Lee Tuo-Yeong, Mathematics and Mathematics Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore. e-mail: tylee@nie.edu.sg

THE SHARP RIESZ-TYPE DEFINITION FOR THE HENSTOCK-KURZWEIL INTEGRAL

Abstract

In this paper, we prove that if f is Henstock-Kurzweil integrable on a compact subinterval $[a, b]$ of the real line, then the following conditions are satisfied: (i) there exists an increasing sequence $\{X_n\}$ of closed sets whose union is $[a, b]$; (ii) $\{f \chi_{X_n}\}$ is a sequence of Lebesgue integrable functions on $[a, b]$; (iii) the sequence $\{f \chi_{X_n}\}$ is Henstock-Kurzweil equiintegrable on $[a, b]$. Subsequently, we deduce that the gauge function in the definition of the Henstock-Kurzweil integral can be chosen to be measurable, and an indefinite Henstock-Kurzweil integral generates a sequence of uniformly absolutely continuous finite variational measures.

1 Introduction

E. J. McShane in [9] developed the Lebesgue integration on an interval $I \subset \mathbb{R}^n$ using the monotone convergence of step functions. In dimension one, it is well-known (see [5] or [6]) that if f is Denjoy-Perron integrable on a compact subinterval [a, b] of the real line \mathbb{R} , then it can be defined as a controlled convergent sequence of step functions. Since the Controlled Convergence Theorem is equivalent to the equi-integrability theorem (see [4, Theorem 5.4]), it is natural to ask the following question : given that f is Henstock-Kurzweil integrable on $[a, b]$, can $[a, b]$ be decomposed into a countable union of closed sets $\{X_n\}$ so that for each n , $f\chi_{X_n}$ is Lebesgue integrable on $[a, b]$, and $\{f\chi_{X_n}\}$ is Henstock-Kurzweil equi-integrable on $[a, b]$? In this paper, we shall give an affirmative answer to the above problem (see Theorem 3.7). The importance of this equi-integrability theorem lies in the construction of a topology $\mathcal J$ on

Key Words: Henstock-Kurzweil integral, equi-integrability

Mathematical Reviews subject classification: 26A39

Received by the editors November 11, 2001

⁵⁵

the space $H\mathcal{K}([a, b])$, namely the space of all Henstock-Kurzweil integrable functions on [a, b], so that the resulting space $(\mathcal{HK}([a, b]), \mathcal{J})$ is complete. See [3] for more details. Moreover, we deduce that the gauge function in the definition of the Henstock-Kurzweil integral can be chosen to be measurable, and an indefinite Henstock-Kurzweil integral generates a sequence of uniformly absolutely continuous finite variational measures (Corollary 3.9).

2 Preliminaries

Unless stated otherwise, the following conventions and notations will be used. The set of all real numbers is denoted by \mathbb{R} , and the ambient space of this paper is R with its usual norm. For $x \in \mathbb{R}$ and $r > 0$, the open ball $B(x, r)$ is the open interval centered at x with sides equal to 2r. For a set $Z \subset \mathbb{R}$, we denote by χ_z , int(Z), Z and diam(Z) the characteristic function, interior, closure and diameter of Z, respectively. The expressions "absolutely continuous", "measure", "measurable" refer to the one-dimensional Lebesgue measure μ_1 . A set $Z \subset \mathbb{R}$ is called *negligible* whenever $\mu_1(Z) = 0$. Given two subsets X, Y of \mathbb{R} , we say that X and Y are nonoverlapping if their intersection is negligible. A function is always real-valued. When no confusion is possible, we do not distinguish between a function defined on a set Z and its restriction to a set $W \subset Z$. If Z is a measurable subset of $\mathbb{R}, \mathcal{L}(Z)$ will denote the space of all Lebesgue integrable functions on Z. If $f \in \mathcal{L}(Z)$, the Lebesgue integral of f over Z will be denoted by $(L) \int_Z f$.

An *interval* is a compact nondegenerate interval of \mathbb{R} , and $[a, b]$ is a fixed interval. I is the family of all nondegenerate subintervals of [a, b]. If $I \in \mathcal{I}$, we shall write $\mu_1(I)$ as |I|. A function F defined on I is said to be additive if $F(I \cup J) = F(I) + F(J)$ for each nonoverlapping intervals $I, J \in \mathcal{I}$ with $I \cup J \in \mathcal{I}.$

A partition is a collection $P = \{(I_i, \xi_i)\}_{i=1}^p$, where I_1, I_2, \ldots, I_p are nonoverlapping intervals, and $\xi_i \in I_i$ for $i = 1, 2, ..., p$. Given $Z \subseteq [a, b]$, a positive function δ on Z is called a *gauge* on Z. We say that a partition is

- (i) a partition in Z if \bigcup^{p} $\bigcup_{i=1} I_i \subset Z;$
- (ii) a partition of Z if \bigcup^{p} $\bigcup_{i=1} I_i = Z;$
- (iii) anchored in Z if $\{\xi_1, \xi_2, \ldots, \xi_n\} \subset Z;$
- (iv) δ -fine if $I_i \subset B(\xi_i, \delta(\xi_i))$ for each $i = 1, 2, \ldots, p$.

In view of the Cousin's lemma [7, Theorem 2.3.1], the following definition is meaningful.

Definition 2.1. A function $f : [a, b] \longrightarrow \mathbb{R}$ is said to be *Henstock-Kurzweil* integrable if there exists $A \in \mathbb{R}$ such that for any given $\epsilon > 0$, there exists a gauge δ on [a, b] such that

$$
\left| \sum_{i=1}^{p} f(\xi_i) |I_i| - A \right| < \epsilon \tag{2.1}
$$

for each δ -fine partition $\{(I_i, \xi_i)\}_{i=1}^p$ of $[a, b]$. Here A is called the Henstock-Kurzweil integral of f over [a, b], and we write $A = (HK) \int_a^b f$. If [a, b] = E, we also write A as $(HK) \int_E f$.

- Remark 2.2. (a) The linear space of all Henstock-Kurzweil integrable functions on [a, b] is denoted by $HK([a, b])$.
- (b) It follows from [7, Theorem 2.5.14] that if $f \in H\mathcal{K}([a, b])$, then $f \in H\mathcal{K}(J)$ for each subinterval J of $[a, b]$. The interval function $F : J \mapsto (HK) \int_J f$ is known as the indefinite Henstock-Kurzweil integral, or in short the indefinite $H\mathcal{K}$ -integral, of f. By [7, Theorem 2.5.12], F is an additive interval function on $\mathcal{I}.$
- (c) By [7, Theorem 3.13.3], we see that $\mathcal{L}([a, b]) \subset \mathcal{HK}([a, b])$. Furthermore, (L) $\int_a^b f = (HK) \int_a^b f$ for each $f \in \mathcal{L}([a, b]).$
- (d) If f is a nonnegative, Henstock-Kurzweil integrable on $[a, b]$, then it follows from [7, Theorem 3.13.3] that $f \in \mathcal{L}([a, b])$.

We have the following important Saks-Henstock Lemma [7, Theorem 3.2.1].

Theorem 2.3. (Saks-Henstock). If F is the indefinite HK -integral of a function f on [a, b], then for $\epsilon > 0$, there exists a gauge δ on [a, b] such that for any δ-fine partition $\{(I_i, \xi_i)\}_{i=1}^p$ in $[a, b]$, we have $\sum_{i=1}^p |f(\xi_i)|I_i| - F(I_i)| < \epsilon$.

If F is the indefinite $H\mathcal{K}$ -integral of a function f on $[a, b]$, then it follows from Saks-Henstock Lemma and [7, p.81–82] that F is continuous in the sense that $F(I) \to 0$ as the measure of the interval I tends to zero. Thus, the space $H\mathcal{K}([a, b])$ of all Henstock-Kurzweil integrable functions on [a, b] may

be equipped with the Alexiewicz norm $|| \cdot ||$, where $||f|| = \sup \{ ||(HK) \int_I f|| \}$ where the supremum is taken over all subintervals I of $[a, b]$.

Denoting the ordinary derivative of F at $x \in [a, b]$ by $F'(x)$, an application of the Vitali covering theorem [13, p.109] that $F'(x)$ exists for almost all $x \in [a, b]$ with $F' = f$ almost everywhere. In particular, the measurability of f follows easily.

Let F be an interval function on $\mathcal I$, and X be an arbitrary subset of $[a, b]$. If δ is a gauge on X, we set $V(F, X, \delta) := \sup_P$ $\sum_{i=1}^{p}$ $i=1$ $|F(I_i)|$ where the supremum

is taken over all δ -fine partitions $P = \{(I_i, \xi_i)\}_{i=1}^p$ anchored in X.

We put $V_{\mathcal{HK}}F(X) := \inf_{\delta} V(F, X, \delta)$ where the infimum is taken over all gauges δ on X. Then, the extended real-valued set function $V_{\mathcal{HK}}F(\cdot)$ has the property that $V_{H\mathcal{K}}F$ is a metric outer measure. See, for example, [14].

The following Radon-Nikodym Theorem holds for the Henstock-Kurzweil integral.

Theorem 2.4. If $f \in \mathcal{HK}([a, b])$ with F being its indefinite \mathcal{HK} integral, then

$$
V_{\mathcal{HK}}F(X) = (L)\int_X |f|
$$

for each measurable subset X of $[a, b]$.

PROOF. This follows from [12, Theorem 8] and [12, Proposition 10]. \Box

3 Main Results

The first theorem is essentially a reformulation of [6, Lemma 15.5] and [6, Lemma 6.18], whose proofs depend on the theory of Denjoy-Perron integration. We shall prove it without reference to the theory of Denjoy-Perron integration [13].

Theorem 3.1. If $f \in \mathcal{HK}([a, b])$, then there exists an increasing sequence ${Y_n}$ of closed sets that satisfies the following conditions:

- (a) $\bigcup_{n=1}^{\infty} Y_n = [a, b];$
- (b) $f \in \mathcal{L}(Y_n)$ for each $n \in \mathbb{Z}^+$;
- (c) the series $\sum_{n=1}^{\infty}$ $k=1$ $\|f\chi_{[c_k^{(n)}, d_k^{(n)}]} \|$ converges, where $\{[c_k^{(n)}]$ $\left\{ \begin{bmatrix} n\k \end{bmatrix},d_{k}^{(n)} \right\}$ is the collection of subintervals of $[a, b]$ contiguous to Y_n .

PROOF. Let F denotes the indefinite Henstock-Kurzweil integral of f on $[a, b]$. By Theorem 2.3, for $\epsilon = 1$, there exists a gauge δ on $[a, b]$ such that for any δ-fine partition $\{(I_i, \xi_i)\}_{i=1}^p$ in $[a, b]$, we have

$$
\sum_{i=1}^{p} |f(\xi_i)| |I_i| - F(I_i)| < 1.
$$
\n(3.1)

For each positive integer n , we put

$$
Y_n = \overline{\{x \in [a, b] : |f(x)| < n \text{ and } \delta(x) > \frac{1}{n}\}}.
$$

Since f is real-valued and δ is strictly positive on [a, b], it is clear that (a) holds.

In order to prove (b), given any positive integer n, we choose a $\frac{1}{n}$ -fine partition $\{([u_i, v_i], \xi_i)\}_{i=1}^p$ anchored in Y_n . We distinguish the following cases:

- (i) If $\xi_i \in (u_i, v_i)$ or $\xi_i = u_i = a$ or $\xi_i = v_i = b$ for some $i \in \{1, 2, \ldots, p\}$, we choose $x_i \in \{x \in [a, b] : |f(x)| < n \text{ and } \delta(x) > \frac{1}{n}\} \cap (u_i, v_i);$
- (ii) If $a < u_i = \xi_i$ for some $i \in \{1, 2, \ldots, p\}$, we choose $y_i \in (u_i, v_i)$ and $x_i \in \{x \in [a, b] : |f(x)| < n \text{ and } \delta(x) > \frac{1}{n}\}\$ so that $u_i \in (x_i, y_i)$ and the sequence of intervals $\{[x_i, y_i]\}_{i=1}^p$ are pairwise disjoint with

$$
|F([u_i, v_i]) - F([x_i, y_i])| < \frac{1}{p}.
$$

(iii) If $v_i = \xi_i < b$ for some $i = 1, 2, ..., p$, we choose $x_i \in (u_i, v_i)$ and $y_i \in \{x \in [a, b] : |f(x)| < n \text{ and } \delta(x) > \frac{1}{n}\}\$ so that $v_i \in (x_i, y_i)$ and the sequence of intervals $\{[x_i, y_i]\}_{i=1}^p$ are pairwise disjoint with

$$
|F([u_i, v_i]) - F([x_i, y_i])| < \frac{1}{p}.
$$

Put

$$
T_1 = \{i \in \{1, 2, ..., p\} : \xi_i \in (u_i, v_i) \text{ or } \xi_i = u_i = a \text{ or } \xi_i = v_i = b\}.
$$

\n
$$
T_2 = \{i \in \{1, 2, ..., p\} : a < u_i = \xi_i\}.
$$

\n
$$
T_3 = \{i \in \{1, 2, ..., p\} : v_i = \xi_i < b\}.
$$

Then it follows from (i) , (ii) , (iii) and (3.1) that

$$
\sum_{i=1}^{p} |F([u_i, v_i])| = \sum_{j=1}^{3} \sum_{i \in T_j} |F([u_i, v_i])|
$$

$$
< \sum_{i \in T_1} |F([u_i, v_i])| + \sum_{i \in T_2} |F([x_i, y_i])| + 1 + \sum_{i \in T_3} |F([x_i, y_i])| + 1
$$

$$
< n(b - a) + 1 + n(b - a) + 1 + 1 + n(b - a) + 1 + 1
$$

proving that

$$
V(F, Y_n, \frac{1}{n}) \le 3n(b-a) + 5. \tag{3.2}
$$

Since $V_{\mathcal{HK}}F(Y_n) \le V(F, Y_n, \frac{1}{n}),$ (b) follows from (3.2) and Theorem 2.4.

In order to prove (c), it suffices to observe that there exists a positive integer N such that

$$
\sum_{k=N}^{\infty}(d_k^{(n)}-c_k^{(n)})<1 \text{ and } \sum_{k=N}^{\infty}\|f\chi_{_{[c_k^{(n)},d_k^{(n)}]}}\|\leq 2V(F,Y_n,\frac{1}{n})<\infty. \qquad \Box
$$

The next theorem is the Harnack extension for the Henstock-Kurzweil integral.

Theorem 3.2. [2, Theorem 9.22] Let X be a closed subset of $[a, b]$ with $\{[c_k, d_k]\}\$ being the collection of subintervals of $[a, b]$ contiguous to X. Suppose the following conditions are satisfied :

- (a) $f\chi_x \in \mathcal{HK}([a, b])$;
- (b) $f \in \mathcal{HK}([c_k, d_k])$ for each positive integer k;
- (c) the series $\sum_{n=1}^{\infty}$ $\sum_{k=1}$ $|| f \chi_{[c_k, d_k]} ||$ converges;

then $f \in \mathcal{HK}([a, b])$ and the equality

$$
(HK)\int_{c}^{d} f = (HK)\int_{c}^{d} f\chi_{x} + \sum_{k=1}^{\infty} (HK)\int_{c_{k}}^{d_{k}} f\chi_{[c,d]}
$$

holds for each subinterval $[c, d]$ of $[a, b]$.

Lemma 3.3. Let X be a closed subset of [a, b] with $\{[c_k, d_k]\}$ being the collection of subintervals of $[a, b]$ contiguous to X. Suppose the following conditions are satisfied :

- (i) $f \in \mathcal{HK}([a, b])$;
- (ii) $f\chi_x \in \mathcal{HK}([a, b])$;
- (iii) the series $\sum_{n=1}^{\infty}$ $\sum_{k=1}$ $|| f \chi_{[c_k, d_k]} ||$ converges;
- (iv) $\{[u_i, v_i]\}_{i=1}^q \subset [a, b]$ is a finite sequence of nonoverlapping intervals satisfying the condition that at least one of the endpoints of each $[u_i, v_i]$ belongs to X.

Then

$$
\sum_{i=1}^{q} |(HK)\int_{u_i}^{v_i} (f - f\chi_x)| \leq \sum_{k=1}^{N} \sum_{i=1}^{q} |(HK)\int_{u_i}^{v_i} f\chi_{[c_k, d_k]}| + 2 \sum_{k=N+1}^{\infty} ||f\chi_{[c_k, d_k]}||
$$

for each $N \in \mathbb{Z}^+$.

PROOF. By (i), $f \in \mathcal{HK}([c_k, d_k])$ for each positive integer k. In view of (ii), (iii) and Theorem 3.2, we have $(HK) \int_{u_i}^{v_i} (f - f \chi_x) = \sum_{k=1}^{\infty} (HK) \int_{c_k}^{d_k} f \chi_{[u_i, v_i]}$ for each $i = 1, 2, ..., q$. Thus, we have

$$
\left| (HK) \int_{u_i}^{v_i} (f - f \chi_x) \right|
$$

\n
$$
\leq \sum_{k=1}^{\infty} \left| (HK) \int_{c_k}^{d_k} f \chi_{[u_i, v_i]} \right|
$$

\n
$$
\leq \sum_{k=1}^{N} \left| (HK) \int_{c_k}^{d_k} f \chi_{[u_i, v_i]} \right| + \sum_{k=N+1}^{\infty} \left| (HK) \int_{c_k}^{d_k} f \chi_{[u_i, v_i]} \right|
$$

giving

$$
\sum_{i=1}^{q} \left| (HK) \int_{u_i}^{v_i} (f - f \chi_x) \right|
$$
\n
$$
\leq \sum_{k=1}^{N} \sum_{i=1}^{q} \left| (HK) \int_{c_k}^{d_k} f \chi_{[u_i, v_i]} \right| + \sum_{k=N+1}^{\infty} \sum_{i=1}^{q} \left| (HK) \int_{c_k}^{d_k} f \chi_{[u_i, v_i]} \right|
$$
\n
$$
\leq \sum_{k=1}^{N} \sum_{i=1}^{q} \left| (HK) \int_{u_i}^{v_i} f \chi_{[c_k, d_k]} \right| + 2 \sum_{k=N+1}^{\infty} ||f \chi_{[c_k, d_k]}||
$$

by (iv), since each interval $[c_k, d_k]$ can intersect with at most two intervals belonging to the set $\{[u_i, v_i]\}_{i=1}^q$. \Box

Theorem 3.4. Let X be a closed subset of [a, b] with $\{[c_k, d_k]\}$ being the collection of subintervals of $[a, b]$ contiguous to X. Suppose the following conditions are satisfied:

- (i) $f \in \mathcal{HK}([a, b])$;
- (ii) $f\chi_x \in \mathcal{HK}([a, b])$;
- (iii) the series $\sum_{n=1}^{\infty}$ $\sum_{k=1}$ $|| f \chi_{[c_k, d_k]} ||$ converges;

then given $\epsilon > 0$, there exists a constant gauge δ on X such that for any δ -fine partition ${([u_i, v_i], \xi_i)}_{i=1}^p$ anchored in X, we have

$$
\sum_{i=1}^p \left| (HK) \int_{u_i}^{v_i} f\chi_{\scriptscriptstyle X} - (HK) \int_{u_i}^{v_i} f \right| < \epsilon.
$$

PROOF. By (iii), for $\epsilon > 0$, there exists $N \in \mathbb{Z}^+$ such that

$$
\sum_{k=N+1}^{\infty} \|f\chi_{[c_k, d_k]}\| < \frac{\epsilon}{4}.\tag{3.3}
$$

By (i), $f \in H\mathcal{K}([c_k, d_k])$ for each k. Since $f \in H\mathcal{K}([c_i, d_i])$ for each $i =$ $1, 2, \ldots, N$, it follows from the continuity of indefinite $H\mathcal{K}$ -integral that there exists $\eta_i > 0$ such that whenever $[u, v] \subseteq [c_i, d_i]$ satisfying $v - u < \eta_i$, we have

$$
\left| (HK) \int_{u}^{v} f \right| < \frac{\epsilon}{4N}.\tag{3.4}
$$

Define a constant gauge δ on $[a, b]$ by $\delta = \min_{i=1,2,...,N} \eta_i$. An application of Lemma 3.3, (3.3) and (3.4) shows that for any δ -fine partition $P = \{(I_i, \xi_i)\}_{i=1}^p$ anchored in X , we have

$$
\sum_{i=1}^{p} \left| (HK) \int_{u_i}^{v_i} (f - f\chi_x) \right|
$$

\n
$$
\leq \sum_{k=1}^{N} \sum_{i=1}^{p} \left| (HK) \int_{u_i}^{v_i} f\chi_{[c_k, d_k]} \right| + 2 \sum_{k=N+1}^{\infty} ||f\chi_{[c_k, d_k]}||
$$

\n
$$
< 2N \frac{\epsilon}{4N} + 2\frac{\epsilon}{4} = \epsilon.
$$

In what follows, we shall write a decreasing null sequence of positive numbers $\{\epsilon_n\}$ as $\epsilon_n \downarrow 0$.

Theorem 3.5. If $f \in \mathcal{HK}([a, b])$, then for $\epsilon_n \downarrow 0$, there exists an increasing sequence $\{X_n\}$ of closed sets such that

- (i) $\bigcup_{n=1}^{\infty} X_n = [a, b];$
- (ii) $f \in \mathcal{L}(X_n)$ for each $n \in \mathbb{Z}^+$;
- (iii) for each positive integer n, there exists a partition $P_n = \{(I_i, \xi_i)\}_{i=1}^p$ of $[a, b]$ such that the inequality

$$
\sum_{i=1}^{p} \sum_{J \subseteq I_i} \left| (L) \int_{J \cap X_n} f - (HK) \int_J f \right| < \epsilon_n
$$

holds whenever $\{J\}$ is a finite sequence of non-overlapping subintervals of [a, b] satisfying $J \cap X_n \neq \emptyset$ for all n.

PROOF. Since $\epsilon_n \downarrow 0$, we may assume that $\epsilon_n = \frac{1}{n}$. Since f is Henstock-Kurzweil integrable on [a, b], there exists an increasing sequence $\{Y_k\}$ of closed sets satisfying all the conditions of Theorem 3.1. By Theorem 3.4, for each $k \in \mathbb{Z}^+$, there exists a constant gauge δ'_k on Y_k such that for any δ'_k -fine partition $\{(I_i, \xi_i)\}_{i=1}^q$ anchored in Y_k , we have

$$
\sum_{i=1}^q \left| (L) \int_{I_i \cap Y_k} f - (HK) \int_{I_i} f \right| < \frac{1}{k}.
$$

Next, we want to choose $\{X_n\}$ from $\{Y_k\}$ so that the required properties hold.

Let $p(n, k) = 2^kn$. Define a gauge δ_n on $[a, b]$ by

$$
\delta_n(\xi) = \begin{cases}\n\delta_{p(n,1)'}(\xi) & \text{if } \xi \in Y_{p(n,1)}, \\
\min\{\delta'_{p(n,k)}, \text{dist}(\xi, Y_{p(n,k-1}))\} & \text{if } \xi \in Y_{p(n,k)} \setminus Y_{p(n,k-1)} \\
 & \text{for some } k \ge 2.\n\end{cases}
$$

Since δ_n -fine partitions of [a, b] exist, we may fix a δ_n -fine partition $P_n =$ $\{(I_i, \xi_i)\}_{i=1}^p$ of [a, b]. For simplicity, we put

$$
Q_1 = Y_{p(n,1)}
$$
 and $Q_k = Y_{p(n,k)} \setminus Y_{p(n,k-1)}$ for $k \ge 2$.

Next, we put

$$
X_n = \bigcup_{k=1}^{\infty} \{ I \cap Y_{p(n,k)} : (I,\xi) \in P_n \text{ with } \xi \in Q_k \}.
$$

The above union is a finite one because P_n only has finitely many terms. Thus X_n is closed as each Y_k is closed.

Define $k(n) = \max\{k : (I, \xi) \in P_n \text{ and } \xi \in Q_k\}$. Since $\{Y_k\}$ is an increasing sequence of closed sets whose union is [a, b], we have $Y_{p(n,k(n))} \supseteq X_n$. By the definition of δ_n and the compactness of $Y_{p(n,1)}$, the δ_n -fine partition $P_n = \{(I_i, \xi_i)\}_{i=1}^p$ must cover $Y_{p(n,1)}$. Hence $Y_{p(n,1)} \subseteq X_n$. Thus, we have $Y_{p(n,1)} \subseteq X_n \subseteq Y_{p(n,k(n))}$ and $f \in \mathcal{L}(X_n)$ because X_n is measurable. Observe also that if $(I, \xi) \in P_n$ with $\xi \in Q_k$ for some positive integer k, then $I \cap$ $X_n = I \cap Y_{p(n,k)}$. Note that each $(I, \xi) \in P_n$ may have its associated points ξ belonging to Q_1 only. Without loss of generality, we may suppose that each $(I, \xi) \in P_n$ has its associated point ξ belongs to $Q_{s_1}, Q_{s_2}, \ldots, Q_{s_l}$ for some positive integers $s_1 < s_2 < \cdots < s_l$ with $s_1 = 1$. Let $\{J\}$ be a finite sequence of non-overlapping subintervals of [a, b] with $J \subseteq I_i$ for some $i = 1, 2, \ldots, p$, and $J \cap X_n \neq \emptyset$. Then we have

$$
\sum_{i=1}^{p} \sum_{J \subseteq I_i} \left| (L) \int_{J \cap X_n} f - (HK) \int_J f \right|
$$
\n
$$
= \sum_{i=1}^{p} \sum_{k=1}^{l} \sum_{J \subseteq I_i : \xi_i \in I_i \cap Q_{s_k}} \left| (L) \int_{J \cap X_n} f - (HK) \int_J f \right|
$$
\n
$$
= \sum_{i=1}^{p} \sum_{k=1}^{l} \sum_{J \subseteq I_i : \xi_i \in I_i \cap Q_{s_k}} \left| (L) \int_{J \cap Y_{p(n,s_k)}} f - (HK) \int_J f \right|
$$
\n
$$
= \sum_{k=1}^{l} \sum_{i=1}^{p} \sum_{J \subseteq I_i : \xi_i \in I_i \cap Q_{s_k}} \left| (L) \int_{J \cap Y_{p(n,s_k)}} f - (HK) \int_J f \right|
$$
\n
$$
< \sum_{k=1}^{l} \frac{1}{n2^{s_k}} < \frac{1}{n}.
$$

It is easy to see that there exists an increasing subsequence of $\{X_n\}$, denoted again by $\{X_n\}$, such that $\bigcup_{n=1}^{\infty} X_n = [a, b].$ \Box

Corollary 3.6. [10, Theorem 2] If $f \in \mathcal{HK}([a, b])$, then the following condition is satisfied: Given $\epsilon_n \downarrow 0$, there exists a sequence $\{X_n\}$ of closed sets in $[a, b]$ such that:

- (i) $a, b \in X_1, X_n \subseteq X_{n+1}$ for all n and $\bigcup_{n=1}^{\infty} X_n = [a, b];$
- (ii) $f \in \mathcal{L}(X_n)$ for each n;
- (iii) for each positive integer n, if a finite sequence $\{I_i\}_{i=1}^q$ of non-overlapping intervals contained in $[a, b]$ satisfies the condition that at least one of the endpoints of each I_i belong to X_n , then we have

$$
\sum_{i=1}^q \left| (L) \int_{I_i \cap X_n} f - (HK) \int_{I_i} f \right| < \epsilon_n.
$$

Theorem 3.7. If $f \in \mathcal{HK}([a, b])$, then there exists an increasing sequence $\{X_n\}$ of closed sets whose union is $[a, b]$, $\{f\chi_{X_n}\}\subset \mathcal{L}([a, b])$ and $\{f\chi_{X_n}\}\$ satisfies the following conditions:

(i) $f\chi_{X_n} \to f$ everywhere on [a, b];

(ii) for $\epsilon > 0$, there exists a measurable gauge δ , independent of n, on [a, b] such that for every δ -fine partition $P = \{(I_i, \xi_i)\}_{i=1}^p$ of $[a, b]$, we have

$$
\left|\sum_{i=1}^p f(\xi_i)\chi_{X_n}(\xi_i) |I_i| - (L) \int_a^b f\chi_{X_n}\right| < \epsilon
$$

 $for\ all\ n\in \mathbb{Z}^+.\ \ In\ particular,\ \{\text{$f \chi_{_{X_n}}$}\ is\ Henstock-Kurzweil\ equi-integrable$ on E.

PROOF. By Corollary 3.6, we choose $\{X_k\}$ corresponding to $\epsilon_k = \frac{1}{k^2}$ and put $f_k = f \chi_{X_k}$ for $k \in \mathbb{Z}^+$. An application of [11, Proposition 4] and [11, Lemma 7(iii)] shows that for $\epsilon > 0$, there exists a measurable gauge δ_k on [a, b] such that for any δ_k -fine partition $P_1 = \{(I_i, \xi_i)\}_{i=1}^{p_1}$ in $[a, b]$, we have

$$
\sum_{i=1}^{p_1} \left| f_k(\xi_i) \left| I_i \right| - \int_{I_i} f_k \right| < \frac{\epsilon}{2^{k+2}}. \tag{3.5}
$$

We may also assume that for each $x \in [a, b]$, the sequence $\{\delta_k(x)\}\$ is nonincreasing. Choose a positive integer $N \geq 2$ such that

$$
\sum_{k=N}^{\infty} \frac{1}{k^2} < \frac{\epsilon}{4}.\tag{3.6}
$$

Let $\{ [c_i^{(N)}, d_i^{(N)}] \}$ be the sequence of subintervals of $[a, b]$ contiguous to X_N and put $\eta = \frac{1}{4} \min_{1 \leq i \leq N}$ $\left| d_i^{(N)} - c_i^{(N)} \right|.$

Define a gauge δ on $[a, b]$ by

$$
\delta(\xi) = \begin{cases}\n\min\{\delta_N(\xi), \eta\} & \text{if } \xi \in X_1, \\
\min\{\delta_N(\xi), \eta\} & \text{if } \xi \in X_1, \\
\min\{\delta_N(\xi), \text{dist}(\xi, X_{k-1}), \eta\} & \text{if } \xi \in X_k \setminus X_{k-1} \text{ for some } 2 \le k \le N, \\
\min\{\delta_k(\xi), \text{dist}(\xi, X_{k-1}), \eta\} & \text{if } \xi \in X_k \setminus X_{k-1} \text{ for some } k > N.\n\end{cases}
$$

Then δ is a measurable gauge on [a, b] with

$$
\delta(\xi) \le \delta_N(\xi) \text{ for each } \xi \in X_N \tag{3.7}
$$

and

$$
\delta(\xi) \le \delta_k(\xi) \text{if } \xi \in X_k \setminus X_{k-1} \text{ for some } k > N. \tag{3.8}
$$

Claim. The sequence $\{f_n\}$ is Henstock-Kurzweil equi-integrable with this function δ . Given a δ -fine partition $P = \{(I_i, \xi_i)\}_{i=1}^p$ of $[a, b]$, we put

$$
N_0 = \max\{i : (I, \xi) \in P \text{ with } \xi \in X_i.\}.
$$

Then by our definition of η and δ , any δ -fine cover of X_N cannot be a cover of $[c_i^{(N)}, d_i^{(N)}]$ for $i = 1, 2, 3, ..., N$, so we have $N_0 > N$.

Subclaim 1. $\sum_{n=1}^{p}$ $i=1$ $f(\xi_i)|I_i| - (HK)$ I_i $\left| f\right|$ $\frac{\epsilon}{\Omega}$ $\frac{1}{2}$.

Let $S_N = \{i : \xi_i \in X_N\}$ and $S_k = \{i : \xi_i \in X_k \setminus X_{k-1}\}$ for each $k > N$. Then it follows from (3.5) to (3.8) that we have

$$
\sum_{i=1}^{p} \left| f(\xi_i) |I_i| - (HK) \int_{I_i} f \right|
$$
\n
$$
\leq \sum_{i \in S_N} \left| f(\xi_i) |I_i| - (HK) \int_{I_i} f \right| + \sum_{k=N+1}^{N_0} \sum_{i \in S_k} \left| f(\xi_i) |I_i| - (HK) \int_{I_i} f \right|
$$
\n
$$
\leq \sum_{i \in S_N} \left| f_N(\xi_i) |I_i| - (L) \int_{I_i} f_N \right| + \sum_{i \in S_N} \left| (L) \int_{I_i} f_N - (HK) \int_{I_i} f \right|
$$
\n
$$
+ \sum_{k=N+1}^{N_0} \sum_{i \in S_k} \left| f_k(\xi_i) |I_i| - (L) \int_{I_i} f_k \right| + \sum_{k=N+1}^{N_0} \sum_{i \in S_k} \left| (L) \int_{I_i} f_k - (HK) \int_{I_i} f \right|
$$
\n
$$
< \frac{\epsilon}{2^{N+2}} + \frac{1}{N^2}
$$
\n
$$
+ \sum_{k=N+1}^{N_0} \sum_{i \in S_k} \left| f_k(\xi) |I_i| - (L) \int_{I_i} f_k \right| + \sum_{k=N+1}^{N_0} \sum_{i \in S_k} \left| (L) \int_{I_i} f_k - (HK) \int_{I_i} f \right|
$$
\n
$$
< \frac{\epsilon}{2^{N+2}} + \frac{1}{N^2} + \sum_{k=N+1}^{N_0} \frac{\epsilon}{2^{k+2}} + \sum_{k=N+1}^{N_0} \frac{1}{k^2} < \frac{\epsilon}{2}.
$$

The next two subclaims will enable us to prove that $\{f_n\}$ is Henstock-Kurzweil equi-integrable on $[a, b]$. **Subclaim 2.** For each $n = 1, 2, ..., N$, we have

$$
\sum_{i=1}^p \left| f_n(\xi_i) |I_i| - (L) \int_{I_i} f_n \right| < \frac{\epsilon}{2^{n+2}}.
$$

By our definition of δ , $(\xi - \delta(\xi), \xi + \delta(\xi)) \subset (a, b) \setminus X_n$ whenever $\xi \notin X_n$, so

$$
\sum_{i=1}^{p} \left| f_n(\xi_i) |I_i| - (L) \int_{I_i} f_n \right|
$$
\n
$$
= \sum_{i:\xi_i \in X_n} \left| f_n(\xi_i) |I_i| - (L) \int_{I_i} f_n \right| + \sum_{i:\xi_i \notin X_n} \left| f_n(\xi_i) |I_i| - (L) \int_{I_i} f_n \right|
$$
\n
$$
= \sum_{i:\xi_i \in X_n} \left| f_n(\xi_i) |I_i| - (L) \int_{I_i} f_n \right| < \frac{\epsilon}{2^{n+2}}.
$$

Subclaim 3. For each integer *n* with $n > N$, $\sum_{n=1}^{p}$ $i=1$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $f_n(\xi_i)|I_i| - |I_i|$ I_i $\left|f_n\right|$ $< \epsilon$. Since $f = f_n$ on X_n , we have

$$
\sum_{i=1}^{p} \left| f_n(\xi_i) |I_i| - (L) \int_{I_i} f_n \right|
$$
\n
$$
= \sum_{i:\xi_i \in X_n} \left| f_n(\xi_i) |I_i| - (L) \int_{I_i} f_n \right| + \sum_{i:\xi_i \notin X_n} \left| f_n(\xi_i) |I_i| - (L) \int_{I_i} f_n \right|
$$
\n
$$
= \sum_{i:\xi_i \in X_n} \left| f_n(\xi_i) |I_i| - (L) \int_{I_i} f_n \right|
$$
\n
$$
= \sum_{i:\xi_i \in X_n} \left| f(\xi_i) |I_i| - (L) \int_{I_i} f_n \right|
$$
\n
$$
\leq \sum_{i:\xi_i \in X_n} \left| f(\xi_i) |I_i| - (HK) \int_{I_i} f \right| + \sum_{i:\xi_i \in X_n} \left| (L) \int_{I_i} f_n - (HK) \int_{I_i} f \right|
$$
\n
$$
< \frac{\epsilon}{2} + \frac{1}{n^2} < \frac{\epsilon}{2} + \sum_{k=N}^{\infty} \frac{1}{k^2} < \epsilon.
$$

From subclaims 2 and 3, we have, for all positive integer n ,

$$
\left|\sum_{i=1}^p f_n(\xi_i) |I_i| - (L) \int_a^b f_n\right| < \epsilon. \qquad \qquad \Box
$$

From the subclaim 1 of the proof of Theorem 3.7 and the measurability of the δ function, we obtain the following corollary, which was proved differently in [6, Theorem 10.3] or [2, Theorem 9.24].

Corollary 3.8 If $f \in HK([a, b])$, then for $\epsilon > 0$, the function δ from the definition of the Henstock-Kurzweil integral can be chosen to be measurable.

Corollary 3.9 If $f \in \mathcal{HK}([a, b])$ with F being its indefinite \mathcal{HK} integral, then there exists a sequence ${F_n}$ of additive interval functions on $\mathcal I$ satisfying the following conditions:

- (i) $V_{\mathcal{HK}}F_n([a, b]) < \infty$ for each n;
- (ii) given that $Z \subset E$ is negligible and $\epsilon > 0$, there exists a gauge δ , independent of n, on Z such that

$$
V(F_n, Z, \delta) < \epsilon \text{ for all } n.
$$

We remark that the proofs of Corollary 3.6, Theorem 3.7 and Corollary 3.9 do not generalize to the higher dimensional interval $E := [a_1, b_1] \times [a_2, b_2] \times$ $\cdots \times [a_m, b_m]$ of \mathbb{R}^m . Indeed, the proof is based on Theorem 3.4, for which no satisfactory analogue in higher dimensions is known. As a result, we have the following conjecture.

Conjecture 1. If the sequence of additive interval functions $\{F_n\}$ satisfies the following condition:

Given that $Z \subset E$ is negligible and $\epsilon > 0$, there exists a gauge δ , independent of n , on Z such that

$$
V(F_n, Z, \delta) < \epsilon \text{ for all } n
$$

then there exists a sequence of functions $\{f_n\}$ on E satisfying the following conditions:

- (i) for each $n = 1, 2, ..., F_n$ is the indefinite $H\mathcal{K}$ -integral of f_n on E ;
- (ii) ${f_n}$ is Henstock-Kurzweil equi-integrable on E.

If we assume that $F_n \equiv F$ for all n, then conjecture 1 turns out to be true. This result was obtained for $m = 1$ in [1], and for $m \ge 1$ in [8].

The proof of Corollary 3.6 is real-line dependent. As a result, it is natural to ask whether the next conjecture is true for $m \geq 2$.

Conjecture 2. If $f \in \mathcal{HK}(E)$, then given $\epsilon_n \downarrow 0$, there exists an increasing sequence $\{X_n\}$ of closed sets satisfying the following conditions:

(i)
$$
\bigcup_{n=1}^{\infty} X_n = E;
$$

- (ii) $f \in \mathcal{L}(X_n)$ for each *n*;
- (iii) for each n, there exists a positive constant η_n such that whenever $\{(I_i, \xi_i)\}_{i=1}^p$ is a η_n -fine partition anchored in X_n , we have

$$
\sum_{i=1}^p \left| (L) \int_{I_i \cap X_n} f - (HK) \int_{I_i} f \right| < \epsilon_n.
$$

Since the proof of Theorem 3.7 depends on Corollary 3.6, it is also natural to ask whether the following analogue of Theorem 3.7 holds if $m \geq 2$.

Conjecture 3. If $f \in \mathcal{HK}(E)$, then there exists an increasing sequence $\{X_n\}$ of closed sets $\{X_n\}$ satisfying the following conditions:

- (i) $X_n \subseteq E$ for all *n*;
- (ii) $Z := E \setminus_{k=1}^{\infty} X_k$ has m-dimensional Lebesgue measure zero;
- (iii) $f \in \mathcal{L}(X_n)$ for each *n*;
- (iv) $\{f\chi_{X_n\cup Z}\}\$ is Henstock-Kurzweil equi-integrable on E.

References

- [1] B. Bongiorno, L. Di Piazza and V. Skvortsov, A new descriptive characterization of Denjoy-Perron integral, Real Anal. Exchange 21 (1995/96), 656–663.
- [2] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, 4, American Mathematical Society, Providence, RI, 1994.
- [3] J. Kurzweil, Henstock-Kurzweil integration, its relation to topological vector spaces, Series in Real Analysis Volume, 7, World Scientific 2000.
- [4] J. Kurzweil and J. Jarník, Equiintegrability and Controlled Convergence of Perron-type integrable functions, Real Anal. Exchange, 17 (1991/92), 110–139.
- [5] Lee Peng Yee and Chew Tuan Seng, A Riesz-type definition of the Denjoy integral, Real Anal. Exchange, 11 (1985/86), 221–227.
- [6] Lee Peng Yee, Lanzhou Lectures on Henstock integration, Series in Real Analysis, 2, World Scientific 1989.

- [7] Lee Peng Yee and Rudolf Výborný, The integral, An Easy Approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series, 14, Cambridge University Press 2000.
- [8] Lee Tuo Yeong, A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space, Proc. London Math. Soc. to appear.
- [9] E. J. McShane, Integration, Princeton University Press, 1944.
- [10] S Nakanishi, A new definition of the Denjoy's special integral by the method of successive approximation, Math. Japonica 41, No. 1 (1995), 217–230.
- [11] W. F. Pfeffer, A note on the Generalized Riemann integral, Proc. Amer. Math. Soc., **103, No. 4** (1988), 1161-1166.
- [12] W. F. Pfeffer, The Lebesgue and Denjoy-Perron integrals from a descriptive point of view, Ricerche Mat. 48 (1999), no. 2, 211–223.
- [13] S. Saks, *Theory of the integral*, 2nd edn, New York, 1964.
- [14] B. S. Thomson, Derivates of Interval Functions, Mem. Amer. Math. Soc. 452, Providence, 1991.