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DETERMINATION OF MEASURES

Abstract

This paper contains two results related to the question of when a
measure on a metric space is determined by its value on certain sub-
sets. The first is that two finite positive measures on a countable metric
abelian group G which agree on all balls of some fixed non-zero radius
agree on G. The second relates to measures on a compact metric space
that agree on all intersections of pairs of balls.

1 Introduction

Let M denote a metric space and µ1, µ2 two (positive Borel) measures on M .
A natural question is: for a given subset T of the set B(M) of all Borel sets
of M are the following statements (1) or (2) true?

µ1(S) = µ2(S) ∀S ∈ T ⇒ µ1 = µ2 (1)
µ1(S) = µ2(S) ∀S ∈ T ⇒ µ1(M) = µ2(M) (2)

There are many results on this when T is the set O of all open balls, or
the set of all balls of particular radii; see for example the survey by J.P.R.
Christensen in [1]. Of course for any T , if the σ-class D(T ) generated by T
(i.e., the smallest subset of B(M) containing T and closed under complements
and disjoint unions) is B(M), then (1) holds. In [3] Steve Jackson and R.
Daniel Mauldin showed that if M = Rn with a metric induced from a norm,
then D(O) = B(M), and hence (1) holds. (This result was also shown for
M = Rn with the Euclidean metric at about the same time by M. Zelený in
[7].) However, T. Keleti and D. Preiss showed in [4] that if M is an arbitrary
separable infinite-dimensional Hilbert space, then D(O) 6= B(M), although D.
Preiss and J. Tǐser had previously shown in [6] that (1) nevertheless holds in
this case (or in fact for M any separable Banach space).
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In Section 2 it is shown that if M is a countable metric abelian group, the
measures are finite, and T is the set of all balls of a given fixed non-zero radius,
then (2) holds; i.e., the value of the measure on the whole space is determined
by its value on closed balls of a fixed non-zero radius.

In the negative direction, a well-known example of R.O. Davies [2] shows
that (1) does not hold in general if M is a compact metric space and T is the
set of all balls. One can ask what happens if T is extended to the set of all
intersections of pairs of closed balls of fixed radius. In Section 3 it is shown
that if M is a finite metric space, then in this case (2) holds. This does not
answer the question above, but shows that the method of construction used in
[2] does not extend directly, since this is based on finding finite metric spaces
where (2) fails.

2 Measures on a Countable Abelian Group

Definition 2.1. A metric d on an abelian group G is invariant if for all
x, y, g ∈ G, d(x + g, y + g) = d(x, y). A measure µ on a topological abelian
group G is invariant if µ(S) = µ(S + g) for any Borel set S and any g ∈ G.

If G is countable, then the unique invariant measure is (a multiple of)
counting measure.

Definition 2.2. An abelian group G has a slowly growing measure if there
exists an invariant metric d on G and an invariant measure ν such that

∀k > 1, lim
n→∞

ν(Bn)/kn = 0 (3)

where Bn = {x ∈ G : d(0, x) ≤ n} is the closed ball of radius n.

Proposition 2.3. Any countable abelian group has a slowly growing measure.

Proof. The measure can be taken to be counting measure; so the claim is
that there is an invariant metric on G such that the number of elements in
balls of radius n grows fairly slowly, as specified by (3).

To define an invariant metric on G is equivalent to defining a function
f : G → R≥0 such that for all x, y ∈ G (a) f(x) ≥ 0, (b) f(x) = f(−x), (c)
f(x+ y) ≤ f(x) + f(y).

First prove the existence of a map f with the required properties for G =
Z∞, the direct sum of countably many copies of Z. If x = (xi) ∈ Z∞, let
r(x) = max{i : xi 6= 0} and |x| = max{|xi|}. Now let

f(x) =

{
max{2r(x)−1, |x|} if x 6= 0
0 if x = 0



Determination of Measures 637

Properties (a) and (b) are immediate and (c) clearly holds for |x|. Since
r(x + y) ≤ max{r(x), r(y)}, (c) holds for any increasing function of r(x), in
particular for 2r(x)−1; hence (c) holds for f . Now using the metric defined by
f, |Bn| = (2n+ 1)log2 n+1, which satisfies (3) since (log n)2 << n.

Now if G is any countable abelian group, G ∼= Z∞/I for some subgroup
I of G. Let f be as above, and define g : G → R≥0 by g(y) = min{f(x) :
x ∈ G, I + x = y}. Since the metric on Z∞ is discrete and hence I is a
closed subset of Z∞, this yields a well-defined invariant metric on G, and
|Bn(G)| ≤ |Bn(Z∞)| so counting measure has the required property with
respect to this metric.

Theorem 2.4. Let G be a countable abelian group, µ1, µ2 be two (finite,
positive) measures on G. Suppose that for some non-empty subset S of G,
µ1(g + S) = µ2(g + S) for all g ∈ G. Then µ1(G) = µ2(G).

Proof. Let µ = µ1 − µ2; so µ is a finite signed measure on G which is
zero on all translates of S. Let d be the invariant metric on G so that the
counting measure ν satisfies (3); all balls below are with respect to d, and Bn
denotes the ball of radius n centre 0. Since µ1 and µ2 are finite, so is |µ|, say
|µ|(G) = K. Given any ε > 0, pick n such that |µ|(G−Bn) < ε.

Let cm = supg{ν(S∩(Bm+g))}. This exists since ν(S∩(Bm+g)) ≤ ν(Bm)
and this latter quantity is finite by (3). Let δ = min{ε/K, 1}, α = 1

2n . If there
do not exist arbitrarily large m such that cm+n ≤ (1 + δ)cm−n, then there
exists J > 0 such that for large m, ν(Bm) ≥ cm ≥ J(1 + δ)αm, contradicting
(3). Hence there exist arbitrarily large m such that cm+n ≤ (1 + δ)cm−n; let
m be such an integer > n.

Now let p ∈ G be such that ν (S ∩ (Bm−n + p)) = cm−n. Replacing S by
S − p we have that cm−n = ν(S ∩ Bm−n); i.e., 0 is the centre of one of the
densest balls of radius m− n.

Now define ω : G × G → R by ω(x, y) =
{
µ(y) if x ∈ S
0 otherwise . Let

Dr = {(x, y) ∈ G×G : y − x ∈ Br}. While ω does not make sense as a signed
measure on G × G, it does on any Dr (r > 0), since

∑
(x,y)∈Dr

|ω(x, y)| =∑
g∈Br

∑
x∈G |ω|(x, x + g) =

∑
g∈Br

∑
x∈S |µ|(x + g) ≤

∑
g∈Br

|µ|(G) < ∞.
Now consider the following subsets of Dm : R = Bm−n × Bn, E =
{(x, y) ∈ Dm : y 6∈ Bn}, F = {(Bm+n −Bm−n)×Bn} ∩ Dm. Since Dm is
equal to the disjoint union of R, E and F , ω(Dm) = ω(R) +ω(E) +ω(F ) and
hence |ω(R)| ≤ |ω(E)|+ |ω(F )|+ |ω(Dm)|. Now

ω(Dm) =
∑
g∈Bm

∑
x∈G

ω(x, x+ g) =
∑
g∈Bm

∑
x∈S

µ(x+ g) =
∑
g∈Bm

µ(S + g) = 0
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|ω(E)| ≤ |ω|(E) =
∑
y/∈Bn

|µ|(y)ν (S ∩ (Bm + y)) ≤ |µ|(G−Bn)cm ≤ εcm

≤ εcm+n ≤ ε(1 + δ)cm−n ≤ 2εcm−n,

and

|ω(F )| ≤ |ω|(F ) ≤ |ω| ((Bm+n −Bm−n)×Bn)
= |µ|(Bn)ν (Bm+n ∩ S −Bm−n ∩ S) ≤ K (cm+n − cm−n)

≤ K [(1 + δ) cm−n − cm−n] = Kδcm−n ≤ K
ε

K
cm−n ≤ εcm−n

and
|ω(R)| = ν (S ∩Bm−n) |µ(Bn)| = cm−n|µ(Bn)|.

Thus |µ(Bn)| ≤ 3ε and hence µ(G) ≤ |µ(Bn)|+ |µ(G− Bn)| ≤ 4ε. Since this
is true for arbitrary ε, we have µ(G) = 0; i.e., µ1(G) = µ2(G).

The next results follows immediately by taking S to be the ball of radius
r at the origin.

Corollary 2.5. Let G be a countable abelian group with invariant metric, and
µ1, µ2 be two (finite, positive) measures on G which agree on all balls of some
fixed non-zero radius r. Then µ1(G) = µ2(G).

3 Measures Agreeing on Intersections of Pairs of Balls

Here Br(x) denotes the closed ball of radius r, centre x.

Proposition 3.1. Let M be a finite metric space, r > 0, and µ a signed
measure on M such that µ(Br(x)∩Br(y)) = 0 for all x, y ∈M . Then µ(M) =
0.

Proof. Write M = {x1, . . . , xn}, di = µ(xi) and define the symmetric ma-

trix A and diagonal matrix D by Aij =

{
1 if d(xi, xj) ≤ r
0 otherwise

, Dij = δijdi.

Then (ADA)ij =
∑
k aikdkakj =

∑
k aikajkdk = µ (Br(xi) ∩Br(xj)) = 0; so

(AD)2 = 0. Hence tr(AD) = 0; i.e.,
∑
i di = 0 and so µ(M) = 0.

It would be interesting to know if Proposition 3.1 holds for a countable
metric space. The problem is that the statement

B2 = 0⇒ tr(B) = 0, (4)
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trivial for a finite matrix, does not in general hold for infinite matrices: a proof
by A. M. Davie (see [5]) gives a random construction of a row-finite matrix B
with square zero and non-zero trace. It is also noted in [5] that if the matrix
B is row finite with

∑
i (maxj |bij |)2/3 <∞, then (4) does hold.

Acknowledgements. I am very grateful to David Preiss for many helpful
comments.
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