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STRONG AND WEAK VITALI
PROPERTIES

Abstract

Let X be a metric space and let µ be a Borel measure on X. We say
that µ satisfies the strong Vitali property if for any Borel subset E of X
with µ(E) <∞ and for any fine cover V of E, we may extract a countable
disjoint subcollection π = {Bi} from V such that µ(E \ ∪Bi) = 0. If
we require π to satisfy the condition that if B(xi, ri), B(xj , rj) ∈ π
with i 6= j, then xi /∈ B(xj , rj), then µ is said to satisfy the weak Vitali
property. Besicovitch showed that every finite Borel measure in Rn must
satisfy the strong Vitali property. It is also true for certain other metric
spaces. In a general metric space it is no longer pertinent to ask if all
Borel measures possess a certain property. To this end we construct a
metric space Ω and identify two subsets A,B ⊆ Ω such that for any
Borel probability measure µ on Ω,

1. if µ(A) = 1, then µ must satisfy the strong Vitali property;

2. if µ(B) = 1, then µ must satisfy the weak Vitali property but not
necessarily the strong Vitali property;

We introduce the notion of a centralized Vitali property and give an
example of a measure for which this property fails.

Introduction

Let E ⊆ Rn. A collection β of closed balls is called a centered Vitali cover of E
if for every x ∈ E and every ε > 0, there is a ball B(x, r) ∈ β with 0 < r ≤ ε.
A Borel measure µ is said to satisfy the Vitali covering theorem if for every
Borel subset E of Rn with µ(E) < ∞, and any centered Vitali cover V of
E, we can extract a countable disjoint subcollection {Bi} from V such that
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µ(E \ ∪Bi) = 0. One of the fundamental properties of Rn is that every finite
Borel measure on Rn satisfies the Vitali covering theorem. This was shown
by Besicovitch [1]. Larman [11] extended this to “finite dimensional” compact
metric spaces. The property is true for compact ultrametric spaces, finite-
dimensional Banach spaces and sufficiently smooth Riemannian manifolds.
Davies [5] constructed a metric space Ω and a measure µ on Ω that fails
to satisfy the Vitali covering theorem. A more general covering theory was
developed by Morse [13].

The proof of the fact that every Borel measure in Rn satisfies the Vitali
covering theorem depends essentially on the following geometric property of
Rn. If we let c = 16n + 1, then for any centered Vitali cover β of a bounded
set E ⊆ Rn we can extract a countable subcover β′ = {Bi} such that for any
k, the ball Bk intersects at most c− 1 of the previous k − 1 balls. In fact the
same proof shows that in a general metric space a similar geometric condition
is sufficient to ensure that every Borel measure satisfies the Vitali covering
theorem. Are there such metric spaces? We show how Davies’ space Ω may
be suitably modified to construct such a metric space X. (We obtain an entire
class of such examples). It turns out that we need to restrict our attention
to a subset of X. If we change our subset then this aforementioned geometric
condition could fail. But the following weaker condition might hold. There
is a constant K such that for any centered Vitali cover β of a bounded set
E ⊆ X we can extract a countable subcover β′ = {Bi} such that for any k, the
ball Bk contains the centers of at most K−1 of the previous k−1 balls. Note
that now there is no longer a limit to the number of balls that might intersect
each other. In fact this number could grow with k. Of course in a general
metric space balls do not have unique centers and so some natural analogous
definitions are required.

This suggests that in a general metric space, the geometry may very well
differ from place to place and so it is no longer pertinent to ask if a certain
Vitali type result holds for all measures. Instead it becomes a property of the
support of the measure, which seems like an obvious statement anyway. This
paper is merely a reinforcement of this simple observation.

1 Definitions

Let (X, ρ) be a metric space. A constituent in a metric space is an ordered
pair (x, r) where x ∈ X and r > 0. The constituent (x, r) may be thought of
as the ball B(x, r). In a general metric space it is possible for two balls B(x, r)
and B(y, s) to be equal as point sets even though x 6= y and/or r 6= s. The
centralizer of a constituent (y, s) is defined to be the set C(y,s) = {x ∈ X :
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there is r > 0 with B(x, r) = B(y, s)}.
A collection of constituents is a packing iff B(x, r) ∩ B(y, s) = ∅ for all

(x, r) 6= (y, s). For E ⊆ X, a fine cover of E is a collection of constituents
centered in E such that for every x ∈ E and every ε > 0, there is a constituent
(x, r) in the collection with r < ε. A Borel measure µ on X is said to satisfy
the strong Vitali property if and only if for every Borel subset E of X with
µ(E) < ∞, and any fine cover V of E, we can extract a countable packing
{Bi} from V such that µ(E \ ∪Bi) = 0.

A collection π of constituents centered in E is a weak-packing if and only
if for every (x, r), (y, s) ∈ π with (x, r) 6= (y, s), we must have x /∈ B(y, s).
Edgar [7] defines packings as (b)-packings and weak-packings as (a)-packings.
A Borel measure µ on X is said to satisfy the weak Vitali property if and only
if for every Borel subset E of X with µ(E) <∞, and any fine cover V of E, we
can extract a countable weak-packing {Bi} from V such that µ(E \ ∪Bi) = 0.
Since every packing is also a weak-packing, it is clear that any measure that
has the strong Vitali property also has the weak Vitali property.

Definition 1.1. A metric space X has the Besicovitch packing property if
there exists an integer K such that for any E ⊆ X and any fine cover β of E,
we can extract a countable subcover β′ = {Bi} such that for any n, the ball
B(xn, rn) intersects at most K − 1 of the previous n− 1 balls.

The proof of the following Theorem is the same as in [7, Cor. 1.3.12,
Thm. 1.3.13].

Theorem 1.2. Let X be a metric space that has the Besicovitch packing
property. Then every finite Borel measure on X has the strong Vitali property.

Definition 1.3. A metric space X has the Besicovitch weak-packing property
if there exists an integer K such that for any E ⊆ X and any fine cover β of
E, we can extract a countable subcover β′ = {Bi} such that

1. for any n, the ball Bn intersects the centralizers of at most K − 1 of the
previous n− 1 balls;

2. if (x, r), (y, s) ∈ β′, then B(x, r) ∩ C(y,s) = ∅ ⇐⇒ B(y, s) ∩ C(x,r) = ∅.

The next theorem then follows.

Theorem 1.4 ([3]). Let X be a metric space that has the Besicovitch weak-
packing property. Then every finite Borel measure on X has the weak Vitali
property.
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2 Construction of the Metric Space

Our metric space will be a modification of Davies’ construction [5]. We will
essentially follow Edgar’s terminology [6] where he describes Davies’ construc-
tion in detail.

Let K1,K2 be two fixed natural numbers. For a given integer N , let G(N)
be a set of vertices labelled as follows. There are N vertices (i, 0, 0), 1 ≤ i ≤ N
which we call central vertices and (K1 + K2)N2 additional vertices that are
labelled (i, j, k), 1 ≤ i, j ≤ N, 1 ≤ k ≤ K1 + K2. Vertices (i, j, k), 1 ≤ k ≤ K1

are called peripheral vertices; vertices (i, j, k),K1 +1 ≤ k ≤ K1 +K2 are called
outer vertices.

For a fixed i, j, each outer vertex (i, j, k) is joined to every peripheral vertex
(i, j, k′), but not to each other. The peripheral vertices (i, j, k′) are joined to
their central neighbor (i, 0, 0), but not to each other. A central vertex (i, 0, 0)
is joined to all the peripheral vertices (i, j, k), 1 ≤ j ≤ N, 1 ≤ k ≤ K1 and all
other central vertices (i′, 0, 0).

Given two vertices u, v we will write u ∼ v if u = v or u is joined to v
by an edge. We will write u 6∼ v if not u ∼ v. Let (Nn) be an increasing

sequence of natural numbers. Our metric space is defined as Ω =
∞∏
n=1

G(Nn).

Let u = (u1, u2, . . .) ∈ Ω where ui ∈ G(Ni). We define the metric ρ as follows.
First ρ(u, u) = 0 for every u ∈ Ω. If u, v ∈ Ω and u 6= v, let n be the least
integer such that un 6= vn. If un ∼ vn in G(Nn), then we let ρ(u, v) = (1/2)n

and if un 6∼ vn in G(Nn), then we let ρ(u, v) = (1/2)n−1.
Given a finite sequence w1 ∈ G(N1), w2 ∈ G(N2), . . . , wn ∈ G(Nn) define

a cylinder Ω(w1, w2, . . . , wn) = {u ∈ Ω : u1 = w1, u2 = w2, . . . , un = wn}.
The diameter of Ω(w1, w2, . . . , wn) is (1/2)n. A cylinder will be called central,
peripheral or outer according as the last coordinate is central, peripheral or
outer. The open balls in Ω are as follows. Let u ∈ Ω and r be given with
0 < r < 1. Let n be such that (1/2)n < r ≤ (1/2)n−1. Then B(u, r) = {v :
u1 = v1, u2 = v2, . . . , un−1 = vn−1, un ∼ vn}. It follows that if un is central,
then B(u, r) is the union of Nn central and K1Nn peripheral cylinders. If
un is peripheral, then B(u, r) is the union of one central, one peripheral and
K2 outer cylinders. If un is outer, then B(u, r) is the union of K1 peripheral
cylinders and one outer cylinder.

If we let B = B(u, r), then C(u,r) = Ω(u1, u2, . . . , un) for n with 2−n < r ≤
2−n+1. Suppose two balls B(u, r) and B(v, s) are of the same size in the sense
that 2−n < r, s ≤ 2−n+1. First suppose that un, vn are peripheral or outer. If
un and vn correspond to different central neighbors, then B(u, r) and B(v, s)
are disjoint. Suppose they correspond to the same central neighbor (i, 0, 0). If
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un = (i, j, k) and vn = (i, j′, k′) where j 6= j′, then B(u, r), B(v, s) may or may
not be disjoint but their centralizers will be. If un = (i, j, k) and vn = (i, j, k′)
where k 6= k′, then we have the following. If un and vn are both peripheral
or both outer, then B(u, r) and B(v, s) are not disjoint but their centralizers
are; if un is peripheral and vn is outer, then B(u, r) contains the centralizer
of B(v, s) and vice versa. Similar arguments can be used to study the other
cases.

For u = (u1, u2, . . .) ∈ Ω we say that u is a central point if uk is a central
vertex in G(Nk) for each k. We say that u is an eventually central point if uk
is a central vertex for all but finitely many values of k. We define peripheral,
outer, eventually peripheral and eventually outer points in the same way.

3 Measures and Vitali Properties

Let A denote the set of all eventually outer points and let B denote the set of
all eventually peripheral or eventually outer points.

Lemma 3.1. A satisfies the Besicovitch packing property with K = K2.

Proof. Let β be a fine cover of A. If u = (u1, u2, . . .) ∈ A, then there exists a
smallest integer n(u) such that uk is an outer vertex for all k ≥ n(u). For each
u we may discard the balls B(u, r) for which r > 2−n(u). We decompose this
new collection into countably many families, each family consisting of balls
of the “same size”. In other words, let βn denote the collection of all balls
B(u, r) with (u, r) ∈ β such that 2−n < r ≤ 2−n+1 (r > 2−n(u)) and such that
for all k = 1, . . . , n− 1 and for all balls B ∈ βk we have u /∈ B. Then for all n
and for all B(u, r) ∈ βn with u = (u1, u2, . . .), un is an outer vertex in G(Nn).
Further, each family βn contains at most C(K1,K2, Nn) < ∞ distinct balls.
The constant C(K1,K2, Nn) may be estimated by noting that in G(Nn) one
has to take an outer vertex and in G(Nk) for k = 1, . . . , n − 1, one can take
anything.

Now if B1, . . . , Bk ∈ ∪∞k=1{B|B ∈ βn} (enumerated in a suitable way),
then there are at most K2 − 1 balls Bj (j 6= k) with Bj ∩ Bk 6= ∅. In fact, if
Bj ∩ Bk 6= ∅ for some j = 1, . . . , k − 1, then there is l such that Bk, Bj ∈ βl,
giving the claim.

A similar proof gives us the following.

Lemma 3.2. B satisfies the Besicovitch weak-packing property with K =
max (K1,K2).

Proposition 3.3. Let A,B ⊆ Ω as above. Let µ be any probability measure
on Ω.
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(i) If µ(A) = 1, then µ must satisfy the strong Vitali property.

(ii) If µ(B) = 1, then µ must satisfy the weak Vitali property but not neces-
sarily the strong Vitali property.

Proof. (i) follows immediately from Lemma 3.1 and Theorem 1.2.
The first part of (ii) follows from Lemma 3.2 and Theorem 1.4. For the

second part we take µ to be the “uniform measure” defined by Edgar [6]. We
briefly describe the construction of µ. We define an additive set function for
each cylinder. This may then be extended to a Borel probability measure in
the usual way. First we take Nn to be a sequence of integers ≥ 2 such that

∞∏
n=1

Nn − 1
Nn + 1

≥ 1
3
.

Next we let γ0 = 1, γn =
γn−1

Nn(Nn + 1)
. In each finite graph G(Nn) we delete

the vertices (i, j, k), 2 ≤ k ≤ K1 + K2 for each i, j. This is equivalent to
assigning measure 0 to all the corresponding cylinders. This leaves us with
Nn central cylinders and N2

n peripheral cylinders. Let µ(Ω) = γ0 = 1 and
µ(Ω(u1, u2, . . . un)) = γn. It turns out (see [6]) that µ(B) = 1 and µ fails to
satisfy the strong Vitali property.

For u ∈ Ω let u = (u1, u2, u3, . . .) and let µn = max{µ(Ω(u1, u2, . . . un)) :
u ∈ Ω}. Let γ0 = 1 and γn =

γn−1

Nn(Nn + 1)
.

Proposition 3.4. Let C denote the set of eventually central points. Let µ be

a finite measure on Ω such that µ(C) = α > 0. If the series
∞∑
n=1

µn
(Nn + 1)γn

converges, then µ fails the weak Vitali property.

Proof. Let m ∈ N and let u ∈ C. There exists n(u) ∈ N such that if u =
(u1, u2, u3, . . .), then uk is central for all k ≥ n(u). Define a gauge on C by
letting ∆(u) = min{2−n(u),m}. Let V be a ∆-fine cover of C.

Let us recall the geometry of the central balls. Suppose two balls B(u, r)
and B(v, s) are of the same size in the sense that 2−n < r, s ≤ 2−n+1 and
un and vn are central in G(Nn). If un ∼ vn, then B(u, r) ∩ C(v,s) 6= ∅ and if
un 6∼ vn, then B(u, r)∩B(v, s) = ∅. Let π be a countable weak packing chosen
from V. Inside a given cylinder Ω(u1, u2, . . . un−1), among the balls B(u, r)
with 2−n < r ≤ 2−n+1, the weak packing contains at most one central ball.
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A central ball is the union of Nn central and Nn peripheral cylinders, so that
µ(B(u, r)) ≤ 2Nnµn. Thus

∑
(u,r)∈π

µ(B(u, r)) ≤
∞∑
n=m

N1(N1 + 1)N2(N2 + 1) . . . Nn−1(Nn−1 + 1) 2Nnµn

≤
∞∑
n=m

2µn
(Nn + 1)γn.

Since the sum converges, we may choose m large enough so that

∞∑
n=m

2µn
(Nn + 1)γn

< α.

It is not clear though if such a µ exists. For instance if µ is the uniform
measure on Ω (as in the proof Proposition 3.3 (ii)), then µn = γn and so
the series in Proposition 3.4 converges; but µ(C) = 0. On the other hand
we may construct a measure µ with µ(C) = 1 as follows. We define the
measure on the cylinders and then extend it to the entire space. Let γ0 =
1, µ(Ω(u1, u2, . . . un)) = γn where

γn =

{
1

Nn+1γn−1 if un is central
1

N2
n(Nn+1)γn−1 if un is peripheral

So in each graph G(Nn) we keep the central and peripheral vertices and delete
all others. This is equivalent to assigning measure 0 to all the corresponding
cylinders. This set function is clearly additive on the semi-ring of cylinders
and may be extended to a measure µ.

The proof that µ(C) = 1 is exactly the same as the proof of Proposition
4.2 in [6]. Let Cm = {u = (u1, u2, . . .) ∈ Ω : uk is central for all k ≥ m}. In
G(Nk) there are Nk central vertices; so

µ(Cm) =
∞∏
k=m

Nk
Nk + 1

.

By assumption, the infinite product
∏ Nk−1

Nk+1 converges so that
∏ Nk

Nk+1 also
converges. Therefore the tail products must approach 1 which means that
µ(Cm)→ 1 as m→∞. But Cm increases to C and so µ(C) = 1. But in this
case the series in Proposition 3.4 diverges.
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4 Centralized Vitali Property

Definition 4.1. Let X be a metric space. A Borel measure µ on X is said to
satisfy the centralized Vitali property if and only if for every Borel subset E
of X with µ(E) < ∞, and any fine cover V of E, we can extract a countable
weak-packing π from V such that

µ(E \
⋃

(x,r)∈π

C(x,r)) = 0.

This property is clearly false in metric spaces like Rn where the center
consists of a single point. At the other extreme, in an ultrametric space, every
weak packing is a packing and the centralizer of a constituent is the constituent
itself. The notions of strong, weak and centralized Vitali properties therefore
coincide in this case. Davies’ space and its modifications suggest that this
notion is nontrivial. We therefore give an example of a measure that does not
satisfy the centralized Vitali property.

Let C denote the set of central points in Davies’ space Ω. We construct a
measure µ with µ(C) = 1 as follows: In G(Nn) there are exactly Nn central
vertices. Let γ0 = 1, γn =

γn−1

Nn
. Let µ(Ω) = γ0 = 1. If uk is central for

every k then µ(Ω(u1, u2, . . . un)) = γn; else µ(Ω(u1, u2, . . . un)) = 0. This set
function is clearly additive on the semi-ring of cylinders and may be extended
to a measure µ. Clearly µ(C) = 1. We will show that µ fails the centralized
Vitali property. So fix m ∈ N, and let ε = 2−m+1. Let V be an ε-fine cover
of C and let π be a countable weak packing chosen from V. Inside a given
cylinder Ω(u1, u2, . . . un−1), among the balls B(u, r) with 2−n < r ≤ 2−n+1,
the weak packing contains at most one central ball. Thus

∑
(x,r)∈π

µ(C(x,r)) ≤
∞∑
n=m

N1N2 . . . Nn−1 γn

≤
∞∑
n=m

1
Nn

,

which is the tail of a convergent series and can therefore be made smaller than
one for m large enough.
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