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ON CONVERGENCE OF THE
GAP-INTEGRAL

Abstract

The concept of the GAP-integral was introduced by the authors [5].
In this paper some convergence theorems for the GAP-integral are pre-
sented.

1 Introduction.

The Approximately Continuous Perron integral was introduced by Burkill [1]
and its Riemann-type definition was given by Bullen [2]. Schwabik [6] pre-
sented a generalized version of the Perron integral leading to the new ap-
proach to a generalized ordinary differential equation. The authors introduced
the concept of the Generalized Approximately Continuous Perron integral to-
gether with some important properties of the integral in [5]. In the present
paper we obtain some convergence theorems of the GAP-integral. First we
obtain the uniform convergence theorem. Then we prove the monotone con-
vergence theorem and the basic convergence theorem for the GAP-integral.
As an application of the basic convergence theorem, we obtain the mean con-
vergence theorem for the GAP-integral.

2 Preliminaries.

Definition 2.1. A collection A of closed subintervals of [a,b] is called an
approximate full cover (AFC) if for every x € [a, b] there exists a measurable
set D, C [a,b] such that € D, and D, has density 1 at z, with [u,v] € A
whenever u,v € D, and u <z < v.
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For all approximate full covers that occur in this paper the sets D,, C [a, ]
are the same. Then the relations A; C Ay or Ay N Ay for approximate full
covers A1, Ay are clear.

A division of [a,b] obtained by a = 29 < 21 < -+ < x, = b and
{&1,&,...,&,} is called a A-division if A is an approximate full cover with
[z;—1,2;] coming from A or more precisely, if we have z; 1 < & < z; and
xi—1,2; € Dg, for all i. We call & the associated point of [z;_1, ;] and z;
(¢=0,1,...,n) the division points.

A division of [a,b] given by a <y1 < <21 <y < <20 <+ <y, <
Cm < zpm < b is called a A-partial division if A is an approximate full cover
with ([y;, 2], &) € A, fori=1,2,...,m.

In [5], the GAP-integral is defined as follows :

Definition 2.2. A function U : [a,b] X [a,b] — R is said to be generalized AP
(GAP)-integrable to a real number A if for every € > 0 there is an AFC A of
[a, b] such that for every A-division D = ([«, 5], 7) of [a,b] we have

(D)Y AU, B) = U(r,a)} — Al < e
and we write A = (GAP) f; U.

The set of all functions U which are Generalized Approximate Perron in-
tegrable on [a, b] is denoted by GAPJa,b]. We use the notation

S(U.D) = (D) Y {U(r, ) ~ Ur,a)}

for the Riemann-type sum corresponding to the function U and the A-division
D = ([, 8], 7) of [a,b]. Note that the integral is uniquely determined.

Remark 2.3. If the AFC A in Definition 2.2 is replaced by an ordinary full
cover, that is, the family of all ([, 3], 7) which are §-fine for some §(7) > 0,
ie, 7€, b, [, 8] C [r—6(7), 7+ 6(7)], then we have a general definition
of Henstock integral [4] .

Setting U(r,t) = f(r)t and U(r,t) = f(7)g(t) where f,g : [a,b] — R
and 7,t € [a, b], we obtain Riemann-type and Riemann-Stieltjes type integrals
respectively for the functions f, g and a given A-division D of [a, b].

Considering U(7,t) = f(7)t in Definition 2.2, we obtain the classical ap-
proximately continuous Perron integral.

This definition is given in a more general form because of the general form
of the function U.

For a given function U : [a,b] X [a,b] — R and a tagged interval (7, J) with
7€ J = [a, ] C [a,b] we will use the notation

U(r,J)=U(r,8) = U(r,) (2.1)
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for the point-interval function which corresponds to U.

Setting U(r,t) = f(7)t, t € [a,b], (2.1) becomes U(r,J) = f(7)(8 — a) =
F(m)|J| (|J] denotes the length of the interval J = [« 3]).

Let U : [a,b] X [a,b] — R and let § be a positive function on [a,b]. Let
D be an ordinary full cover of an interval I C [a,b], that is, a d-fine division
D = (J,7) of the interval I C [a,b]. We define the following interval functions,
if they exist.

V(I)=sup (D)) _U(r,J)
and

W(I) = inf (D) Y U(r,J),

where the supremum and the infimum are over all d-fine divisions D = (J, 1)
of I C [a,b].

The functions V' and W serve as major and minor functions for U in a
particular form.

We remark that if f has the Locally Small Riemann Sum (LSRS) property,
then in view of Theorem 17.3 from [4], there exists a positive function ¢ such
that both V and W exist for I C [a, b].

Let

DV(t)= sup inf —=
0 teIC[a,b] 9>0 1]

and

DW(t) = inf sup M,
0>0 te1C(a,b] 1]

where D and D denote respectively the lower and the upper derivative of V'
and W at ¢t € [a, b], respectively.

With the notion of a partial division we have proved in [5] the following
theorem.

Theorem 2.4. (Saks-Henstock Lemma) Let U : [a,b] X [a,b] — R be GAP-
integrable over [a,b]. Then, given € > 0, there is an approzimate full cover A
of [a,b] such that for every A-division D = {([j—1, 5], 75);7=1,2,...,¢} of
[a, b], we have

‘ _Zq:{U(Tpozj) —Ul(rj,aj1)} — (GAP) /abU‘ <e.
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Then, if {([8;,7;).¢;);7 = 1,2,...,m} represents a A-partial division of [a,b],
we have

’i[{U(ij%‘) - U(G,85)} — (GAP) /;j U]’ <e

j=1 j

The above theorem has an important use in the theory of generalized Per-
ron integral.

3 Some Convergence Results.
We now give some convergence theorems for the GAP-integral.
Theorem 3.1. (Uniform Integrability Theorem) Let

(i) U, U, : [a,b] x [a,b] = R, n=1,2,... be such that U, € GAP[a,b] for
alln=1,2,...,

(ii) there be an approzimate full cover Ao of a,b] such that

hm [Un(’r, tQ) — Un(T,tl)] = U(T, tg) — U(T, tl)

n—-;oo
for each T € [a,b], and for every interval-point pair ([t1,t2],7) € Ao,

(iii) for every n > 0 there be an approzimate full cover A of [a,b] such that
b
S, D)~ (GAP) [ Ul <
a

for every A-division D of [a,b] and everyn =1,2,....

Then (GAP) f;U exists, and

n——oo

lim (GAP) /a ’ U, = (GAP) /a ‘U

PROOF. Let € > 0 be given and A,, = (GAP) f; U,. By (i), there is an
approximate full cover A C Aq of [a,b] such that for every A-division D =
([, B], 7) of [a,b] we have

|S(Un, D) — Ap| <e/2forn=1,2,....
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By (i4), for every fixed A-division D of [a, b] there exists a positive integer m;
such that for n > mq, we get |S(U,,D) — S(U,D)| =

’ Z{UH(T, B) = Uy(r,0)} — Z{U(T, B)=U(r,a)}| < ¢€/2

That is, lim, o0 S(Uy,, D) = S(U, D). Therefore, for any A-division D of [a, b]
there is a positive integer m; such that for n > m; we have

|S(U, D) — A,
(3.1)
<|S(U,D) - S(Uy,,D)|+ |S(Upn,D) — Ap| <€/2+€¢/2 = €
First, we get from (3.1) that for all positive integers n,p > my
|A, — A, <A, —S(U,D)|+|S(U,D) — A,| < e+ €= 2e.

Thus, {A,} is a Cauchy sequence in R and let A = lim,,_, A,. Then, given
€ > 0, there exists a positive integer ms such that

|An — Al < € for all n > mo. (3.2)
Let m = max(my,ms). Then we get from (3.1) and (3.2) for n > m, that
|S(U,D) — A < |S(U,D) — Ap| + 14, — Al <e+e = 2e.

Hence, U € GAP[a,b] with (GAP) [ U, and

b b
lim (GAP) / U, = (GAP) / U. O

Lemma 3.2. Let U,V : [a,b] X [a,b] — R be such that U,V € GAPJa,b] and
if there be an approzimate full cover Ag of [a,b] such that

U(r,t) = U(r,7) < V(r,t) = V(r,7)
for every interval-point pair ([7,t],7) € Ag where T < t and

U(r,7) = U(r,t) < V(r,7) = V(7,1)

for every interval-point pair ([t,7],7) € Ao where t < T, then

(GAP) / "U < (cap) / v
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PROOF. Let € > 0 be arbitrary. Since U,V € GAP]|a,b] given € > 0, there
exists an approximate full cover A of [a,b] with A C A such that for every
A-division D = ([a, 5], T) of [a, b] we have

b
’Z{U(T, B)—Ulr,a)} — (GAP)/a U‘ <e/2,

b
]Z{V(T, B) —V(r,a)} — (GAP)/a V‘ <e/2.

These give

b

(GAP)/ U—e/2 < S {U ) - Ulr,a)}

a

=> {U(mB) ~ U, )} +{U(r,7) = Ulr,a)}]
<D V(@B =V} +{V(r, ) = V(r,a)]

b

=S {V(r.B) - V(r,a)} <(GAP)/ V4 e/2.

a

Since € > 0 is arbitrary, we obtain
b b
(GAP) / U < (GAP) / V. 0

Theorem 3.3. (Monotone Convergence Theorem) Let

(i) U, Uy, : [a,b] x [a,b] = R, n=1,2,... be such that U, € GAP[a,b] for
alln=1,2,... with sup (GAP) ff U, < oo,

(i) there be an approzimate full cover Ag of [a,b] such that
Un(1,t) = Un(7,7) < Upy1(7,t) — Upga (7, 7)
for every interval-point pair ([1,t],7) € Ag where T < t and
Un(1,7) = Un(1,t) < Upy1(7,7) — Upy1(7, 1)
for every interval-point pair ([t,7],7) € Ag wheret <7, (n=1,2,...),
(iii) there be an approximate full cover A" of [a,b] such that
lim [U,(7,t2) — Up(7,t1)] = U(7,t2) — U(7,t1)

n—oo

for each T € [a,b] and every interval-point pair ([t1,t2],7) € A'.
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Then, U € GAP|a,b] and

lim (GAP) /a b U, = (GAP) / b U.

—
n oo a

PROOF. Let € > 0 be given. Since each U, € GAP][a,b] for each positive
integer n, there is an approximate full cover A, of [a,b] such that for any
A,,-division D = ([ov, 8], 7) of [a, b] we have

B
> {Un(r,8) = Un(7,0)} — (GAP)/ Up| < €/2".
By (iii), given € > 0, for every fixed A’-division D = ([, 5], 7) of [a, ], there
exists an integer M (7) such that whenever m(7) is an integer with m(r) >
M (1) we have

‘{Um(r)(’r» 6) - Um(T) (7—7 O[)} - {U(Tv ﬁ) - U(Ta a)}| < 6/2771(T)

for every 7 € [a,b]. Since {(GAP) fab U, } is non-decreasing by Lemma 3.2 and

bounded above, lim, o (GAP) [’ U, exists. Let lim, oo (GAP) [ U, = A.
For each 7 € [a,b], we choose any integer m(7) > M (7) and we take A =
A" Ag N Ayyry. Then, for any A-division D = ([, ], 7) of [a,b], we have

Y - Ui} -4

S‘ Z[{U(Ta ﬁ) - U(Tv Oé)} - {Um(‘r) (Tv ﬁ) - Um(‘r) (7—7 O‘)}]‘
B
4 3 [Uni(7:8) =~ Uniry ()} = (GAP) [ Ui

+[ S @ar) /ﬁ

) B
< ZG/QM(T) + Ze/zm(r) + ’ Z(GAP)/ Uniry — A

where all the sums involved run over all elements of the division D (> =
(D) Y"). Therefore, if we can show that the last term |(D) Y (GAP) faﬁ Unn(r)—
Al < €, then the proof will be complete.

The number of associated points 7 in the division D is finite and so is the
number of those different m(7) in the above sum over D. Let p denote the

(3.3)

i
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minimum of those m(7) and ¢ be the maximum. Then we have
b B B
(GAP) / Uy, =(D)> (GAP) / U, < (D)> (GAP) / Unn(r)
B
< (D)) (GAP) /

[0

b
Uy = (GAP)/ U, <A
a
We can also find a positive integer mg such that
b
OSA—(GAP)/ Uy, < e forall m > my,

while defining m(7) we always take m(7) > mg and so p > mg. Hence
B B
’Z(GAP) / Upnr) — A‘ —A4-Y (GAP) / Upno)
B
< A=) (GAP) /

(o3

b
Up:Af(GAP)/ U, < e.

Therefore U € GAP][a,b] by (3.3) and

lim (GAP) /ab U, = A= (GAP) /b U. O

n—oo
a

In [5] the indefinite GAP-integral is defined as follows.
Definition 3.4. Let U € GAPJa,b]. The function ¢ : [a,b] — R defined by

6(s) = (GAP)/ U, a<s<b ¢la)=0
is called the indefinite GAP-integral of U.
For [or, 6] C [a.b] put ¢(a, 5) = 6(5) — é(a) = (GAP) [,/ U.
Theorem 3.5. (Basic Convergence Theorem) Let

(i) Uy, : [a,b] X [a,b] — R be GAP-integrable on [a,b] with the primitives ¢y,
n=12,...,

(i) there be an approzimate full cover A’ of [a,b] such that
lim [Uy,(7,t2) — Un(7,t1)] = U(7,t2) — U(7, 1)

n—oo

for each T € [a,b] and every interval-point pair ([t1,t2],7) € A/,
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(iii) ¢, converge point-wise to a limit function ¢.

Then U € GAP[a,b] with primitive ¢ if and only if for every e > 0 there is
a function M (1) defined on [a,b] taking integer values such that for infinitely
many m(1) > M(7) there is an approzimate full cover A such that for any
A-division D = ([o, 8], 7) of [a,b] we have

‘ Z{¢m(f)(aa B) — éla, B)}| < e

PROOF. Suppose U € GAPJa,b] with the primitive ¢. Then there is an ap-
proximate full cover Ay of [a,b] such that for any Ag-division D = (o, 8], 7)
of [a, b] we have

| YU 8) = Ulr, @)} = (e, 8)]| <
Again, since U,, € GAPJa,b] with primitive ¢,, n = 1,2,..., there is an

approximate full cover A,, of [a, b] such that for any A,,-division D = (o, 8], 7)
of [a, b] we have

| S HUW (7 8) = Un(r, @)} = bule B)]| < /2"

Given € > 0, for every fixed A’-division D = ([a, 8], 7) of [a, b], there exists an
integer M (7) such that whenever m(7) > M (7) we have

{Un(r) (7 ) = Un(ry (1, 0)} = {U (7, B) = U(r, )} < /27
for every 7 € [a,b]. Without any loss of generality, we may assume that A’ =
A1NAN---NA, . For each 7 € [a,b], we choose any integer m(7) > M(7)
and we take A = A’NAj. Then for any A-division D = ([, 5], 7) of [a, ], we
have

| {mm @ 8) = ola. )}

<[ > e (@8) = (Ui (7, 8) = Uy (7, )|
| YU (7:8) = Ui (r. @)} = {U (7, 8) = U, o)}
+| Y s - vr.a)} - ola. 9]

<e+ > €/2M fe<etete=3e
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Conversely, suppose that the condition is satisfied. Then for every ¢ > 0
there is a function M (7) defined on [a,b] taking integer values such that for
infinitely many m(7) > M (7) there is an approximate full cover A such that
for any A-division D = ([«, 8], 7) of [a, b] we have

\ > {bmir) (@, B) — ¢, B)}| < e.

Also, for every fixed A’-division D = ([, 5], 7) of [a,b] we can find m(r) >
M (1) such that

‘{Um(‘r)(Ta ﬁ) - Um(T) (T7 O()} - {U(T7 ﬂ) - U(Ta Oé)}| < €/2m(7‘)
for every 7 € [a,b]. Using the same notation as in the first part, we choose

A =A'NAy, 7€ [a,b]. Then for any A-division D = (o, 8], 7) of [a,b], we
have

YU 8) - Ulra)} = (e, 9]

<| S HU B = Ur,0)} = {Unir) (7, 8) = U (7, )}
| YUy (7:8) = Uiy (7 @)} = oy (a1 B)]
| D {0min (@, 8) = dla )}

Hence U is GAP-integrable on [a, b]. O

<e+e+e=3e

Theorem 3.6. (Mean Convergence Theorem) Let

(i) Uy : [a,b] X [a,b] — R be GAP-integrable on [a,b] with the primitives ¢,
n=12,...,

(ii) there be an approzimate full cover A’ of [a,b] such that

lim [Un(T, tg) — Un(T,tl)] = U(T, tg) — U(T,tl)

n—o0
for each T € [a,b] and every interval-point pair ([t1,t2],7) € A/,

(iii) [a,b] be the union of a sequence of closed sets X;, i = 1,2,...,and for
every i and € > 0 there exist an integer N and an approximate full cover
A of [a,b] such that for any A-division D = ([a, 8], 7) of [a,b] tagged in
X;,for each i we have | SHon(a, B) — qb(a,ﬁ)}‘ < € for some function ¢,
whenever n > N,

(iv) the primitives ¢, converge uniformly to ¢ on [a,b].
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Then U € GAP|a,b] with the primitive ¢ and

b

lim (GAP) /a ’ U, = (GAP) /a U.

n—00

PROOF. Let ¢ > 0. By (ii7) above, for every i and j there exists an integer
N;; and an approximate full cover A;; of [a, b] such that for any A,;-division
D = ([a, 8], 7) of [a,b] with 7 € X; we have

‘ > {n(e, B) = ¢, B)}| < /277 for all n > Ni;.

Take n = n(i,j) so that the above inequality holds. We may assume that for
each i, {¢(;, ;) } is a subsequence of {¢,,(;—1 ;)}. Now consider ¢, ;) = dn(; )
in place of ¢, and write Y1 = X; and

Yi:Xi—(XlLJXQLL--UXi_l) fori:2, 3,

Put M(7) = n(i) when 7 € Y;.

We note that there are infinitely many m(7) > M(7), namely all n(i) >
n(j). If m(r) takes values in {n(j) : j > i} when m(r) > M(7) = n(i), we
put A = A, (r). Then for any A-division D = ([a, 3], 7) of [a,b] with 7 € V5,
for some 7, we have

| > {6y B) — b, B} < lele/w ~e

This means that the condition of the basic convergence theorem is satisfied.
Hence U € GAPJa,b] with the primitive ¢ and

b b
lim (GAP) / U, = (GAP) / U. O
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