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COMPARABLE ALMOST CONTINUOUS
FUNCTIONS

Abstract

The main goal of this paper is to characterize the family of functions
which are the averages of two comparable almost continuous functions.

1 Preliminaries

The letters R and N denote the real line and the set of positive integers, re-
spectively. We consider cardinals as ordinals not in one-to-one correspondence
with the smaller ordinals. For each A C R let |A| denote the cardinality of A.
We write ¢ = |R| and use the symbol cf(c) to denote the cofinality of ¢. The
projection of a set A C R? onto the z-axis will be denoted by dom(A).

The word function denotes a mapping from R into R unless otherwise
explicitly stated. We say that functions ¢ and ¢ are comparable if either
@ <1 on R or ¢ > on R. Functions will be identified with their graphs. We
say that a function f is Darbouz and write f € D if the set f[J] is connected
for every interval J. We will say that a function f is almost continuous in the
sense of Stallings [6] and write f € A if for every open set U C R? containing f
there is a continuous function h: R — R with h C U.

Let f be a function and x € R. We define
clim(f,z7) = 5lir(r)1+ inf{y e R: [{t € (x — &, 2): f(t) <y} =c}

and ¢-lim(f,27) = — c-lim(—f, 27). The symbols ¢-lim(f, z*) and c-lim(f, zT)
we define analogously.
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The symbol [0 denotes the end of the proof of a theorem or of a corollary.
We use the symbol < to denote the end of the proof of an auxiliary claim
within such a proof.

2 Introduction

In 1974 A. M. Bruckner, J. G. Ceder, and T. L. Pearson proved that a func-
tion f is the average of two comparable Darboux functions ¢ and ¢ if and
only if for each z € R we have both max{c-lim(f, ™), ¢-lim(f, ™)} < oo and
min{c-lim(f, ™), ¢-lim(f,2%)} > —oo [1, Theorem 2]. A similar problem is
to determine, for a given function f on R, a necessary and sufficient condition
for there to exist a Darboux function ¢ such that ¢ > f on R. (The answer
to this question can be easily obtained using the proof of [1, Theorem 2].) In
both cases we ask whether there is a positive function ¢ such that both f + g
and (—f) 4 g are Darboux (the first problem) or such that f + g is Darboux
(the second problem). It suggests a similar problem for classes of functions
consisting of more than two functions. Several results related to this problem
can be found in [4].

It is well-known that A C D [6], and that the algebraic properties of the
classes A and D are very similar. (See, e.g., [5] or [3].) In this paper I will show
that most results proved in [4] hold true if we replace the family D with A.
In particular, Corollary 3.4 is a significant improvement both of the main part
of [1, Theorem 2] and of [5, Theorem 7.2].

Recall that by [2, Example 4.1], there exists a family of functions, 2, such
that || = cf(c), |f] <1 on R for each f € A (so, in particular, condition ii)
of Theorem 3.2 holds), but for each nonnegative function g there is an f € A
with f 4+ g ¢ D. Thus we cannot weaken the assumption “|2A| < cf(¢)” in
Theorem 3.2. However, I do not know whether the assumption “|2| < ¢” is
necessary in Theorem 3.1.

3 Main results

Theorem 3.1. Let 2 be a family of functions with |A| < ¢. The following are
equivalent:

i) there is a nonnegative function g such that f + g € D for each f € 2,

ii) there is a nonnegative function g such that for each f € A and each x € R
we have

max{e-lim(f +g,27), c-lim(f +g,2%)} < (f + g)(2); (1)
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iil) there is a positive function g such that f + g € A for each f € 2.

Proof. The implications iii) = i) and i) = ii) are evident. To prove the impli-
cation ii) = iii) define for each f € 2

Ur = Uzez [{z} x ((f +8)(2),00)] = {{z,9) eR*: y > (f +7)(2)}
and
Ky ={K CR®: K is closed and |dom(K N Uy)| = c}.

Let {(fg,KQ: &< c} be an enumeration of all pairs (f, K) such that f € 2
and K € Xy. Proceeding by transfinite induction choose for each £ < ¢ a
point (¢, ye) € K¢ N Uy, such that z¢ # x¢ for ¢ < & Define the function
g: R— R by

(z) = ye — fe(x) if © = x¢ for some £ < ¢,
g = g(z)+1  otherwise.

Fix an f € 2. We will prove that f + g € A. Let V C R? be an open
set containing f + g. Notice that K N (f + g) # 0 for each K € K. Hence
R2\ V ¢ K. So if

E=dom(Us \ V) = {z € R: [{z} x ((f +9)(z),0)] Z V'},

then |E| < ¢. Let J be the family of all intervals J = [a, b] for which there is a
continuous function h: J — R such that h C V and h = f + g on {a,b}. The
first claim is obvious.

Claim 1. If [a,b] € J and [b, ] € J, then [a,c] € J. <

Claim 2. Let a < b. There are o/, € (a,b) \ E such that [a/,b] € ]
and [a, ] € 7.

Choose ane € (0,b—a) with [(b—e, b+e)x ((f+g)(b)—¢, (f+g)(b)+e)] C V.
(Recall that V is open.) By (1), there is an a’ € (b —¢,b) \ E such that

(f+9)(@) <(f+9)b) +e/2<(f +9g)(b) +¢/2.

Let L be the interval with end points (f + g)(a’) and (f + g)(b) + /2. Since
a ¢ E, we have [{a’} x L] C V. Thus there is a § € (0,b — a’) such that

[(a"—é6,a" +8) x L] cV.

Define h = f + g on {a’,b}, h(a' +0) = (f + g)(b) + €/2, and let h be linear
in intervals [a’,a’ + ¢] and [a' + §,b]. Clearly h proves [a/,b] € §.
Similarly we can show that there is a b’ € (a,b)\ E such that [a,b'] € . <
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Claim 3. Let (b,) C R\ E and b, / b. If [a,b,] € J for each n € N,
then [a,b] € J.

By Claim 2, we can find an o’ € (a,b) \ E with [a’,b] € J. Let n € N be
such that b, > o/, and let hy: [a,b,] — R and hs: [a’,b] — R correspond to
[a,b,] € J and [a/, ] € J, respectively. We consider three cases.

Case 1. If hy(a’) > ha(a’), then let € > 0 be such that
S=(a—¢ed +¢e)x (hi(d)—e h(a)+e) CV.
(Recall that h; C V.) Choose an n € (0,4’ — a) with hy[[a’ —n,a’] C S. Put
L = [ha(a’),hi(a’)]. Since o’ ¢ E, we have [{a’} x L] C V. Thus there is

a d € (0,n) such that [(a’ —d,a’ +6) x L] C V. Define h = hy on [a,a’ — 4],
h = hy on [a/,b], and let h be linear in [a' — §,a’]. Clearly h proves [a,b] € J.

Case 2. Proceeding similarly we can show that ho(b,) > hi(b,) im-
plies [a,b] € J.

Case 3. Finally suppose that hi(a’) < ho(a’) and hi(by,) > ha(by). Slnce
hy and hg are continuous on [a’, by ], there is a ¢ € (a’, b,) with h1(c) = ha(c).
Define h = h; on [a,c] and h = hy on [¢,b]. Clearly h proves [a,b] € J. <

Claim 4. For each a < b we have [a,b] € J.

Put B = {b' € (a,b) \ E: [a,0/] € J}. By Claim 2, B is nonempty.
Set s = sup B. By Claim 3, we obtain [a,s] € J. If s < b, then by Claim 2,
there is a b/ € (s,b) \ E with [s,0'] € J. But then Claim 1 implies b’ € B, an
impossibility. <

Using Claim 4 one can easily construct a continuous function h: R — R
contained in V. This completes the proof. O

The proofs of the results below mimic the arguments used in [4].

Theorem 3.2. Let 2 be a family of functions with |A| < cf(c). The following
are equivalent:

i) there is a positive function g such that f + g € D for each f € U,

ii) the inequality sup{max{c-lim(f,z7), c-lim(f,2™)} — f(z): f € A} < o0
holds for each x € R;

iil) there is a positive function g such that f + g € A for each f € 2. O
Corollary 3.3. For each function f the following are equivalent:

i) there is a function ¥ € D such that ¥ > f on R;
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ii) for each x € R we have max{c—liim(f,x_), c-lim( f, x+)} < o0;
iii) there is a function ¢ € A such that ¢ > f on R and ¢ — f € A. O
Corollary 3.4. For each function f the following are equivalent:
i) there are functions @, € D such that ¢ < f <1 on R;

ii) for every x € R we have both max{c—liim(f,x_),c—liim(f, x"’)} < oo and
min{clim(f,z7), elim(f,2%)} > —oc;

iii) there are functions ¢, € A such that ¢ < f < and f = (p +¢)/2
onR, and f—p=19v— f€A. O
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