i) and (iii) of Lemma 10 that

(1) = (1) + g = (T 1V B) + (T 0V E°) + q = (T 0 E) + (T 1 E°).

Thus E is pg-measurable. Interchanging p and ¢ in the preceding result we
establish the proposition. ([

Now we formulate the main result of this paper.

Theorem 2. M, =M; C My =M =M for all p € (0,00).

Proor. By Proposition 3 we have that M, = M, for all positive real numbers
p. We infer from Propositions 1 and 2 that M; C M = M. As we noted
earlier, we have that M = M. O

We need not have My = M (see Example 5 or 6 below).

Example 5. Let X = {1,2}, R = {0}, and A = {, X}. Plainly R is a
o-ring in X with X ¢ R, and A is the o-algebra generated by R. Define
1(0) = 0. Then g is a countably additive measure on R. We have at once
that p*(0) = 0 and p*(E) = oo if F is a nonempty subset of X, so u* is also
a countably additive measure on P(X) = {0, {1}, {2}, X}. Thus M = P(X).
Since po(0) = po(X) = 0, we obtain that u§(E) = 0 for all E C X. By
Lemmas 5 and 10 we have that, for all p € (0, 00|, u,(0) = 0 and p,(X) = p,
so (@) = 0 and pi(E) = p if E = {1},{2} or X. Notice that u* = pu%,. We
assert that M, = A for all p € (0,00). To prove the assertion, suppose that
p is any positive real number. Since p = 5 (X) < py({1}) + py({2}) = 2p,
both {1} and {2} are not ji;-measurable and hence the assertion is established.

Thus M; # M.

In the following examples, let X denote any uncountable set, let R denote
the ring of all finite subsets of X, and let A and B denote, respectively, the
algebra and the o-algebra generated by R as in Example 2. For any measure
p on R, the measure p, (0 < p < o0) on A induced by p and parameter p is
countably additive, since p is countably additive.
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Example 6. Define u(E) = 0 for all E in R. Plainly u is a countably additive
measure on R. Since i(E) = 0 for all E in R,, we obtain that y*(E) =0 or
oo according as E is countable or not. Then p* is also a countably additive
measure on P(X) so that M = P(X). We next compute pf. Since po(E) =0
for all A in A, we obtain that fig(F) = 0 for all £ in A, = R, U R® (see
Example 2), and hence p§(E) = 0 for all £ C X. By Lemma 10 (iii) we
have that pf(E) = 0 or 1 according as E is countable or not. Assert that
M = B. Since B =R, U (R,)¢ by Example 2, we obtain B C M;. To prove
the opposite inclusion, suppose that A is any subset of X such that both A
and A° are uncountable. Then 1 = p}(X) < pi(A) + pi(A°) =2 s0 A is not
wi-measurable. Thus the assertion holds. Consequently, M; # M.

Example 7. Define g on R by u(E) = card E for all E in R. Then p is
a countably additive measure on R. We obtain that f(E) = card E if E is
finite and [i(E) = oo if E is countably infinite, so that u*(F) = card E if E is
finite and p*(E) = oo if E is infinite. Then p* is a countably additive measure
on P(X) so M = P(X). On the other hand, we have that uo(E) = card E
if E is finite and po(F) = oo if E is cofinite, and that fig(E) = card E if E
is finite and fip(E) = oo if E is countably infinite or cofinite. Consequently,
p = p*. By part (iv) of Lemma 10 we obtain that for all p € [0, oc], s = p*
so My, = M.

Example 8. Define ;on R by u(0) =0 and p(E) = 0o if E € R and E # 0.
Then p is a countably additive measure on R. It follows easily that p*(0) = 0
and p*(E) = oo if E # ), and that p* is a countably additive measure on
P(X), so M = P(X). As in Example 7, we obtain that for all p € [0, x],
pp = p* 80 My = M.
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