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COMPARABLE ALMOST CONTINUOUS
FUNCTIONS

Abstract

The main goal of this paper is to characterize the family of functions
which are the averages of two comparable almost continuous functions.

1 Preliminaries

The letters R and N denote the real line and the set of positive integers, re-
spectively. We consider cardinals as ordinals not in one-to-one correspondence
with the smaller ordinals. For each A ⊂ R let |||A||| denote the cardinality of A.
We write c = |||R||| and use the symbol cf(c) to denote the cofinality of c. The
projection of a set A ⊂ R2 onto the x-axis will be denoted by dom(A).

The word function denotes a mapping from R into R unless otherwise
explicitly stated. We say that functions ϕ and ψ are comparable if either
ϕ < ψ on R or ϕ > ψ on R. Functions will be identified with their graphs. We
say that a function f is Darboux and write f ∈ D if the set f [J ] is connected
for every interval J . We will say that a function f is almost continuous in the
sense of Stallings [6] and write f ∈ A if for every open set U ⊂ R2 containing f
there is a continuous function h : R → R with h ⊂ U .

Let f be a function and x ∈ R. We define

c-lim(f, x−) = lim
δ→0+

inf
{
y ∈ R : |||{t ∈ (x− δ, x) : f(t) < y}||| = c

}
and c-lim(f, x−) = − c-lim(−f, x−). The symbols c-lim(f, x+) and c-lim(f, x+)
we define analogously.
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The symbol denotes the end of the proof of a theorem or of a corollary.
We use the symbol C to denote the end of the proof of an auxiliary claim
within such a proof.

2 Introduction

In 1974 A. M. Bruckner, J. G. Ceder, and T. L. Pearson proved that a func-
tion f is the average of two comparable Darboux functions ϕ and ψ if and
only if for each x ∈ R we have both max

{
c-lim(f, x−), c-lim(f, x+)

}
<∞ and

min
{
c-lim(f, x−), c-lim(f, x+)

}
> −∞ [1, Theorem 2]. A similar problem is

to determine, for a given function f on R, a necessary and sufficient condition
for there to exist a Darboux function ψ such that ψ > f on R. (The answer
to this question can be easily obtained using the proof of [1, Theorem 2].) In
both cases we ask whether there is a positive function g such that both f + g
and (−f) + g are Darboux (the first problem) or such that f + g is Darboux
(the second problem). It suggests a similar problem for classes of functions
consisting of more than two functions. Several results related to this problem
can be found in [4].

It is well-known that A ⊂ D [6], and that the algebraic properties of the
classes A and D are very similar. (See, e.g., [5] or [3].) In this paper I will show
that most results proved in [4] hold true if we replace the family D with A.
In particular, Corollary 3.4 is a significant improvement both of the main part
of [1, Theorem 2] and of [5, Theorem 7.2].

Recall that by [2, Example 4.1], there exists a family of functions, A, such
that |||A||| = cf(c), |f | ≤ 1 on R for each f ∈ A (so, in particular, condition ii)
of Theorem 3.2 holds), but for each nonnegative function g there is an f ∈ A
with f + g /∈ D. Thus we cannot weaken the assumption “|||A||| < cf(c)” in
Theorem 3.2. However, I do not know whether the assumption “|||A||| ≤ c” is
necessary in Theorem 3.1.

3 Main results

Theorem 3.1. Let A be a family of functions with |||A||| ≤ c. The following are
equivalent :

i) there is a nonnegative function g such that f + g ∈ D for each f ∈ A;

ii) there is a nonnegative function ḡ such that for each f ∈ A and each x ∈ R
we have

max
{
c-lim(f + ḡ, x−), c-lim(f + ḡ, x+)

}
≤ (f + ḡ)(x); (1)
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iii) there is a positive function g such that f + g ∈ A for each f ∈ A.

Proof. The implications iii)⇒ i) and i)⇒ ii) are evident. To prove the impli-
cation ii)⇒ iii) define for each f ∈ A

Uf =
⋃

x∈R
[
{x} × ((f + ḡ)(x),∞)

]
=

{
〈x, y〉 ∈ R2 : y > (f + ḡ)(x)

}
and

Kf =
{
K ⊂ R2 : K is closed and |||dom(K ∩ Uf )||| = c

}
.

Let
{
〈fξ,Kξ〉 : ξ < c

}
be an enumeration of all pairs 〈f,K〉 such that f ∈ A

and K ∈ Kf . Proceeding by transfinite induction choose for each ξ < c a
point 〈xξ, yξ〉 ∈ Kξ ∩ Ufξ

such that xξ 6= xζ for ζ < ξ. Define the function
g : R → R by

g(x) =

{
yξ − fξ(x) if x = xξ for some ξ < c,
ḡ(x) + 1 otherwise.

Fix an f ∈ A. We will prove that f + g ∈ A. Let V ⊂ R2 be an open
set containing f + g. Notice that K ∩ (f + g) 6= ∅ for each K ∈ Kf . Hence
R2 \ V /∈ Kf . So if

E = dom(Uf \ V ) =
{
x ∈ R :

[
{x} × ((f + ḡ)(x),∞)

]
6⊂ V

}
,

then |||E||| < c. Let J be the family of all intervals J = [a, b] for which there is a
continuous function h : J → R such that h ⊂ V and h = f + g on {a, b}. The
first claim is obvious.

Claim 1. If [a, b] ∈ J and [b, c] ∈ J, then [a, c] ∈ J. C

Claim 2. Let a < b. There are a′, b′ ∈ (a, b) \ E such that [a′, b] ∈ J

and [a, b′] ∈ J.

Choose an ε ∈ (0, b−a) with
[
(b−ε, b+ε)×((f+g)(b)−ε, (f+g)(b)+ε)

]
⊂ V .

(Recall that V is open.) By (1), there is an a′ ∈ (b− ε, b) \ E such that

(f + ḡ)(a′) < (f + ḡ)(b) + ε/2 < (f + g)(b) + ε/2.

Let L be the interval with end points (f + g)(a′) and (f + g)(b) + ε/2. Since
a′ /∈ E, we have

[
{a′} × L

]
⊂ V . Thus there is a δ ∈ (0, b− a′) such that[
(a′ − δ, a′ + δ)× L

]
⊂ V.

Define h = f + g on {a′, b}, h(a′ + δ) = (f + g)(b) + ε/2, and let h be linear
in intervals [a′, a′ + δ] and [a′ + δ, b]. Clearly h proves [a′, b] ∈ J.

Similarly we can show that there is a b′ ∈ (a, b)\E such that [a, b′] ∈ J. C
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Claim 3. Let (bn) ⊂ R \ E and bn ↗ b. If [a, bn] ∈ J for each n ∈ N,
then [a, b] ∈ J.

By Claim 2, we can find an a′ ∈ (a, b) \ E with [a′, b] ∈ J. Let n ∈ N be
such that bn > a′, and let h1 : [a, bn] → R and h2 : [a′, b] → R correspond to
[a, bn] ∈ J and [a′, b] ∈ J, respectively. We consider three cases.

Case 1. If h1(a′) ≥ h2(a′), then let ε > 0 be such that

S =
[
(a′ − ε, a′ + ε)× (h1(a′)− ε, h1(a′) + ε)

]
⊂ V.

(Recall that h1 ⊂ V .) Choose an η ∈ (0, a′ − a) with h1�[a′ − η, a′] ⊂ S. Put
L = [h2(a′), h1(a′)]. Since a′ /∈ E, we have

[
{a′} × L

]
⊂ V . Thus there is

a δ ∈ (0, η) such that
[
(a′ − δ, a′ + δ)× L

]
⊂ V . Define h = h1 on [a, a′ − δ],

h = h2 on [a′, b], and let h be linear in [a′ − δ, a′]. Clearly h proves [a, b] ∈ J.
Case 2. Proceeding similarly we can show that h2(bn) ≥ h1(bn) im-

plies [a, b] ∈ J.
Case 3. Finally suppose that h1(a′) < h2(a′) and h1(bn) > h2(bn). Since

h1 and h2 are continuous on [a′, bn], there is a c ∈ (a′, bn) with h1(c) = h2(c).
Define h = h1 on [a, c] and h = h2 on [c, b]. Clearly h proves [a, b] ∈ J. C

Claim 4. For each a < b we have [a, b] ∈ J.

Put B =
{
b′ ∈ (a, b) \ E : [a, b′] ∈ J

}
. By Claim 2, B is nonempty.

Set s = supB. By Claim 3, we obtain [a, s] ∈ J. If s < b, then by Claim 2,
there is a b′ ∈ (s, b) \ E with [s, b′] ∈ J. But then Claim 1 implies b′ ∈ B, an
impossibility. C

Using Claim 4 one can easily construct a continuous function h : R → R
contained in V . This completes the proof.

The proofs of the results below mimic the arguments used in [4].

Theorem 3.2. Let A be a family of functions with |||A||| < cf(c). The following
are equivalent :

i) there is a positive function g such that f + g ∈ D for each f ∈ A;

ii) the inequality sup
{
max{c-lim(f, x−), c-lim(f, x+)} − f(x) : f ∈ A

}
<∞

holds for each x ∈ R;

iii) there is a positive function g such that f + g ∈ A for each f ∈ A.

Corollary 3.3. For each function f the following are equivalent :

i) there is a function ψ ∈ D such that ψ > f on R;
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ii) for each x ∈ R we have max
{
c-lim(f, x−), c-lim(f, x+)

}
<∞;

iii) there is a function ψ ∈ A such that ψ > f on R and ψ − f ∈ A.

Corollary 3.4. For each function f the following are equivalent :

i) there are functions ϕ,ψ ∈ D such that ϕ < f < ψ on R;

ii) for every x ∈ R we have both max
{
c-lim(f, x−), c-lim(f, x+)

}
< ∞ and

min
{
c-lim(f, x−), c-lim(f, x+)

}
> −∞;

iii) there are functions ϕ,ψ ∈ A such that ϕ < f < ψ and f = (ϕ + ψ)/2
on R, and f − ϕ = ψ − f ∈ A.
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