Aleksander Maliszewski; Department of Mathematics, Bydgoszcz Academy, pl. Weyssenhoffa 11, 85–072 Bydgoszcz, Poland. e-mail: AMal@ab-byd.edu.pl

COMPARABLE ALMOST CONTINUOUS FUNCTIONS

Abstract

The main goal of this paper is to characterize the family of functions which are the averages of two comparable almost continuous functions.

1 Preliminaries

The letters \mathbb{R} and \mathbb{N} denote the real line and the set of positive integers, respectively. We consider cardinals as ordinals not in one-to-one correspondence with the smaller ordinals. For each $A \subset \mathbb{R}$ let |A| denote the cardinality of A. We write $\mathfrak{c} = |\mathbb{R}|$ and use the symbol $\mathrm{cf}(\mathfrak{c})$ to denote the cofinality of \mathfrak{c} . The projection of a set $A \subset \mathbb{R}^2$ onto the x-axis will be denoted by $\mathrm{dom}(A)$.

The word function denotes a mapping from \mathbb{R} into \mathbb{R} unless otherwise explicitly stated. We say that functions φ and ψ are comparable if either $\varphi < \psi$ on \mathbb{R} or $\varphi > \psi$ on \mathbb{R} . Functions will be identified with their graphs. We say that a function f is Darboux and write $f \in \mathbf{D}$ if the set f[J] is connected for every interval J. We will say that a function f is almost continuous in the sense of Stallings [6] and write $f \in \mathbf{A}$ if for every open set $U \subset \mathbb{R}^2$ containing f there is a continuous function $h \colon \mathbb{R} \to \mathbb{R}$ with $h \subset U$.

Let f be a function and $x \in \mathbb{R}$. We define

$$\mathfrak{c}\text{-}\underline{\lim}(f,x^-) = \lim_{\delta \to 0^+} \inf \{ y \in \mathbb{R} \colon |\{t \in (x-\delta,x) \colon f(t) < y\}| = \mathfrak{c} \}$$

and $\mathfrak{c}\text{-}\overline{\lim}(f,x^-) = -\mathfrak{c}\text{-}\underline{\lim}(-f,x^-)$. The symbols $\mathfrak{c}\text{-}\underline{\lim}(f,x^+)$ and $\mathfrak{c}\text{-}\overline{\lim}(f,x^+)$ we define analogously.

 $[\]mbox{Key Words:}$ Darboux function, almost continuous function, comparable functions, average of functions.

Mathematical Reviews subject classification: Primary 26A21, 54C30. Secondary 26A15, 54C08

Received by the editors November 29, 2001

^{*}Supported by Bydgoszcz Academy.

The symbol \square denotes the end of the proof of a theorem or of a corollary. We use the symbol \triangleleft to denote the end of the proof of an auxiliary claim within such a proof.

2 Introduction

In 1974 A. M. Bruckner, J. G. Ceder, and T. L. Pearson proved that a function f is the average of two comparable Darboux functions φ and ψ if and only if for each $x \in \mathbb{R}$ we have both $\max\{\mathfrak{c}\text{-}\underline{\lim}(f,x^-),\mathfrak{c}\text{-}\underline{\lim}(f,x^+)\}<\infty$ and $\min\{\mathfrak{c}\text{-}\overline{\lim}(f,x^-),\mathfrak{c}\text{-}\overline{\lim}(f,x^+)\}>-\infty$ [1, Theorem 2]. A similar problem is to determine, for a given function f on \mathbb{R} , a necessary and sufficient condition for there to exist a Darboux function ψ such that $\psi>f$ on \mathbb{R} . (The answer to this question can be easily obtained using the proof of [1, Theorem 2].) In both cases we ask whether there is a positive function g such that both f+g and (-f)+g are Darboux (the first problem) or such that f+g is Darboux (the second problem). It suggests a similar problem for classes of functions consisting of more than two functions. Several results related to this problem can be found in [4].

It is well-known that $\mathbf{A} \subset \mathbf{D}$ [6], and that the algebraic properties of the classes \mathbf{A} and \mathbf{D} are very similar. (See, e.g., [5] or [3].) In this paper I will show that most results proved in [4] hold true if we replace the family \mathbf{D} with \mathbf{A} . In particular, Corollary 3.4 is a significant improvement both of the main part of [1, Theorem 2] and of [5, Theorem 7.2].

Recall that by [2, Example 4.1], there exists a family of functions, \mathfrak{A} , such that $|\mathfrak{A}| = \mathrm{cf}(\mathfrak{c})$, $|f| \leq 1$ on \mathbb{R} for each $f \in \mathfrak{A}$ (so, in particular, condition ii) of Theorem 3.2 holds), but for each nonnegative function g there is an $f \in \mathfrak{A}$ with $f + g \notin \mathbf{D}$. Thus we cannot weaken the assumption " $|\mathfrak{A}| < \mathrm{cf}(\mathfrak{c})$ " in Theorem 3.2. However, I do not know whether the assumption " $|\mathfrak{A}| \leq \mathfrak{c}$ " is necessary in Theorem 3.1.

3 Main results

Theorem 3.1. Let \mathfrak{A} be a family of functions with $|\mathfrak{A}| \leq \mathfrak{c}$. The following are equivalent:

- i) there is a nonnegative function g such that $f + g \in \mathbf{D}$ for each $f \in \mathfrak{A}$;
- ii) there is a nonnegative function \bar{g} such that for each $f \in \mathfrak{A}$ and each $x \in \mathbb{R}$ we have

$$\max\{\mathbf{c}-\underline{\lim}(f+\bar{g},x^-),\mathbf{c}-\underline{\lim}(f+\bar{g},x^+)\} \le (f+\bar{g})(x);\tag{1}$$

 \triangleleft

iii) there is a positive function g such that $f + g \in \mathbf{A}$ for each $f \in \mathfrak{A}$.

Proof. The implications iii) \Rightarrow i) and i) \Rightarrow ii) are evident. To prove the implication ii) \Rightarrow iii) define for each $f \in \mathfrak{A}$

$$U_f = \bigcup_{x \in \mathbb{R}} \left[\{x\} \times ((f + \bar{g})(x), \infty) \right] = \left\{ \langle x, y \rangle \in \mathbb{R}^2 \colon y > (f + \bar{g})(x) \right\}$$

and

$$\mathcal{K}_f = \big\{ K \subset \mathbb{R}^2 \colon K \text{ is closed and } |\mathrm{dom}(K \cap U_f)| = \mathfrak{c} \big\}.$$

Let $\{\langle f_{\xi}, K_{\xi} \rangle \colon \xi < \mathfrak{c} \}$ be an enumeration of all pairs $\langle f, K \rangle$ such that $f \in \mathfrak{A}$ and $K \in \mathcal{K}_f$. Proceeding by transfinite induction choose for each $\xi < \mathfrak{c}$ a point $\langle x_{\xi}, y_{\xi} \rangle \in K_{\xi} \cap U_{f_{\xi}}$ such that $x_{\xi} \neq x_{\zeta}$ for $\zeta < \xi$. Define the function $g \colon \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} y_{\xi} - f_{\xi}(x) & \text{if } x = x_{\xi} \text{ for some } \xi < \mathfrak{c}, \\ \bar{g}(x) + 1 & \text{otherwise.} \end{cases}$$

Fix an $f \in \mathfrak{A}$. We will prove that $f + g \in \mathbf{A}$. Let $V \subset \mathbb{R}^2$ be an open set containing f + g. Notice that $K \cap (f + g) \neq \emptyset$ for each $K \in \mathcal{K}_f$. Hence $\mathbb{R}^2 \setminus V \notin \mathcal{K}_f$. So if

$$E = \operatorname{dom}(U_f \setminus V) = \left\{ x \in \mathbb{R} \colon \left[\{x\} \times ((f + \bar{g})(x), \infty) \right] \not\subset V \right\},\,$$

then $|E| < \mathfrak{c}$. Let \mathfrak{J} be the family of all intervals J = [a,b] for which there is a continuous function $h \colon J \to \mathbb{R}$ such that $h \subset V$ and h = f + g on $\{a,b\}$. The first claim is obvious.

Claim 1. If $[a,b] \in \mathcal{J}$ and $[b,c] \in \mathcal{J}$, then $[a,c] \in \mathcal{J}$.

Claim 2. Let a < b. There are $a', b' \in (a, b) \setminus E$ such that $[a', b] \in \mathcal{J}$ and $[a, b'] \in \mathcal{J}$.

Choose an $\varepsilon \in (0, b-a)$ with $[(b-\varepsilon, b+\varepsilon) \times ((f+g)(b)-\varepsilon, (f+g)(b)+\varepsilon)] \subset V$. (Recall that V is open.) By (1), there is an $a' \in (b-\varepsilon, b) \setminus E$ such that

$$(f + \bar{a})(a') < (f + \bar{a})(b) + \varepsilon/2 < (f + a)(b) + \varepsilon/2.$$

Let L be the interval with end points (f+g)(a') and $(f+g)(b)+\varepsilon/2$. Since $a' \notin E$, we have $[\{a'\} \times L] \subset V$. Thus there is a $\delta \in (0, b-a')$ such that

$$\left[(a' - \delta, a' + \delta) \times L \right] \subset V.$$

Define h = f + g on $\{a', b\}$, $h(a' + \delta) = (f + g)(b) + \varepsilon/2$, and let h be linear in intervals $[a', a' + \delta]$ and $[a' + \delta, b]$. Clearly h proves $[a', b] \in \mathcal{J}$.

Similarly we can show that there is a $b' \in (a,b) \setminus E$ such that $[a,b'] \in \mathcal{J}$.

Claim 3. Let $(b_n) \subset \mathbb{R} \setminus E$ and $b_n \nearrow b$. If $[a, b_n] \in \mathcal{J}$ for each $n \in \mathbb{N}$, then $[a, b] \in \mathcal{J}$.

By Claim 2, we can find an $a' \in (a,b) \setminus E$ with $[a',b] \in \mathcal{J}$. Let $n \in \mathbb{N}$ be such that $b_n > a'$, and let $h_1 : [a,b_n] \to \mathbb{R}$ and $h_2 : [a',b] \to \mathbb{R}$ correspond to $[a,b_n] \in \mathcal{J}$ and $[a',b] \in \mathcal{J}$, respectively. We consider three cases.

Case 1. If $h_1(a') \geq h_2(a')$, then let $\varepsilon > 0$ be such that

$$S = \left[(a' - \varepsilon, a' + \varepsilon) \times (h_1(a') - \varepsilon, h_1(a') + \varepsilon) \right] \subset V.$$

(Recall that $h_1 \subset V$.) Choose an $\eta \in (0, a' - a)$ with $h_1 \upharpoonright [a' - \eta, a'] \subset S$. Put $L = [h_2(a'), h_1(a')]$. Since $a' \notin E$, we have $[\{a'\} \times L] \subset V$. Thus there is a $\delta \in (0, \eta)$ such that $[(a' - \delta, a' + \delta) \times L] \subset V$. Define $h = h_1$ on $[a, a' - \delta]$, $h = h_2$ on [a', b], and let h be linear in $[a' - \delta, a']$. Clearly h proves $[a, b] \in \mathcal{J}$.

Case 2. Proceeding similarly we can show that $h_2(b_n) \geq h_1(b_n)$ implies $[a, b] \in \mathcal{J}$.

Case 3. Finally suppose that $h_1(a') < h_2(a')$ and $h_1(b_n) > h_2(b_n)$. Since h_1 and h_2 are continuous on $[a', b_n]$, there is a $c \in (a', b_n)$ with $h_1(c) = h_2(c)$. Define $h = h_1$ on [a, c] and $h = h_2$ on [c, b]. Clearly h proves $[a, b] \in \mathcal{J}$.

Claim 4. For each a < b we have $[a, b] \in \mathcal{J}$.

Put $B = \{b' \in (a,b) \setminus E : [a,b'] \in \mathcal{J}\}$. By Claim 2, B is nonempty. Set $s = \sup B$. By Claim 3, we obtain $[a,s] \in \mathcal{J}$. If s < b, then by Claim 2, there is a $b' \in (s,b) \setminus E$ with $[s,b'] \in \mathcal{J}$. But then Claim 1 implies $b' \in B$, an impossibility.

Using Claim 4 one can easily construct a continuous function $h: \mathbb{R} \to \mathbb{R}$ contained in V. This completes the proof.

The proofs of the results below mimic the arguments used in [4].

Theorem 3.2. Let $\mathfrak A$ be a family of functions with $|\mathfrak A| < \mathrm{cf}(\mathfrak c)$. The following are equivalent:

- i) there is a positive function g such that $f + g \in \mathbf{D}$ for each $f \in \mathfrak{A}$;
- ii) the inequality $\sup\{\max\{\mathfrak{c}-\underline{\lim}(f,x^-),\mathfrak{c}-\underline{\lim}(f,x^+)\}-f(x)\colon f\in\mathfrak{A}\}<\infty$ holds for each $x\in\mathbb{R};$
- iii) there is a positive function g such that $f + g \in \mathbf{A}$ for each $f \in \mathfrak{A}$. \square

Corollary 3.3. For each function f the following are equivalent:

i) there is a function $\psi \in \mathbf{D}$ such that $\psi > f$ on \mathbb{R} ;

- ii) for each $x \in \mathbb{R}$ we have $\max\{\mathfrak{c}\text{-}\underline{\lim}(f,x^-),\mathfrak{c}\text{-}\underline{\lim}(f,x^+)\}<\infty$;
- iii) there is a function $\psi \in \mathbf{A}$ such that $\psi > f$ on \mathbb{R} and $\psi f \in \mathbf{A}$.

Corollary 3.4. For each function f the following are equivalent:

- i) there are functions $\varphi, \psi \in \mathbf{D}$ such that $\varphi < f < \psi$ on \mathbb{R} ;
- ii) for every $x \in \mathbb{R}$ we have both $\max\{\mathfrak{c}-\underline{\lim}(f,x^-),\mathfrak{c}-\underline{\lim}(f,x^+)\}<\infty$ and $\min\{\mathfrak{c}-\overline{\lim}(f,x^-),\mathfrak{c}-\overline{\lim}(f,x^+)\}>-\infty;$
- iii) there are functions $\varphi, \psi \in \mathbf{A}$ such that $\varphi < f < \psi$ and $f = (\varphi + \psi)/2$ on \mathbb{R} , and $f \varphi = \psi f \in \mathbf{A}$.

References

- [1] A. M. Bruckner, J. G. Ceder, and T. L. Pearson, *On Darboux functions*, Rev. Roumaine Math. Pures Appl. **19** (1974), 977–988.
- [2] K. Ciesielski and A. Maliszewski, Cardinal invariants concerning bounded families of extendable and almost continuous functions, Proc. Amer. Math. Soc. **126** (1998), 471–479.
- [3] R. Gibson, T. Natkaniec, *Darboux like functions*, Real Anal. Exchange **22** (1996/97), 492–533.
- [4] A. Maliszewski, On the averages of Darboux functions, Trans. Amer. Math. Soc. **350** (1998), 2833–2846.
- [5] T. Natkaniec, Almost continuity, Real Anal. Exchange 17 (1991–92), 462–520.
- [6] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263.