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Abstract

Notions of density points and topologies associated with various set-
theoretic ideals connected with Hausdorff measures are introduced and
their properties investigated. Inclusions between the ideals and between
the topologies are shown.

It is well known that there are several senses (categorical, measure-theoretic,
etc.) in which a subset of the real line may be “small.” In particular, for any
s € (0,1), one can consider a natural family of small sets connected with
Hausdorff s-dimensional measure: the family of null sets for this measure.
These families depend on the chosen s and it is obvious that there are natural
inclusions between them.

It is natural to ask whether, given a fixed s, as above, one can introduce
other proper set-theoretic ideals related to the Hausdorff s-dimensional mea-
sure which will allow for a finer distinctions between various types of small
sets. In this paper we show that this is indeed possible by considering the
ideals of sets of o-finite measure and of sets whose Hausdorff dimension is at
most equal to s. We further analyze some properties of related density and
Hashimoto-type topologies and observe that the so-defined variety of ideals
allows us to construct different kinds of sets which are “dense” in their every
point in the sense of Hausdorff measures but do not belong to the density
topology connected with Lebesgue measure.

Recall the basic notions of the properties to be used [1].

If U is a non-empty subset of R™, the diameter of U is defined as |U| =
sup{d(x,y) : z,y € U}, where d denotes the Euclidean metric in R™. Let
0>0. If EC ;Ui and 0 < |Uy| <6 for each i € I, then {U;}scr is said to
be a §-cover of E.
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Let E C R™ and s > 0. For § > 0, define
o0

H3(E) =inf Y _|U;]°, (1)
i=1

where the infimum is over all countable d-covers {U; }ien of E. Tt is easy to
see that H§ is an outer measure on R".

Finally, the Hausdorff s-dimensional outer measure is defined by the for-
mula H*(E) = lims_.o Hj(E) or, equivalently, by H*(E) = sups~q H3(E).

For a given set E C R™, there is a unique s € [0, oo| such that H!(E) = 400
for all + < s and H*(F) = 0 for all ¢ > s. This value is called the Hausdorff
dimension of the set E. We denote it by dim F.

The definition of the Hausdorff measure may be generalized [3] by replacing
|U;|® by h(|U;|) in (1), where h is some function defined for all ¢ > 0 (possibly
taking the value 400 for some t), positive for ¢ > 0, increasing and continuous
on the right. The family of such functions will be denoted by H, and the
Hausdorff measure which is obtained using the function h by p” (so that if
fr(t) =t" for t € [0, +00), then pu/m = H").

Now we want to restrict our considerations to the real line. Since, for
any s > 1, each subset of R has outer H® measure equal to 0, for s = 0 we
get counting measure and for s = 1 Lebesgue measure, we assume now that
s € (0,1).

For a given s € (0,1) we can consider the following families of sets.

Ny = (A CR:H(4) =0},
N _gim = {A CR:dimA< S},
No—o7={ACR: Ais of o-finite measure H"}.

Each of these families is a o-ideal. The following inclusions are easily seen:
Ns C Ns—y C Ns_dim- The first inclusion is proper [1]. We shall show that so
is the second one. Before we do it, we need a few more facts.

First, following Rogers [3, p. 78], introduce a partial order into the family
‘H, by saying that g corresponds to a smaller generalized dimension than h, if
h(t)/g(t) — 0 as t — 0 and denoting this by g < h. We also need the following
theorem.

Theorem (Rogers [3] Cor. to Thm. 40 on p. 79). Let f,g,h be functions
in H with f < g < h. If a subset E of a metric space has o-finite positive
w?-measure, then p(E) =0 and E has non-o-finite ' -measure.

Now we are ready to formulate and prove the previously mentioned theo-
rem.
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Theorem 1. For any given so € (0,1), there exists a set E C R which has
non-o-finite measure H*°, but whose Hausdorff dimension is equal to sg.

PROOF. Our proof starts with the observation that, if there exists a function
g € H such that f,, < g < h,, where f5, (t) = t°° and h,(t) = t", for all
r > sg, then a set E of positive o-finite measure p¢ satisfies the conditions of
our statement, since, by the theorem quoted above, we are able to conclude
that E has non-o-finite measure H®° and for all r > s, we get H"(E) = 0.
Hence dim(E) = so.

It remains to prove that such a function g exists, since the existence of a
set of positive finite measure pf for a given function g € H was established in
[1].

Let {s,}nen be a decreasing sequence of numbers in (0, 1), converging to
S9. Then, with the notation f,(t) = t*» for n € NU {0}, we have fy < --- <
fo < fam1 <o < f2 < fi. Indeed, fr1(t)/fu(t) =217 - 0ast — 0,
since $,_1 — S, > 0. Similarly, we can see that fo < f, for every n € N.

We now define the sequence {t,}nen. Since both lim; ¢ flgg =0 and

f3(t) fi(t1) < 1 f3(t1)

llimtﬂo o) = 0, one can find a point ¢; such that R 5 and FolD) <

5- From now on we proceed by induction. Suppose we have already cho-

sen points ti,...,t, with the following properties: t; > to > -+ > t,,

s < Ay Bl o 2 and fira(te) < fr(teon) for ko€ (2,00}
Jrnt3(t)

Since lim;_,q }0"1;8 = 0 and lim;_,q ORI 0, we can find a point t,41

such that t,11 < t,, % < 7#2 and % < %—H Moreover,

since limy_,g fr+2(t) = 0 we can assume, by decreasing ¢,.1, if necessary, that
fnt2(tng1) < faga(tn).
Let g be defined by

0 for t =0,
o(t) = Fra1(tn) fort =t,,neN,
increasing and continuous for ¢ € [tpy1,tn],

and such that f,11(¢) < g(t) < fni2(t) on this interval.

fn(t)
g(t)
f igt()t) for ¢ < t,,, which is smaller than %_H and J?O(—(tg) for

I
t € [tnt1,tn] is not greater than ff;ri(zt()t) which is smaller than %_H Therefore

fo < g < fn for n € N. Since for each r > sg, there exists s,, such that s,, <,
it follows that fy < g < f, < h, which completes the proof. O

It is evident that the function g belongs to H and for n € N the quotient

is not greater that

From the definition of H?® it follows that for arbitrary £ C R, if s <t < 1,
then H*(E) > HY(E) > X\(E). Moreover, if H{(E) > 0, then H*(E) = oo
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and for each s € (0,1) there exists a set £ C R with positive and finite outer
measure H* [1]. Consequently, if 0 < s <t < 1, then Ny C My C N, and these
inclusions are proper. It is also evident that N,_gim C N; and, taking a set
Ee M \N s4¢, One can see that the last inclusion is proper.

Summarizing, we have the following assertion.

Theorem 2. If0 < s <t <1, then
Nofdim: ﬂ Nr CNS CNS*O'CN87dim CM CN,

0<r<1
and all these inclusions are proper.

It is worth pointing out that all the o-ideals mentioned above are invariant
under multiplication by numbers. This is a simple consequence of the following
property of the Hausdorff s-dimensional outer measure: H*(a-A) = |a|*H*(A)
fora e R, ACR, s€(0,1).

Using the o-ideal Ny, E. Wagner-Bojakowska and W. Wilczyriski [4] intro-
duced the notion of an H*-density point and defined an operation ®, : £ — 2F.

Definition 1 ([4]). The point 0 is an H?®-density point of a set A € L if|
and only if, for each subsequence {n}ren of the sequence of positive integers,
there exists a subsequence {ng, }pen such that

X(ng,-A)N[=1,1] p_>—oo> X[-1,1]

except on a set from N;. (Here n- A = {na : a € A} and x4 denotes the
characteristic functions of A.) Clearly, the convergence above holds if and only
if limsup,, (ng, - A’) N [=1,1] € Ny, where A’ =R\ A.

A point z is said to be an H?*-density point of A € L if, and only if, 0 is
an H*-density point of the set A —x = {a — 2 :a € A}. Two sets A and B
are called s-equivalent (A ~ B), if AAB € N.

ForAe L,0<s<1let

O, (A) = {r € R: x is an H’-density point of A},

and let ®(A) denote the set of all density points of A, for A € L.
Replacing the o-ideal N by N,_, (or Ny_dim), we define below an opera-
tion ®,_, (or, respectively, Ps_gim)-

Definition 2. For any A € £ and s € (0,1), let

P—o(A) = {x €R :v{nk}keNC{"}neNE{nkP}pENC{nk}kEN
limsup(ng, - (A" —z))N[-1,1] € J\/S,g}
P
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and

(I)sfdim(A) = {x eR :V{nk}keNC{n}neNH{nkp}peNC{nk}keN
limsup(ng, - (A" —z))N[-1,1] € ./\/s—dim}-
P

Theorem 2 now implies that for each s, ¢, 0 < s < t < 1, we can find
sets A, B,C,D € L such that ®,(A) C Ps_,(A), P5_»(B) C Ps_aim(B),
D, _qim(C) € @4(C), and ®;(D) C ®(D).

Theorem 3. For each A,B € L and s € (0,1),
1. if A C B, then ®,_,(A) C ®,_,(B);
if A~s_o B (i.e. AANB € Ny_y), then ®,_,(A) = ®,_,(B);
D, ,(0) =0 and ;_,(R) =R;
O, _,(ANB)=d;_,(A)NPs_,(B);
there erists a set E € L such that E\ ®5_-(E) ¢ Ns;_, (a natural
analogue of the Lebesgue Density Theorem does not hold).

The operations ®,_qi, and P, also have properties (1)—(5). (For ®,, see
[4].)

PRrROOF. For (1)—(4) the proofs are obvious. In (5) it is enough to take a set
E with positive and finite outer measure H* for ¢ > s. Then A\(E) = 0 and
®(E) = 0. Consequently, ®4(E) = ®5_,(E) = Ps_qim(E) = 0, and E does
not belong to N}, nor to Ny_gim, Ns—g or Ni. O

In [4] the following topology 7, was introduced: 7, = {A € L : A C
®,(A)} for s € (0,1). This topology is stronger than the Euclidean topology
O and weaker than the density topology 7. It is also shown in [4] that

1) f0<s<t<1then7, C 7T

2) Ujcs: Ts € Tt and

3) U0<s<1 ,TS —»C4— T.

Definition 3. For any s € (0,1) let 7,_, = {A € L: A C &,_,(A)} and
,-Ts—dim = {A eL:AC (ps—dim(A)}ﬂ

Theorem 4. Let 0 < s <t < 1. The families T;,_, and T;_qim are topologies
on the real line and Ty C To_ 5 € Ts—dim S 7t

=

PROOF. The fact that these families are topologies is easily seen and also the
inclusions are obvious. We only need to show the latter are proper. We begin
by proving T, _, \ 75 # 0.

From Theorem 5.4 of [1], it follows that there exists a compact set F' C [3,1]
such that 0 < H® < +o0. So, F € Ny_, \ N;. Let A= ;" 71 - F and
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B =R\ A. We claim that B € T;_, \ Z;. Indeed, each point of the set B,
except 0, is an inner point of this set in the Euclidean topology. It remains to
show that 0 € ®,_,(B). Let {n}ren be an arbitrary increasing sequence of
natural numbers. Then

limksup(nk BYn[-1,1]= () U - A)n[-1,1] C | (- A) 0 [-1,1].
k=1m=k k=1

Since F' € N,_,, and this o-ideal is closed under multiplication by numbers,
A € N,_, and, of course, | Jr, (ny - A) N [—1,1] also belongs to Ns_,.

Now the task is to show 0 ¢ ®,(B). For this, it is enough to find an in-
creasing sequence {ny }ren of natural numbers such that for each subsequence
{nk, }pen the set limsup,(ng, - B') N [~1,1] is not from the o-ideal N,. Let
ni = 2% for k € N. Then, for each k € N, (2 - A) N [-1,1] = AN [-1,1] and
for any subsequence {ng, }pen C {nx}ren we have

lim sup(ng,, - B)n[-1,1] = limsup(ng, - A)N[-1,1] = AN [-1,1] ¢ N,
p P

since F C An[-1,1].

The same proof remains valid for the next pairs of topologies, since all of
them were defined in the same way, the ideals which were used are invariant
under multiplication by numbers, and inclusions between them are proper
(Theorem 1). O

Some properties of the topologies 75, 75—, and 7;_gim for any s € (0,1)

are listed below:

1. The topologies 7, 7s_o, 75_dim are stronger then the Euclidean topol-
ogy, so each of them is Hausdorff.

2. Each countable set belongs to N, so it is a closed set in each topology
Ts,7Ts_» and T;_qim. Therefore, these spaces are not separable and every
compact subspace of (R, 7), (R, Zs—,) or (R, Z5_qim) is finite.

3. None of 7;, 7T,_, or 7,_gim forms a Lindelof space. Indeed, for every
s € (0,1), there exists an uncountable set C belonging to N (It is enough
to take the Cantor set with Hausdorff dimension greater then s [5, Cor.
29.23].), so that {(R\ C)U{z}}.ecc is a T5-open cover of R without any
subcover of power less than the continuum. The same example allows
us to prove the property for 7;_, and 75_qim-

4. None of the spaces (R, 7y), (R, 75—5), (R, Zs_gim) is first countable. In-
deed, take x € R and let {E, },en be a sequence of 7;-open neighbor-
hoods of . For each n € N choose z,, € E, \ {z} and put £ = Fy \ {z,, :
n € N}. Then F is a T;-open neighborhood of = which does not include
any F,. For other topologies we can proceed similarly.
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5. The family of 7g, (Zs—, or 75_q4im)-connected sets coincides with the
family of sets connected in the natural topology.

Using o-ideals we can consider also Hashimoto type topologies [2].

Definition 4. For any s € (0,1) let

TS*:{G\N:GGC’)/\NENS},
,={G\N:GecOANEN,_,},
T —dim — {G\N GGO/\NGNS dlm}

Obviously, these families are topologies and, by Theorem 2, we have the
following proper inclusions
T ST ST g C T (2)

dim =
for any s,t € (0,1), s < t.

Remark 1. Of course each Hashimoto type topology is contained in the den-
sity type topology defined by using the same o-ideal; for example 7. C 7,
since if A € 7T*, then A = G\ N, where G € O and N € N, 50 A C G C
ds(G) = ¢s(A) since O C 7, and A ~; G. Therefore A € 7,. The situation is
analogous for other o-ideals.

Theorem 4, (2) and the last remark yield the following scheme

7;* g Izys*fo' —,Cs 7;*7dim =

N N N N
T, ¢ Tio Tomaim & T

/z’t'*

N

for any s,t € (0,1), s < t.

To see that the inclusions 7, C T,, 7," , C To—o, T.° 4iyn C ZTs—dim are
proper, it is enough to show that 7 is not contained in 7;*. Let B denote
an interval set B = (J.°,[ay, b,] such that ani1 < bpy1 < a,, for any n € N,

bn— an— bn+1 - 1.

the sequence {b, } tends to zero, lim,, o 9 — () and lim,_
Then 0 € ®,(R\ B) and A = R\B €T, but for any interval (a, b) contalmng
zero, there exists an interval [a,,b,] C (a,b) of positive Lebesgue measure,
so it is does not belong to N;. Therefore A ¢ 7,;*. Moreover, it shows also
that none of topologies 7, 7; o, 7s_qim and 7y is contained in any topology
of Hashimoto type.

Some pairs of considered topologies are incomparable: 7* \ 7g # 0,
\ 7o # 0 and T;* \ T5_gim # 0. To show, for example, that the first

d1m
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family is not empty we take a compact set F C [2,1] with F € N,_, \ N.
Then A =J,_, W%l - F € N;_s \ N;s. The complement of the set A belongs

to 7.7, and 0 ¢ O (R \ A). (See the proof of Theorem 2.)
Summarizing, we have the following scheme:
7;* g 775*—0' —,C«— s*—dim g

noon n
7; g_ ,Ts—a - Z—dim -

=

ek
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