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ON A SPECIAL SUBCLASS OF THE SET
OF DERIVATIVES

Abstract

We deal with the class of functions defined as a sum of a uniformly
convergent series of functions continuous both on a closed set and on
its complement. Such functions are mentioned in the literature, e.g., in
[1],[2], [3], [4]. We investigate the particular class of derivatives.

We deal with classes of real functions defined on the interval (0, 1). Asusual
the symbols C, D, By, A, and A stand for the class of continuous, Darboux,
Baire 1 functions, functions that are derivatives or approximately continuous
functions, respectively.

Consider the following three properties of a function f on (0,1).

(*) There exists a closed set A C (0,1) such that f [4 and f [.a are
continuous;

(**) There exists a sequence of functions f, € F(C), n = 1,2,..., such

o0
that the series > f, uniformly converges to f;
n=1

(***) There exists a closed set A C (0,1) such that f 4= 0 and f |4 is
continuous.

Definition 1. Let F be a subclass of By. Let F (C) = {f € F, f satisfies (x)}.
Remark 2. In Definition 1, it suffices to consider nowhere dense sets A.
Remark 3. Evidently, D (C) C DB;.

Definition 4. Let F be a subclass of By such that 7 +F C F and F with
the metric of uniform convergence is closed. Let oF (C) = {f € F; f
satisfies (#x)}.
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Remark 5. Because A + A C A and A [unif] is closed, the definition of
oA(C) C A is correct.

The main result of the present paper is the following theorem.

Theorem 6. Consider A furnished with the metric of uniform convergence.
Then, cA(C) is a closed nowhere dense set in the space A.

First of all we show that cA(C) & A.
Lemma 7. Let f,, n =1,2,..., be functions in D (C) such that the partial
k 00
sums s = Y. fn, k=1,2,..., belong to D and the series Y. fn uniformly

n=1 n=1
converges to the function f. Then, for each pair of real numbers o and (3,

a < f3, and for every open interval I C (0,1), if f~1(a, B) NI # 0, then there
exists an interval J C I such that f (J) C (o, §).

PRrROOF. Let 29 € f~! (o, 3) N I. Without loss of generality, we may assume
that f (zo) = 0and zg € f~! (—a,a)NI. Theseries Y f, converges uniformly

n=1
k
to f. Hence for e = § thereis k (¢) € N such that |f (z)— 2_:1 fn| < € for every
k > k(e), v € I. Take a fixed integer k > k (¢). We show that there exists
k
a point xf of continuity of the function sy = > f,, for which | s; (z3)] < e.

n=1
Let A,,n =1,2,..., be closed nowhere dense sets such that f, [4,, fnl~a
are continuous functions and let

n

x9 € A, forn=1,2,...,my,

xo ¢ Ay forn=mo+1,... k.

Let
mo k
10 20
f = Z fna f = Z fn
n=1 n=mo+1
Since the functions f,, [4,,n = 1,2,...,mg, and f2° are continuous at g, for

positive real numbers Ag, (o, Ao+Co+]| sk (0)| < €, there exists a neighborhood
O (z¢) C I of zy such that

A
|fn () = fn (z0)] < m—o for every z € A, NO (x0) ,n=1,2,...,my,
0

| £ () = f*° (20)] < o for every z € O (x0)
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k
and U A,NO(z) =0. If | sg(x)] < e for every € O (x9), then

n=mqo+1
k
there exists 1 € O (x9)\ |J An. The function s is continuous at the point

n=1
xg = 1 and |sg (z§)| < e. Otherwise, |si (z7)| > ¢ for any z% € O (xp). The
function s; has the Darboux property. Hence for certain x; lying between xg
and 7, we have

Ao + Go + [sk (zo)| < [sk (z1)] <& < [sk (27)]-
With a suitable change of subscripts, we get

r1 € A, forn=1,2,...,mq,
1 ¢ Ay forn=m1+1,... k.

Evidently, m; < mg. Equality m; = mg leads to the contradiction of the
selection of x1, because in this case

sk (z1)] = |1 (1) + 2 (1)
< Z |fn (1) = fo ()| + | £ (1) — £2° (z0)| + Isk (w0)]
n=1
< Ao+ Co + [sk (wo)] -

That is, m; < mg. Now, we shall repeat the procedure. Let

my

k
fllzz.fna f21: Z fn
n=1

n=mi+1

and let A1, (1 be positive real numbers, A\; + (1 + | si (z1)] < ¢, and let O (z1)
be a neighborhood of z1, O (z1) C O (xg), such that

|fr () = fn (21)] < % for every z € 4, NO (x1), n=1,2,...,mq,
1
|f21 (z) — £ (z1)] < ¢ for every z € O (21)
k
and |J A,NO(z1)=@. Again, if |s; (z)] < ¢ for all z € O (x1), then

n=mj+1

k
there is 2 € O(z1)\ U A,. The function s, is continuous at the point
n=1
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x§ = x2 and sy (z§)] < e. In the opposite case, we can analogously as above
find x2, such that |s (z2)| < ¢,

T € A, forn=1,2,...,ms,

ot Ay forn=mo+1,... )k
and moreover, ms < my. Continuing this way, after a finite number of steps,

k
we shall find zf € I such that af ¢ |J A, and |s; (2f)| < . From the
n=1

continuity of the functions s; at the point xf, it follows that there exists an
interval J C I such that «f € J and |si (z)| < € for every x € J. From there,

If (@) <|f (x) — sk (x)] + |sk ()] <e+e=aforevery z € J,
and then J C f~! (—a,a). O

Example 8. Let K be a perfect, nowhere dense subset of the interval (0,1)
of positive Lebesque measure, A (K) > 0, and let E be a subset of K such that
E is of type F, and the density d (z,E) = 1 for all x € E. Then, from [1]
Theorem 6.5. we get the existence of a function f € bA such that

0<f(z) <1 forallx € E
fx)=0 forallx ¢ E.

From the inclusion bA C bA, it follows that f € A, but immediately from
Lemma 7, f & oA (C). Indeed, for any 0 < o < 3 <1, the set f~1 ((a,8)) C
K is nonempty and nowhere dense.

Next, we prove that cA(C) is closed in the space A.

Definition 9. Define A®(C) = {f € A; f satisfies (* x *)}.
Lemma 10. Let f; € A(C),i=1,2,...,n. If

1=

there exists an open set U and a sequence of functions go € C, g1,...,9n €
A (C) such that \(U) < 6 and

(a) En) fi= Zn: 9is
i=1 =0

n
fi‘ < g, then for every é > 0
i=1

k
Egi

=0

(c) gi(x) =0 for everyx ¢ U, i=1,...,n.

(b)

< ¢ for every k =0,1,...,n,
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PRrROOF. In the proof of the lemma, we use the induction principle. Let f; €
A(C), |f1| < € and let the functions f; [4, and fi [, be continuous, where
Ay is a closed set. Choose an open set V' O Aj such that A (V' \ 4;) < § and
let U =V \ A;. Since f; [~y is continuous, according to Tietze‘s extension
theorem there is a continuous function gg defined on (0, 1) such that |go| < €,
9o [~v= fil~v . Then g1 = f1 —go € A, g1 [~v= 0 and g; [y is continuous;
that is, g1 € A% (C) and conditions (a), (b), (c) are true.

Now let the assertion of the lemma hold for an arbitrary sum of n — 1
functions. We show the validity of the lemma for an arbitrary sum of n

functions. Assume f; € A(C), i =1,2,...,n, |> fi' < &, and let the closed

i=1
set A; correspond to the function f; in the sense of the definition of A(C).
Let Jx = (ag,br), Kk =1,2,..., be the sequence of contiguous intervals of the

n

closed set A = [ A;. On every interval Jj, we construct a decreasing sequence
i=1

x; \, ar and an increasing sequence y;. " by, j = 1,2,..., such that x7,

. n .
v, ¢ U A; and =, < y;.. We can require for the sequence of intervals I, j =

=1
1,2, ..., generated from intervals <x§€+1, x ), (xh, yi)s (s yi+1> that for every
Jj =1,2,..., there exists at least one A; such that I]NA; = (. That means that

on every interval I}, at least one function f; is continuous. Therefore, the sum

n .

>~ fi can be expressed on every interval I as a sum of n — 1 functions from
i=1

A(C). According to (inductive hypothesis) the assumption, there exists an
open set V{ C I{ and a sequence of functions hy € C, ha, hs, ..., h, € A°(C)

. n n k
such that A (Vg) is sufficiently small and > f; = > hy, | D hy| < € for every
= i=1 i=1

i=1
k=1,...,n, hi(z) =0forevery x ¢ V//, i =2,...,n. Then, on every interval
(oo} .
J, we define an open set Vi = (J V/! and a sequence of functions hy € C,
j=1

ha,hg, ..., hy € AY(C). We can demand that A (V) < %)\ (Ji), and for the
densities we have d (ag, Vi) = d (bg, Vi) = 0 to be valid. Define the functions
hi,...,hy, on the set A by

hi(z) =) fi(z), and hy(x)=...=hy,(x) =0, z € A
i=1
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Evidently,
{x,hl(a:) #Zfi(x)} cv=Uwm rxv)<s
=1 k=1
and

hi(z)=0foreveryx ¢ V, i=2,...,n.

k
Moreover, d(x,V) = 0 for every € A. Because |Y_ h;| < € for every

=1
k=1,...,n, the functions hq, ..., h, are bounded. To show that they belong
to the class A, it suffices to verify that for every x,

. 1

m

for each sequence E,,, m = 1,2, ..., of intervals contracting to o ([1] Theorem
8.4. p. 41). If zy ¢ A, according to inductive hypothesis, the condition above

n
yields (1). Now let g € A. Then, Y f; € bA and

i=1

— zfi (o) = Eilgwo N(E /Zfz d\
= lim #/h /h Zf d\
o E.n—xo )\( ) 1 L ¢

Em

- Enz_‘wo )\ / (Em) _/ hl B z_; fl d)\
EmnV =

Em

= 1
EII—I}Io)\ /

Em

This follows from the boundedness of h; — > f; and from the fact that
i=1

d(zg,V) = 0. Thus, hy € A, the functions hy [4, hi [~a are continuous,

and hence h; € A(C). Using the same arguments, we get

. 1 . 1 -
o N / hodh= lim s / hi A =0 = hi (z0)

E., E,, NV
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for every i = 2,...,n, and hence, h; € A° (C).
Since h; € A(C) and |h;| < e, according to the first part of the proof, for
every 01, 0 < 61 < § — A (V) there exists an open set W, A\ (W ) < 41, and

< ¢ for

every k = 0,1, and g; () = 0 for every x ¢ W. Let U = WU V g; = h; for
i=2,...,n. Because A (U) < § and gg € C, g1,...,g, € A°(C) satisfy the
conditions (a), (b), (¢), and the proof of Lemma 10 is complete. O

functions go € C and g; € A°(C) such that gy + g1 = h1, Z gi

Next, we shall show that cA(C) is closed in the space A with the metric
of uniform convergence. If a sequence f,, € cA(C), n = 1,2,..., uniformly
converges to a function f, then

F=Fi+ Y (a1 = fo)-

n=1

Since for each n, f, is the sum of a uniformly convergent series, instead of
the function f,, we can consider a partial sum s,, of functions from A(C') such

that s, = f and [spqp — 8| < Qn for every p € N. Evidently,

f=s+ Z(Sn+1 — Sp)-
n=1

According to Lemma 10 above, for every n € N there exists a sequence of
functions gn,, gn,, - - gn,, € A(C) such that

kn
Sn4+1 — Sn = § In;»
=1
k
§ 9n;

i=1

1
< on for every k=1,2,...,k,

oo kn
For f =s1+ >, > gn,, we have f € 0 A(C), because the sequence of partial

n=1i=1
k oo kn
Sums Sp, + Y. gn; sn=1,2,..., k=1,2,... ky, of the series s + Y ng
i=1 n=1i=

is uniformly convergent, which follows from the inequality

k k
‘f_ <5n+zgni> Zgni
=1

1
<|f = snl+ —

<|f— sul+
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and from s, = f .

It remains to show that the set A\ oA (C) is dense in A. Let f € A, ¢ > 0.
Since f € By D A, we can choose points 1 < xo of continuity of the function
f, such that

|f (z) = f(z1)] < % for every = € (x1,x2) .
Define the function g by
o) = f(x) if x ¢ (z1,22)
linear on (x1,z2)
and the function h, by

W) = {0 if x ¢ (z1,22)

a copy of the function of Example 8 is on (1, z2).

Then w = g+ $h ¢ cA(C) but [f —w| < |f —g| + § < 25 4+ § = &, which
means that oA (C) is nowhere dense in A. O

References

[1] A. M. Bruckner, Differentiation of Real Functions, Lecture notes in Math.
659, Springer-Verlag, Berlin, (1978).

[2] J. G. Ceder, T. L. Pearson, A Survey of Darbouz Baire 1 Functions, Real.
Anal. Exch., 9 (1984), 179-194.

[3] Z. Grande, On a Theorem of Menkyna, Real. Anal. Exch., 18(2) (1992-
1993), 585-589.

[4] R. Menkyna, Classifying the Set Where a Baire 1 Function is Approzi-
mately Continuous, Real. Anal. Exch., 14(2) (1988-1989), 413-419.



