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Abstract

In this paper, we prove that if f is Henstock-Kurzweil integrable on
a compact subinterval [a, b] of the real line, then the following conditions
are satisfied: (i) there exists an increasing sequence {Xn} of closed sets
whose union is [a, b]; (ii) {fχXn

} is a sequence of Lebesgue integrable
functions on [a, b]; (iii) the sequence {fχXn

} is Henstock-Kurzweil equi-
integrable on [a, b]. Subsequently, we deduce that the gauge function
in the definition of the Henstock-Kurzweil integral can be chosen to be
measurable, and an indefinite Henstock-Kurzweil integral generates a
sequence of uniformly absolutely continuous finite variational measures.

1 Introduction

E. J. McShane in [9] developed the Lebesgue integration on an interval I ⊂ Rn

using the monotone convergence of step functions. In dimension one, it is
well-known (see [5] or [6]) that if f is Denjoy-Perron integrable on a com-
pact subinterval [a, b] of the real line R, then it can be defined as a controlled
convergent sequence of step functions. Since the Controlled Convergence The-
orem is equivalent to the equi-integrability theorem (see [4, Theorem 5.4]), it
is natural to ask the following question : given that f is Henstock-Kurzweil
integrable on [a, b], can [a, b] be decomposed into a countable union of closed
sets {Xn} so that for each n, fχ

Xn
is Lebesgue integrable on [a, b], and {fχ

Xn
}

is Henstock-Kurzweil equi-integrable on [a, b]? In this paper, we shall give an
affirmative answer to the above problem (see Theorem 3.7). The importance
of this equi-integrability theorem lies in the construction of a topology J on
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the space HK([a, b]), namely the space of all Henstock-Kurzweil integrable
functions on [a, b], so that the resulting space (HK([a, b]),J ) is complete. See
[3] for more details. Moreover, we deduce that the gauge function in the defi-
nition of the Henstock-Kurzweil integral can be chosen to be measurable, and
an indefinite Henstock-Kurzweil integral generates a sequence of uniformly
absolutely continuous finite variational measures (Corollary 3.9).

2 Preliminaries

Unless stated otherwise, the following conventions and notations will be used.
The set of all real numbers is denoted by R, and the ambient space of this paper
is R with its usual norm. For x ∈ R and r > 0, the open ball B(x, r) is the
open interval centered at x with sides equal to 2r. For a set Z ⊂ R, we denote
by χ

Z
, int(Z), Z and diam(Z) the characteristic function, interior, closure

and diameter of Z, respectively. The expressions “absolutely continuous”,
“measure”, “measurable” refer to the one-dimensional Lebesgue measure µ1.
A set Z ⊂ R is called negligible whenever µ1(Z) = 0. Given two subsets X, Y
of R, we say that X and Y are nonoverlapping if their intersection is negligible.
A function is always real-valued. When no confusion is possible, we do not
distinguish between a function defined on a set Z and its restriction to a set
W ⊂ Z. If Z is a measurable subset of R, L(Z) will denote the space of all
Lebesgue integrable functions on Z. If f ∈ L(Z), the Lebesgue integral of f
over Z will be denoted by (L)

∫
Z

f .
An interval is a compact nondegenerate interval of R, and [a, b] is a fixed

interval. I is the family of all nondegenerate subintervals of [a, b]. If I ∈ I,
we shall write µ1(I) as |I|. A function F defined on I is said to be additive
if F (I ∪ J) = F (I) + F (J) for each nonoverlapping intervals I, J ∈ I with
I ∪ J ∈ I.

A partition is a collection P = {(Ii, ξi)}p
i=1, where I1, I2, . . . , Ip are nonover-

lapping intervals, and ξi ∈ Ii for i = 1, 2, . . . , p. Given Z ⊆ [a, b], a positive
function δ on Z is called a gauge on Z. We say that a partition is

(i) a partition in Z if
p⋃

i=1

Ii ⊂ Z;

(ii) a partition of Z if
p⋃

i=1

Ii = Z;

(iii) anchored in Z if {ξ1, ξ2, . . . , ξp} ⊂ Z;

(iv) δ-fine if Ii ⊂ B(ξi, δ(ξi)) for each i = 1, 2, . . . , p.
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In view of the Cousin’s lemma [7, Theorem 2.3.1], the following definition
is meaningful.

Definition 2.1. A function f : [a, b] −→ R is said to be Henstock-Kurzweil
integrable if there exists A ∈ R such that for any given ε > 0, there exists a
gauge δ on [a, b] such that ∣∣∣∣∣

p∑
i=1

f(ξi) |Ii| −A

∣∣∣∣∣ < ε (2.1)

for each δ-fine partition {(Ii, ξi)}p
i=1 of [a, b]. Here A is called the Henstock-

Kurzweil integral of f over [a, b], and we write A = (HK)
∫ b

a
f . If [a, b] = E,

we also write A as (HK)
∫

E
f .

Remark 2.2. (a) The linear space of all Henstock-Kurzweil integrable func-
tions on [a, b] is denoted by HK([a, b]).

(b) It follows from [7, Theorem 2.5.14] that if f ∈ HK([a, b]), then f ∈ HK(J)
for each subinterval J of [a, b]. The interval function F : J 7→ (HK)

∫
J

f is
known as the indefinite Henstock-Kurzweil integral, or in short the indefi-
nite HK-integral, of f . By [7, Theorem 2.5.12], F is an additive interval
function on I.

(c) By [7, Theorem 3.13.3], we see that L([a, b]) ⊂ HK([a, b]). Furthermore,
(L)

∫ b

a
f = (HK)

∫ b

a
f for each f ∈ L([a, b]).

(d) If f is a nonnegative, Henstock-Kurzweil integrable on [a, b], then it follows
from [7, Theorem 3.13.3] that f ∈ L([a, b]).

We have the following important Saks-Henstock Lemma [7, Theorem 3.2.1].

Theorem 2.3. (Saks-Henstock). If F is the indefinite HK-integral of a func-
tion f on [a, b], then for ε > 0, there exists a gauge δ on [a, b] such that for any
δ-fine partition {(Ii, ξi)}p

i=1 in [a, b], we have
∑p

i=1 |f(ξi) |Ii| − F (Ii)| < ε.

If F is the indefinite HK-integral of a function f on [a, b] , then it follows
from Saks-Henstock Lemma and [7, p.81−82] that F is continuous in the
sense that F (I) → 0 as the measure of the interval I tends to zero. Thus, the
space HK([a, b]) of all Henstock-Kurzweil integrable functions on [a, b] may
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be equipped with the Alexiewicz norm ‖ · ‖, where ‖f‖ = sup
{ ∣∣(HK)

∫
I
f
∣∣ }

where the supremum is taken over all subintervals I of [a, b].
Denoting the ordinary derivative of F at x ∈ [a, b] by F ′(x), an application

of the Vitali covering theorem [13, p.109] that F ′(x) exists for almost all
x ∈ [a, b] with F ′ = f almost everywhere. In particular, the measurability of
f follows easily.

Let F be an interval function on I, and X be an arbitrary subset of [a, b].

If δ is a gauge on X, we set V (F,X, δ) := sup
P

p∑
i=1

|F (Ii)| where the supremum

is taken over all δ-fine partitions P = {(Ii, ξi)}p
i=1 anchored in X.

We put VHKF (X) := infδ V (F,X, δ) where the infimum is taken over all
gauges δ on X. Then, the extended real-valued set function VHKF (·) has the
property that VHKF is a metric outer measure. See, for example, [14].

The following Radon-Nikodym Theorem holds for the Henstock-Kurzweil
integral.

Theorem 2.4. If f ∈ HK([a, b]) with F being its indefinite HK integral, then

VHKF (X) = (L)
∫

X

|f |

for each measurable subset X of [a, b].

Proof. This follows from [12, Theorem 8] and [12, Proposition 10].

3 Main Results

The first theorem is essentially a reformulation of [6, Lemma 15.5] and [6,
Lemma 6.18], whose proofs depend on the theory of Denjoy-Perron integration.
We shall prove it without reference to the theory of Denjoy-Perron integration
[13].

Theorem 3.1. If f ∈ HK([a, b]), then there exists an increasing sequence
{Yn} of closed sets that satisfies the following conditions:

(a)
∞
∪

n=1
Yn = [a, b];

(b) f ∈ L(Yn) for each n ∈ Z+;

(c) the series
∞∑

k=1

‖fχ
[c(n)

k
,d

(n)
k

]
‖ converges, where {[c(n)

k , d
(n)
k ]} is the collection

of subintervals of [a, b] contiguous to Yn.
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Proof. Let F denotes the indefinite Henstock-Kurzweil integral of f on [a, b].
By Theorem 2.3, for ε = 1, there exists a gauge δ on [a, b] such that for any
δ-fine partition {(Ii, ξi)}p

i=1 in [a, b], we have

p∑
i=1

|f(ξi) |Ii| − F (Ii)| < 1. (3.1)

For each positive integer n, we put

Yn = {x ∈ [a, b] : |f(x)| < n and δ(x) >
1
n
}.

Since f is real-valued and δ is strictly positive on [a, b], it is clear that (a)
holds.

In order to prove (b), given any positive integer n, we choose a 1
n -fine

partition {([ui, vi], ξi)}p
i=1 anchored in Yn. We distinguish the following cases:

(i) If ξi ∈ (ui, vi) or ξi = ui = a or ξi = vi = b for some i ∈ {1, 2, . . . , p}, we
choose xi ∈ {x ∈ [a, b] : |f(x)| < n and δ(x) > 1

n} ∩ (ui, vi);

(ii) If a < ui = ξi for some i ∈ {1, 2, . . . , p}, we choose yi ∈ (ui, vi) and
xi ∈ {x ∈ [a, b] : |f(x)| < n and δ(x) > 1

n} so that ui ∈ (xi, yi) and the
sequence of intervals {[xi, yi]}p

i=1 are pairwise disjoint with

|F ([ui, vi])− F ([xi, yi])| <
1
p
.

(iii) If vi = ξi < b for some i = 1, 2, . . . , p, we choose xi ∈ (ui, vi) and
yi ∈ {x ∈ [a, b] : |f(x)| < n and δ(x) > 1

n} so that vi ∈ (xi, yi) and the
sequence of intervals {[xi, yi]}p

i=1 are pairwise disjoint with

|F ([ui, vi])− F ([xi, yi])| <
1
p
.

Put

T1 = {i ∈ {1, 2, . . . , p} : ξi ∈ (ui, vi) or ξi = ui = a or ξi = vi = b}.
T2 = {i ∈ {1, 2, . . . , p} : a < ui = ξi}.
T3 = {i ∈ {1, 2, . . . , p} : vi = ξi < b}.
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Then it follows from (i), (ii), (iii) and (3.1) that

p∑
i=1

|F ([ui, vi])| =
3∑

j=1

∑
i∈Tj

|F ([ui, vi])|

<
∑
i∈T1

|F ([ui, vi])|+
∑
i∈T2

|F ([xi, yi])|+ 1 +
∑
i∈T3

|F ([xi, yi])|+ 1

<n(b− a) + 1 + n(b− a) + 1 + 1 + n(b− a) + 1 + 1

proving that

V (F, Yn,
1
n

) ≤ 3n(b− a) + 5. (3.2)

Since VHKF (Yn) ≤ V (F, Yn, 1
n ), (b) follows from (3.2) and Theorem 2.4.

In order to prove (c), it suffices to observe that there exists a positive
integer N such that

∞∑
k=N

(d(n)
k − c

(n)
k ) < 1 and

∞∑
k=N

‖fχ
[c(n)

k
,d

(n)
k

]
‖ ≤ 2V (F, Yn,

1
n

) < ∞.

The next theorem is the Harnack extension for the Henstock-Kurzweil in-
tegral.

Theorem 3.2. [2, Theorem 9.22] Let X be a closed subset of [a, b] with
{[ck, dk]} being the collection of subintervals of [a, b] contiguous to X. Suppose
the following conditions are satisfied :

(a) fχ
X
∈ HK([a, b]);

(b) f ∈ HK([ck, dk]) for each positive integer k;

(c) the series
∞∑

k=1

‖fχ[ck,dk]‖ converges;

then f ∈ HK([a, b]) and the equality

(HK)
∫ d

c

f = (HK)
∫ d

c

fχ
X

+
∞∑

k=1

(HK)
∫ dk

ck

fχ[c,d]

holds for each subinterval [c, d] of [a, b].
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Lemma 3.3. Let X be a closed subset of [a, b] with {[ck, dk]} being the collec-
tion of subintervals of [a, b] contiguous to X. Suppose the following conditions
are satisfied :

(i) f ∈ HK([a, b]);

(ii) fχ
X
∈ HK([a, b]);

(iii) the series
∞∑

k=1

‖fχ[ck,dk]‖ converges;

(iv) {[ui, vi]}q
i=1 ⊂ [a, b] is a finite sequence of nonoverlapping intervals sat-

isfying the condition that at least one of the endpoints of each [ui, vi]
belongs to X.

Then

q∑
i=1

∣∣∣∣(HK)
∫ vi

ui

(f − fχ
X

)
∣∣∣∣ ≤ N∑

k=1

q∑
i=1

∣∣∣∣(HK)
∫ vi

ui

fχ[ck,dk]

∣∣∣∣+2
∞∑

k=N+1

‖fχ[ck,dk]‖

for each N ∈ Z+.

Proof. By (i), f ∈ HK([ck, dk]) for each positive integer k. In view of (ii),
(iii) and Theorem 3.2, we have (HK)

∫ vi

ui
(f−fχ

X
) =

∑∞
k=1(HK)

∫ dk

ck
fχ[ui,vi]

for each i = 1, 2, . . . , q. Thus, we have

∣∣∣∣(HK)
∫ vi

ui

(f − fχ
X

)
∣∣∣∣

≤
∞∑

k=1

∣∣∣∣∣(HK)
∫ dk

ck

fχ[ui,vi]

∣∣∣∣∣
≤

N∑
k=1

∣∣∣∣∣(HK)
∫ dk

ck

fχ[ui,vi]

∣∣∣∣∣ +
∞∑

k=N+1

∣∣∣∣∣(HK)
∫ dk

ck

fχ[ui,vi]

∣∣∣∣∣
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giving

q∑
i=1

∣∣∣∣(HK)
∫ vi

ui

(f − fχ
X

)
∣∣∣∣

≤
N∑

k=1

q∑
i=1

∣∣∣∣∣(HK)
∫ dk

ck

fχ[ui,vi]

∣∣∣∣∣ +
∞∑

k=N+1

q∑
i=1

∣∣∣∣∣(HK)
∫ dk

ck

fχ[ui,vi]

∣∣∣∣∣
≤

N∑
k=1

q∑
i=1

∣∣∣∣(HK)
∫ vi

ui

fχ[ck,dk]

∣∣∣∣ + 2
∞∑

k=N+1

‖fχ[ck,dk]‖

by (iv), since each interval [ck, dk] can intersect with at most two intervals
belonging to the set {[ui, vi]}q

i=1.

Theorem 3.4. Let X be a closed subset of [a, b] with {[ck, dk]} being the collec-
tion of subintervals of [a, b] contiguous to X. Suppose the following conditions
are satisfied:

(i) f ∈ HK([a, b]);

(ii) fχ
X
∈ HK([a, b]);

(iii) the series
∞∑

k=1

‖fχ[ck,dk]‖ converges;

then given ε > 0, there exists a constant gauge δ on X such that for any δ-fine
partition {([ui, vi], ξi)}p

i=1 anchored in X, we have

p∑
i=1

∣∣∣∣(HK)
∫ vi

ui

fχ
X
− (HK)

∫ vi

ui

f

∣∣∣∣ < ε.

Proof. By (iii), for ε > 0, there exists N ∈ Z+ such that

∞∑
k=N+1

‖fχ[ck,dk]‖ <
ε

4
. (3.3)

By (i), f ∈ HK([ck, dk]) for each k. Since f ∈ HK([ci, di]) for each i =
1, 2, . . . , N , it follows from the continuity of indefinite HK-integral that there
exists ηi > 0 such that whenever [u, v] ⊆ [ci, di] satisfying v − u < ηi, we have∣∣∣∣(HK)

∫ v

u

f

∣∣∣∣ <
ε

4N
. (3.4)
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Define a constant gauge δ on [a, b] by δ = mini=1,2,...,N ηi. An application of
Lemma 3.3, (3.3) and (3.4) shows that for any δ-fine partition P = {(Ii, ξi)}p

i=1

anchored in X, we have

p∑
i=1

∣∣∣∣(HK)
∫ vi

ui

(f − fχ
X

)
∣∣∣∣

≤
N∑

k=1

p∑
i=1

∣∣∣∣(HK)
∫ vi

ui

fχ[ck,dk]

∣∣∣∣ + 2
∞∑

k=N+1

‖fχ[ck,dk]‖

<2N
ε

4N
+ 2

ε

4
= ε.

In what follows, we shall write a decreasing null sequence of positive num-
bers {εn} as εn ↓ 0.

Theorem 3.5. If f ∈ HK([a, b]), then for εn ↓ 0, there exists an increasing
sequence {Xn} of closed sets such that

(i)
∞
∪

n=1
Xn = [a, b];

(ii) f ∈ L(Xn) for each n ∈ Z+;

(iii) for each positive integer n, there exists a partition Pn = {(Ii, ξi)}p
i=1 of

[a, b] such that the inequality

p∑
i=1

∑
J⊆Ii

∣∣∣∣(L)
∫

J∩Xn

f − (HK)
∫

J

f

∣∣∣∣ < εn

holds whenever {J} is a finite sequence of non-overlapping subintervals
of [a, b] satisfying J ∩Xn 6= ∅ for all n.

Proof. Since εn ↓ 0, we may assume that εn = 1
n . Since f is Henstock-

Kurzweil integrable on [a, b], there exists an increasing sequence {Yk} of closed
sets satisfying all the conditions of Theorem 3.1. By Theorem 3.4, for each
k ∈ Z+, there exists a constant gauge δ′k on Yk such that for any δ′k-fine
partition {(Ii, ξi)}q

i=1 anchored in Yk, we have

q∑
i=1

∣∣∣∣(L)
∫

Ii∩Yk

f − (HK)
∫

Ii

f

∣∣∣∣ <
1
k

.

Next, we want to choose {Xn} from {Yk} so that the required properties hold.
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Let p(n, k) = 2kn. Define a gauge δn on [a, b] by

δn(ξ) =


δp(n,1)′(ξ) if ξ ∈ Yp(n,1),

min{δ′p(n,k),dist(ξ, Yp(n,k−1))} if ξ ∈ Yp(n,k) \ Yp(n,k−1)

for some k ≥ 2.

Since δn-fine partitions of [a, b] exist, we may fix a δn-fine partition Pn =
{(Ii, ξi)}p

i=1 of [a, b]. For simplicity, we put

Q1 = Yp(n,1) and Qk = Yp(n,k) \ Yp(n,k−1) for k ≥ 2.

Next, we put

Xn =
∞⋃

k=1

{I ∩ Yp(n,k) : (I, ξ) ∈ Pn with ξ ∈ Qk}.

The above union is a finite one because Pn only has finitely many terms. Thus
Xn is closed as each Yk is closed.

Define k(n) = max{k : (I, ξ) ∈ Pn and ξ ∈ Qk}. Since {Yk} is an
increasing sequence of closed sets whose union is [a, b], we have Yp(n,k(n)) ⊇ Xn.
By the definition of δn and the compactness of Yp(n,1), the δn-fine partition
Pn = {(Ii, ξi)}p

i=1 must cover Yp(n,1). Hence Yp(n,1) ⊆ Xn. Thus, we have
Yp(n,1) ⊆ Xn ⊆ Yp(n,k(n)) and f ∈ L(Xn) because Xn is measurable. Observe
also that if (I, ξ) ∈ Pn with ξ ∈ Qk for some positive integer k, then I ∩
Xn = I ∩ Yp(n,k). Note that each (I, ξ) ∈ Pn may have its associated points ξ
belonging to Q1 only. Without loss of generality, we may suppose that each
(I, ξ) ∈ Pn has its associated point ξ belongs to Qs1 , Qs2 , . . . , Qsl

for some
positive integers s1 < s2 < · · · < sl with s1 = 1. Let {J} be a finite sequence
of non-overlapping subintervals of [a, b] with J ⊆ Ii for some i = 1, 2, . . . , p,
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and J ∩Xn 6= ∅. Then we have

p∑
i=1

∑
J⊆Ii

∣∣∣∣(L)
∫

J∩Xn

f − (HK)
∫

J

f

∣∣∣∣
=

p∑
i=1

l∑
k=1

∑
J⊆Ii:ξi∈Ii∩Qsk

∣∣∣∣(L)
∫

J∩Xn

f − (HK)
∫

J

f

∣∣∣∣
=

p∑
i=1

l∑
k=1

∑
J⊆Ii:ξi∈Ii∩Qsk

∣∣∣∣∣(L)
∫

J∩Yp(n,sk)

f − (HK)
∫

J

f

∣∣∣∣∣
=

l∑
k=1

p∑
i=1

∑
J⊆Ii:ξi∈Ii∩Qsk

∣∣∣∣∣(L)
∫

J∩Yp(n,sk)

f − (HK)
∫

J

f

∣∣∣∣∣
<

l∑
k=1

1
n2sk

<
1
n

.

It is easy to see that there exists an increasing subsequence of {Xn}, de-

noted again by {Xn}, such that
∞⋃

n=1
Xn = [a, b].

Corollary 3.6. [10, Theorem 2] If f ∈ HK([a, b]), then the following condition
is satisfied: Given εn ↓ 0, there exists a sequence {Xn} of closed sets in [a, b]
such that:

(i) a, b ∈ X1, Xn ⊆ Xn+1 for all n and
∞
∪

n=1
Xn = [a, b];

(ii) f ∈ L(Xn) for each n;

(iii) for each positive integer n, if a finite sequence {Ii}q
i=1

of non-overlapping
intervals contained in [a, b] satisfies the condition that at least one of the
endpoints of each Ii belong to Xn, then we have

q∑
i=1

∣∣∣∣(L)
∫

Ii∩Xn

f − (HK)
∫

Ii

f

∣∣∣∣ < εn.

Theorem 3.7. If f ∈ HK([a, b]), then there exists an increasing sequence
{Xn} of closed sets whose union is [a, b], {fχ

Xn
} ⊂ L([a, b]) and {fχ

Xn
}

satisfies the following conditions:

(i) fχ
Xn

→ f everywhere on [a, b];
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(ii) for ε > 0, there exists a measurable gauge δ, independent of n, on [a, b]
such that for every δ-fine partition P = {(Ii, ξi)}p

i=1 of [a, b], we have∣∣∣∣∣
p∑

i=1

f(ξi)χXn
(ξi) |Ii| − (L)

∫ b

a

fχ
Xn

∣∣∣∣∣ < ε

for all n ∈ Z+. In particular, {fχ
Xn
} is Henstock-Kurzweil equi-integrable

on E.

Proof. By Corollary 3.6, we choose {Xk} corresponding to εk = 1
k2 and put

fk = fχ
Xk

for k ∈ Z+. An application of [11, Proposition 4] and [11, Lemma
7(iii)] shows that for ε > 0, there exists a measurable gauge δk on [a, b] such
that for any δk-fine partition P1 = {(Ii, ξi)}p1

i=1 in [a, b], we have

p1∑
i=1

∣∣∣∣fk(ξi) |Ii| −
∫

Ii

fk

∣∣∣∣ <
ε

2k+2
. (3.5)

We may also assume that for each x ∈ [a, b], the sequence {δk(x)} is non-
increasing. Choose a positive integer N ≥ 2 such that

∞∑
k=N

1
k2

<
ε

4
. (3.6)

Let {[c(N)
i , d

(N)
i ]} be the sequence of subintervals of [a, b] contiguous to XN

and put η = 1
4 min

1≤i≤N

∣∣∣d(N)
i − c

(N)
i

∣∣∣.
Define a gauge δ on [a, b] by

δ(ξ) =


min{δN (ξ), η} if ξ ∈ X1,

min{δN (ξ), η} if ξ ∈ X1,

min{δN (ξ),dist(ξ, Xk−1, ), η} if ξ ∈ Xk \Xk−1 for some 2 ≤ k ≤ N,

min{δk(ξ),dist(ξ, Xk−1), η} if ξ ∈ Xk \Xk−1 for some k > N.

Then δ is a measurable gauge on [a, b] with

δ(ξ) ≤ δN (ξ) for each ξ ∈ XN (3.7)

and
δ(ξ) ≤ δk(ξ)if ξ ∈ Xk \Xk−1 for some k > N. (3.8)
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Claim. The sequence {fn} is Henstock-Kurzweil equi-integrable with this
function δ. Given a δ-fine partition P = {(Ii, ξi)}p

i=1 of [a, b], we put

N0 = max{i : (I, ξ) ∈ P with ξ ∈ Xi.}.

Then by our definition of η and δ, any δ-fine cover of XN cannot be a cover
of [c(N)

i , d
(N)
i ] for i = 1, 2, 3, . . . , N , so we have N0 > N .

Subclaim 1.
p∑

i=1

∣∣∣∣f(ξi) |Ii| − (HK)
∫

Ii

f

∣∣∣∣ <
ε

2
.

Let SN = {i : ξi ∈ XN} and Sk = {i : ξi ∈ Xk\Xk−1} for each k > N .
Then it follows from (3.5) to (3.8) that we have

p∑
i=1

∣∣∣∣f(ξi) |Ii| − (HK)
∫

Ii

f

∣∣∣∣
≤

∑
i∈SN

∣∣∣∣f(ξi) |Ii| − (HK)
∫

Ii

f

∣∣∣∣ +
N0∑

k=N+1

∑
i∈Sk

∣∣∣∣f(ξi) |Ii| − (HK)
∫

Ii

f

∣∣∣∣
≤

∑
i∈SN

∣∣∣∣fN (ξi) |Ii| − (L)
∫

Ii

fN

∣∣∣∣ +
∑

i∈SN

∣∣∣∣(L)
∫

Ii

fN − (HK)
∫

Ii

f

∣∣∣∣
+

N0∑
k=N+1

∑
i∈Sk

∣∣∣∣fk(ξi) |Ii| − (L)
∫

Ii

fk

∣∣∣∣ +
N0∑

k=N+1

∑
i∈Sk

∣∣∣∣(L)
∫

Ii

fk − (HK)
∫

Ii

f

∣∣∣∣
<

ε

2N+2
+

1
N2

+
N0∑

k=N+1

∑
i∈Sk

∣∣∣∣fk(ξ) |Ii| − (L)
∫

Ii

fk

∣∣∣∣ +
N0∑

k=N+1

∑
i∈Sk

∣∣∣∣(L)
∫

Ii

fk − (HK)
∫

Ii

f

∣∣∣∣
<

ε

2N+2
+

1
N2

+
N0∑

k=N+1

ε

2k+2
+

N0∑
k=N+1

1
k2

<
ε

2
.

The next two subclaims will enable us to prove that {fn} is Henstock-
Kurzweil equi-integrable on [a, b].
Subclaim 2. For each n = 1, 2, . . . , N , we have

p∑
i=1

∣∣∣∣fn(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣ <
ε

2n+2
.
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By our definition of δ, (ξ− δ(ξ), ξ + δ(ξ)) ⊂ (a, b)\Xn whenever ξ 6∈ Xn, so

p∑
i=1

∣∣∣∣fn(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣
=

∑
i:ξi∈Xn

∣∣∣∣fn(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣ +
∑

i:ξi 6∈Xn

∣∣∣∣fn(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣
=

∑
i:ξi∈Xn

∣∣∣∣fn(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣ <
ε

2n+2
.

Subclaim 3. For each integer n with n > N ,
p∑

i=1

∣∣∣∣fn(ξi) |Ii| −
∫

Ii

fn

∣∣∣∣ < ε.

Since f = fn on Xn, we have

p∑
i=1

∣∣∣∣fn(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣
=

∑
i:ξi∈Xn

∣∣∣∣fn(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣ +
∑

i:ξi 6∈Xn

∣∣∣∣fn(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣
=

∑
i:ξi∈Xn

∣∣∣∣fn(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣
=

∑
i:ξi∈Xn

∣∣∣∣f(ξi) |Ii| − (L)
∫

Ii

fn

∣∣∣∣
≤

∑
i:ξi∈Xn

∣∣∣∣f(ξi) |Ii| − (HK)
∫

Ii

f

∣∣∣∣ +
∑

i:ξi∈Xn

∣∣∣∣(L)
∫

Ii

fn − (HK)
∫

Ii

f

∣∣∣∣
<

ε

2
+

1
n2

<
ε

2
+

∞∑
k=N

1
k2

< ε.

From subclaims 2 and 3, we have, for all positive integer n,∣∣∣∣∣
p∑

i=1

fn(ξi) |Ii| − (L)
∫ b

a

fn

∣∣∣∣∣ < ε.

From the subclaim 1 of the proof of Theorem 3.7 and the measurability of
the δ function, we obtain the following corollary, which was proved differently
in [6, Theorem 10.3] or [2, Theorem 9.24].
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Corollary 3.8 If f ∈ HK([a, b]), then for ε > 0, the function δ from the
definition of the Henstock-Kurzweil integral can be chosen to be measurable.

Corollary 3.9 If f ∈ HK([a, b]) with F being its indefinite HK integral, then
there exists a sequence {Fn} of additive interval functions on I satisfying the
following conditions:

(i) VHKFn([a, b]) < ∞ for each n;

(ii) given that Z ⊂ E is negligible and ε > 0, there exists a gauge δ, inde-
pendent of n, on Z such that

V (Fn, Z, δ) < ε for all n.

We remark that the proofs of Corollary 3.6, Theorem 3.7 and Corollary 3.9
do not generalize to the higher dimensional interval E := [a1, b1] × [a2, b2] ×
· · · × [am, bm] of Rm. Indeed, the proof is based on Theorem 3.4, for which no
satisfactory analogue in higher dimensions is known. As a result, we have the
following conjecture.

Conjecture 1. If the sequence of additive interval functions {Fn} satisfies
the following condition:

Given that Z ⊂ E is negligible and ε > 0, there exists a gauge δ, inde-
pendent of n, on Z such that

V (Fn, Z, δ) < ε for all n

then there exists a sequence of functions {fn} on E satisfying the following
conditions:

(i) for each n = 1, 2, . . . , Fn is the indefinite HK-integral of fn on E;

(ii) {fn} is Henstock-Kurzweil equi-integrable on E.

If we assume that Fn ≡ F for all n, then conjecture 1 turns out to be true.
This result was obtained for m = 1 in [1], and for m ≥ 1 in [8].

The proof of Corollary 3.6 is real-line dependent. As a result, it is natural
to ask whether the next conjecture is true for m ≥ 2.

Conjecture 2. If f ∈ HK(E), then given εn ↓ 0, there exists an increasing
sequence {Xn} of closed sets satisfying the following conditions:

(i)
∞
∪

n=1
Xn = E;
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(ii) f ∈ L(Xn) for each n;

(iii) for each n, there exists a positive constant ηn such that whenever {(Ii, ξi)}p
i=1

is a ηn-fine partition anchored in Xn, we have

p∑
i=1

∣∣∣∣(L)
∫

Ii∩Xn

f − (HK)
∫

Ii

f

∣∣∣∣ < εn.

Since the proof of Theorem 3.7 depends on Corollary 3.6, it is also natural
to ask whether the following analogue of Theorem 3.7 holds if m ≥ 2.

Conjecture 3. If f ∈ HK(E), then there exists an increasing sequence {Xn}
of closed sets {Xn} satisfying the following conditions:

(i) Xn ⊆ E for all n;

(ii) Z := E\
∞
∪

k=1
Xk has m-dimensional Lebesgue measure zero;

(iii) f ∈ L(Xn) for each n;

(iv) {fχ
Xn∪Z

} is Henstock-Kurzweil equi-integrable on E.
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