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Abstract

In this paper, we prove that if f is Henstock-Kurzweil integrable on
a compact subinterval [a, b] of the real line, then the following conditions
are satisfied: (i) there exists an increasing sequence {X,} of closed sets
whose union is [a,b]; (ii) {fxx, } is a sequence of Lebesgue integrable
functions on [a, b]; (iii) the sequence {fx } is Henstock-Kurzweil equi-
integrable on [a,b]. Subsequently, we deduce that the gauge function
in the definition of the Henstock-Kurzweil integral can be chosen to be
measurable, and an indefinite Henstock-Kurzweil integral generates a
sequence of uniformly absolutely continuous finite variational measures.

1 Introduction

E. J. McShane in [9] developed the Lebesgue integration on an interval I C R™
using the monotone convergence of step functions. In dimension one, it is
well-known (see [5] or [6]) that if f is Denjoy-Perron integrable on a com-
pact subinterval [a, b] of the real line R, then it can be defined as a controlled
convergent sequence of step functions. Since the Controlled Convergence The-
orem is equivalent to the equi-integrability theorem (see [4, Theorem 5.4]), it
is natural to ask the following question : given that f is Henstock-Kurzweil
integrable on [a, b], can [a, b] be decomposed into a countable union of closed
sets { X, } so that for each n, fx, is Lebesgue integrable on [a, b], and {fx ., }
is Henstock-Kurzweil equi-integrable on [a,b]? In this paper, we shall give an
affirmative answer to the above problem (see Theorem 3.7). The importance
of this equi-integrability theorem lies in the construction of a topology J on
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the space HK([a,b]), namely the space of all Henstock-Kurzweil integrable
functions on [a, b], so that the resulting space (HK([a,b]), J) is complete. See
[3] for more details. Moreover, we deduce that the gauge function in the defi-
nition of the Henstock-Kurzweil integral can be chosen to be measurable, and
an indefinite Henstock-Kurzweil integral generates a sequence of uniformly
absolutely continuous finite variational measures (Corollary 3.9).

2 Preliminaries

Unless stated otherwise, the following conventions and notations will be used.
The set of all real numbers is denoted by R, and the ambient space of this paper
is R with its usual norm. For z € R and r > 0, the open ball B(z,r) is the
open interval centered at x with sides equal to 2r. For a set Z C R, we denote
by x,, int(Z), Z and diam(Z) the characteristic function, interior, closure
and diameter of Z, respectively. The expressions “absolutely continuous”,
“measure”, “measurable” refer to the one-dimensional Lebesgue measure p.
A set Z C R is called negligible whenever p1(Z) = 0. Given two subsets X, Y
of R, we say that X and Y are nonoverlapping if their intersection is negligible.
A function is always real-valued. When no confusion is possible, we do not
distinguish between a function defined on a set Z and its restriction to a set
W C Z. If Z is a measurable subset of R, £(Z) will denote the space of all
Lebesgue integrable functions on Z. If f € L£(Z), the Lebesgue integral of f
over Z will be denoted by (L) [, f.

An interval is a compact nondegenerate interval of R, and [a, b] is a fixed
interval. 7 is the family of all nondegenerate subintervals of [a,b]. If T € Z,
we shall write p(I) as |I|. A function F defined on 7 is said to be additive
if F(IUJ) = F(I)+ F(J) for each nonoverlapping intervals I,.J € Z with
T1uJel.

A partitionis a collection P = {(I;,&)}_,, where I1, I, . . ., I, are nonover-
lapping intervals, and & € I; for i = 1,2,...,p. Given Z C [a,b], a positive
function § on Z is called a gauge on Z. We say that a partition is

»
(i) a partition in Z if |JI; C Z;
=1

1=

p
(ii) a partition of Z if | I; = Z;
i=1

1=

(iii) anchoredin Z if {&1,862,...,&,} C Z;

(iv) 0-fineif I; C B(&,d(&)) for each i =1,2,...,p.
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In view of the Cousin’s lemma [7, Theorem 2.3.1], the following definition
is meaningful.

Definition 2.1. A function f : [a,b] — R is said to be Henstock-Kurzweil
integrable if there exists A € R such that for any given ¢ > 0, there exists a
gauge ¢ on [a, b] such that

P

D> FE) L - A

=1

<€ (2.1)

for each d-fine partition {(I;,&;)}7_; of [a,b]. Here A is called the Henstock-
Kurzweil integral of f over [a,b], and we write A = (HK) fab f. If [a,b] = E,
we also write A as (HK) [, f.

Remark 2.2. (a) The linear space of all Henstock-Kurzweil integrable func-
tions on [a, b] is denoted by HIX([a, b]).

(b) It follows from [7, Theorem 2.5.14] that if f € HK([a,b]), then f € HI(J)
for each subinterval J of [a, b]. The interval function F': J — (HK) [, f is
known as the indefinite Henstock-Kurzweil integral, or in short the indefi-
nite HK-integral, of f. By [7, Theorem 2.5.12], F' is an additive interval
function on Z.

(¢) By [7, Theorem 3.13.3], we see that L([a,b]) C HK([a,b]). Furthermore,
(L) [P f = (HK) [ f for each f € L([a,b]).

(d) If f is a nonnegative, Henstock-Kurzweil integrable on [a, b], then it follows
from [7, Theorem 3.13.3] that f € L([a,b]).

We have the following important Saks-Henstock Lemma [7, Theorem 3.2.1].

Theorem 2.3. (Saks-Henstock). If F is the indefinite HK-integral of a func-
tion f on [a,b], then for e > 0, there exists a gauge & on [a,b] such that for any
§-fine partition {(1;,&)}_, in [a,b], we have Y0 |f(&) L] — F(L;)| < e.

If F is the indefinite HA-integral of a function f on [a,d] , then it follows
from Saks-Henstock Lemma and [7, p.81—82] that F is continuous in the
sense that F'(I) — 0 as the measure of the interval I tends to zero. Thus, the
space HK([a,b]) of all Henstock-Kurzweil integrable functions on [a,b] may
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be equipped with the Alexiewicz norm || - ||, where || f[| = sup { [(HK) [, f| }
where the supremum is taken over all subintervals I of [a, D].

Denoting the ordinary derivative of F at x € [a, b] by F’(x), an application
of the Vitali covering theorem [13, p.109] that F’(x) exists for almost all
x € [a,b] with F' = f almost everywhere. In particular, the measurability of
f follows easily.

Let F be an interval function on Z, and X be an arbitrary subset of [a, b].

P
If § is a gauge on X, we set V(F, X, 4) := supz |F'(I;)| where the supremum
L
is taken over all d-fine partitions P = {(I;,&;)}}_; anchored in X.
We put Vi F(X) := infs V(F, X,0) where the infimum is taken over all
gauges 0 on X. Then, the extended real-valued set function Vi F () has the
property that Vi F is a metric outer measure. See, for example, [14].

The following Radon-Nikodym Theorem holds for the Henstock-Kurzweil
integral.

Theorem 2.4. If f € HK([a,b]) with F being its indefinite HK integral, then

vmnmzwﬁm

for each measurable subset X of [a,b).

PRrROOF. This follows from [12, Theorem 8] and [12, Proposition 10]. O

3 Main Results

The first theorem is essentially a reformulation of [6, Lemma 15.5] and [6,
Lemma 6.18], whose proofs depend on the theory of Denjoy-Perron integration.
We shall prove it without reference to the theory of Denjoy-Perron integration
[13].

Theorem 3.1. If f € HK([a,b]), then there exists an increasing sequence
{Y,.} of closed sets that satisfies the following conditions:

(a) U Y= [ab;

(b) f e L(Y,) for eachn € Z*;

(c) the series kijlnfx[ﬂgf)»di")] | converges, where {[c](g”)7 dl(ﬂn)]} is the collection

of subintervals of [a,b] contiguous to Y,,.
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PROOF. Let F denotes the indefinite Henstock-Kurzweil integral of f on [a, b].
By Theorem 2.3, for € = 1, there exists a gauge § on [a,b] such that for any
d-fine partition {(I;,&;)}_; in [a,b], we have

Z |£(&) | L] — F(L)| < L. (3.1)

For each positive integer n, we put

Y, ={z €la,b]:|f(z)] <nand d(z) > %}

Since f is real-valued and ¢ is strictly positive on [a,b], it is clear that (a)
holds.

In order to prove (b), given any positive integer n, we choose a %—ﬁne
partition {([u;, vi],&)}:_; anchored in Y;,. We distinguish the following cases:

(i) & € (ug,v;) or & =u; =aor & =v; =bfor some i € {1,2,...,p}, we
choose z; € {z € [a,b] : |f(x)| <n and 6(z) > L} N (ug, v;);

(ii) If a < u; = &; for some i € {1,2,...,p}, we choose y; € (u;,v;) and

z; € {x €[a,b] : |f(x)| <nand §(z) > L} so that u; € (z;,y;) and the
sequence of intervals {[z;,y;]}¥_, are pairwise disjoint with

1
| ([ws, vi]) — F([ws, mi)| < o
(iil) If v; = & < b for some ¢ = 1,2,...,p, we choose x; € (u;,v;) and

yi € {w € [a,b] : | f(z)] < n and §(x) > 1} so that v; € (x;,y;) and the
sequence of intervals {[z;,y;]}¥_, are pairwise disjoint with

1
|F([wi, vi]) — F([zs, y4])| < o

Put

Ty ={ie{l,2,...,p}:& € (uj,v;) or & =u; =aor & =v; = b}.
TQ:{iG{1,2,...,p}:a<ui:§i}.
T3:{Z€{17277p}vzzgz<b}
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Then it follows from (i), (ii), (iii) and (3.1) that

Z|F U, Vi |—ZZ‘F u;, vi])

J=1€T}
< S P o) + S R (o ud) + 1+ 3 [F(lapil)] + 1
€Ty 1€T> i€T3

<nb—a)+1+nb—-—a)+1+1+nb—-a)+1+1

proving that
1
V(F,Yn,—) <3n(b—a)+5. (3.2)
n

Since Vi F(Y,,) < V(F,Y,, L), (b) follows from (3.2) and Theorem 2.4.
In order to prove (c), it suffices to observe that there exists a positive
integer N such that

[e e}

N 1
Z d( ) _ ) <1 and Z ||fX 0 a0 | <2V(F,Y,,— ) 00. O
k=N k=N

The next theorem is the Harnack extension for the Henstock-Kurzweil in-
tegral.

Theorem 3.2. [2, Theorem 9.22] Let X be a closed subset of [a,b] with
{[ck, dr]} being the collection of subintervals of [a,b] contiguous to X. Suppose
the following conditions are satisfied :

(a) fxx € HK([a,b]);

(b) f € HK([ck,dk]) for each positive integer k;
(c) the series 3_ |[fx,, 4|l converges;
k=1

then f € HK([a,b]) and the equality

d d oo dy
(HE) / f = (HK) / P+ SSHE) [
c c k=1 Ck

holds for each subinterval [c,d] of [a,b].
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Lemma 3.3. Let X be a closed subset of [a,b] with {[ck,dk]|} being the collec-
tion of subintervals of [a,b] contiguous to X. Suppose the following conditions
are satisfied :

(i) f e HK([a,b]);

(if) fxx € HK([a,0]);

er.ay || converges;

o0
(iii) the series kZ:leX[

(iv) {[ui, v} C [a,b] is a finite sequence of nonoverlapping intervals sat-
isfying the condition that at least one of the endpoints of each [u;,v;]
belongs to X.

Then

q v; N q

Sl [ - <Y ) / P52 S v
Ui k=11i=1 k=N+1

i=1
for each N € Z™.

PrOOF. By (i), f € HK([ck,dr]) for each positive integer k. In view of (ii),
(iii) and Theorem 3.2, we have (HK) f::(f—fxx) =Y (HK) fcd: Xy o
for each i = 1,2,...,q. Thus, we have

|<HK> IS

oo d
Z (HK) fX[“'i"“i]
k=1 Ck
N dy. o0 dp

SZ (HK) o | T Z (HK) Xy
k=1 Ck k=N+1 Ck
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giving

-

I
-

(HK) / Y= )

i

K2

N ¢

eyl [+ Y S| fxu .
k=1i=1 Ch k=N+1i=1

N ¢

<> HK/ P42 2 150

k=1i=1 k=N+1

by (iv), since each interval [cg,dk] can intersect with at most two intervals
belonging to the set {[u;, v;]}7_;. O

Theorem 3.4. Let X be a closed subset of [a, b] with {[ck, dx]} being the collec-
tion of subintervals of [a,b] contiguous to X. Suppose the following conditions
are satisfied:

(i) f € HK([a,0]);
(ii) fxx € HK([a,0]);

o0
(iil) the series kZ:leX[%dk] | converges;

then given € > 0, there exists a constant gauge § on X such that for any d-fine
partition {([u;,v;],&)}_, anchored in X, we have

>

=1

) [ —(HK)/ff] <e

Us

PROOF. By (iii), for € > 0, there exists N € Z* such that

= €
> Il < (3:3)

k=N+1

y (), f € HK([ck,dk]) for each k. Since f € HK([c;,d;]) for each i =
1,2,..., N, it follows from the continuity of indefinite H/C-integral that there
exists 7; > 0 such that whenever [u,v] C [¢;, d;] satisfying v — u < n;, we have

‘(HK) /:f‘ < ﬁ. (3.4)
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Define a constant gauge § on [a,b] by § = min;—; 2.~ 7;- An application of
Lemma 3.3, (3.3) and (3.4) shows that for any d-fine partition P = {(1;, &) }r_,
anchored in X, we have

) [ - )

i=1 o
N p Vi ad
<>y (HK)/ Pran| 72 D0 11X
k1 i1 i k=N+1
€
aIN- 425 = -
REPT R

In what follows, we shall write a decreasing null sequence of positive num-
bers {e,} as e, | 0.

Theorem 3.5. If f € HK([a,b]), then for €, | 0, there exists an increasing
sequence {X,} of closed sets such that

(i) U X =la.0];
(ii) f e L(X,) for eachn € Z7;

(iii) for each positive integer n, there exists a partition P, = {(1;,&)}_, of
[a,b] such that the inequality

353 (L)/Janf—(HK)/Jf'«n

i=1 JCI;
holds whenever {J} is a finite sequence of non-overlapping subintervals
of [a,b] satisfying J N X, # O for all n.

PRrROOF. Since €, | 0, we may assume that €, = % Since f is Henstock-

Kurzweil integrable on [a, b], there exists an increasing sequence {Y}} of closed
sets satisfying all the conditions of Theorem 3.1. By Theorem 3.4, for each
k € Z*, there exists a constant gauge 6, on Yj such that for any §,-fine
partition {(7;,&;)}{_; anchored in Y, we have

(L)/mykf(HK)/Iif‘ <1

Next, we want to choose {X,,} from {Y}} so that the required properties hold.

q
=1
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Let p(n, k) = 2¥n. Define a gauge J,, on [a, b] by

5p(n,1)’(§) if 5 € Y;)(nvl)’
6n(€) = mln{(s;;(nyk)» dlSt(ga Yp(n,k—l))} if 6 S Y;;(n,k) \ Yp(n,k—l)
for some k > 2.

Since d,-fine partitions of [a,b] exist, we may fix a J,-fine partition P, =
{(I;,&)}F_, of [a,b]. For simplicity, we put

Q1= Ypm,1) and Qr = Yyn k) \ Yp(n,k—1) for k > 2.

Next, we put
o9}
X = [JUI N Yoy (I,€) € Py with € € Q).
k=1

The above union is a finite one because P, only has finitely many terms. Thus
X,, is closed as each Y}, is closed.

Define k(n) = max{k : ([,§) € P, and & € Q}. Since {Y3} is an
increasing sequence of closed sets whose union is [a, b], we have Yy, k(n)) 2 Xn-
By the definition of §,, and the compactness of Y, 1), the d,-fine partition
P, = {(I;,&)}}_, must cover Y, 1). Hence Yp, 1y € X,,. Thus, we have
Yon,1) € Xn € Ypmkm)) and f € L(X,,) because X,, is measurable. Observe
also that if (I,£) € P, with £ € @y for some positive integer k, then I N
Xn = 1IN Yy k- Note that each (I,£) € P, may have its associated points §
belonging to @1 only. Without loss of generality, we may suppose that each
(I,£) € P, has its associated point £ belongs to Qs,,Qs,,- .., Qs for some
positive integers s; < sp < -+ < §; with s = 1. Let {J} be a finite sequence
of non-overlapping subintervals of [a,b] with J C I; for some i = 1,2,...,p,
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and J N X,, # (). Then we have

| (L)/anf—(HK)/Jf‘

(L)/Janf—(HK)/Jf

- (L) f—(HK) f‘
i:zl k=1 Jgif;m(gsk /J”prsm /J
Il p

=3 Y / RAL / f‘

It is easy to see that there exists an increasing subsequence of {X,}, de-

noted again by {X,}, such that | X,, = [a,]. O
n=1

Corollary 3.6. [10, Theorem 2] If f € HK([a,b]), then the following condition
is satisfied: Given €, | 0, there exists a sequence {X,} of closed sets in [a, b
such that:

(i) a,b€ X1, X, € Xps1 for all n and ‘Eﬁ’lxn = [a,b];
n=
(ii) f € L(X,) for each n;
iii) for each positive integer n, if a finite sequence {I;}?  of non-overlapping
i=1

intervals contained in [a,b] satisfies the condition that at least one of the
endpoints of each I; belong to X,,, then we have

(L)/Ianf—(HK)/hf

Theorem 3.7. If f € HK([a,b]), then there exists an increasing sequence
{Xn} of closed sets whose union is [a,b], {fxy, } C L([a,b]) and {fx,, }
satisfies the following conditions:

q

D

i=1

< €p.

(i) fxx, — f everywhere on [a,b];
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(ii) for e > 0, there exists a measurable gauge &, independent of n, on [a,b]
such that for every d-fine partition P = {(1;,&)}_, of [a,b], we have

> fE, €)1 - @) [ fxe,

i=1

foralln € Z+. In particular, {fxx, } is Henstock-Kurzweil equi-integrable
on E.

ProOF. By Corollary 3.6, we choose {X}} corresponding to e = k% and put
fe = fxx, forke Z*. An application of [11, Proposition 4] and [11, Lemma
7(iii)] shows that for e > 0, there exists a measurable gauge dj on [a, ] such
that for any dj-fine partition Py = {(1;,&;)}", in [a,b], we have

Gy AR

We may also assume that for each = € [a,b], the sequence {d;(z)} is non-
increasing. Choose a positive integer N > 2 such that

<1
2 53 <
k=N

P1

>

i=1

€

(3.6)

pMm

Let {[CEN), dl(-N)]} be the sequence of subintervals of [a,b] contiguous to Xy
o - ),

?

and put n = % 1gi<nN

Define a gauge ¢ on [a, b] by

min{dnx(§),n} if £ € Xy,

min{dn(§),n} if £ € Xy,

min{dy (), dist(§, Xg—1,),n} if & € X \ Xg—1 for some 2 < k < N,
min{5k(§),dist(ﬁ,Xk_l),r]} if £ € Xy, \Xk—l for some k > N.

6(¢) =

Then 0 is a measurable gauge on [a,b] with
5(&) < dn(€) for each € € Xy (3.7)

and
5(6) < 6k(f)1f e Xy \ X1 for some k > N. (38)
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Claim. The sequence {f,} is Henstock-Kurzweil equi-integrable with this
function é. Given a d-fine partition P = {(;,&;)}7_; of [a,b], we put

No =max{i: (I,£) € P with § € X;.}.

Then by our definition of n and J, any é-fine cover of X cannot be a cover
of [¢; (V) d(N)] fori=1,2,3,..., N, so we have Ny > N.

€
Subcl 1. —.
ubclaim ; <2

Let Sy ={i:& € Xy} and Sy = {i : & € Xi\Xg—1} for each k > N.
Then it follows from (3.5) to (3.8) that we have

>
<3 s

am—wm/f

I;

s 1) - (i) | ﬂ

() |L] - (HE) ﬂ

o - |

st

(&) 1| - (HK) f‘ Z dof

€SN k=N+11€Sk

* %
+k;+lz

ORI NNEDS

fi(&) 11| — /

€SN

Anwmlj

1€Sk k=N+11i€Sg
€ 1
<2N+2 TNz

> 3

k=N+11€Sg

0>

Tr (&) 1] — /fk +
k=N414€S) Ii

€ 1 o € o1 €
sFmtyEt X owmEt X E<y
k=N+1 k=N+1

D[ o) | 1

The next two subclaims will enable us to prove that {f,} is Henstock-
Kurzweil equi-integrable on [a, b].
Subclaim 2. For each n =1,2,..., N, we have
P

=1

€
on+2 :

fe =@ [ 5| <
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By our definition of §, (§ —0(§),£+3(€)) C (a,b)\X,, whenever £ ¢ X,,, so

>

fue - | 1,

i=1
= (&) | Ll = (L) [ fu] + &) L= (L) [ fa
i:f;(n /Il if;ﬂ(n /Il
€
- L |p@i-@ [ h]< 5

P
Subclaim 3. For each integer n with n > N, Z
i=1

Since f = f, on X,,, we have

>

i=1

Fu@IE =@ [ £,

(&) | Ll = (L) | fu] +
>

fue =) | 1,

>

1€ Xn

fue) L= @) [ £,

o,
- X rew-w | 5

Sggx F(&) L] — (HK) f‘ ZEGX'L)/Iifn(HK)/Ii
Grm st X mee

From subclaims 2 and 3, we have, for all positive integer n,

p b
_an@-) I;| - (L) / fn

< €. O

From the subclaim 1 of the proof of Theorem 3.7 and the measurability of
the ¢ function, we obtain the following corollary, which was proved differently
in [6, Theorem 10.3] or [2, Theorem 9.24].
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Corollary 3.8 If f € HK([a,b]), then for e > 0, the function & from the
definition of the Henstock-Kurzweil integral can be chosen to be measurable.

Corollary 3.9 If f € HK([a,b]) with F being its indefinite HK integral, then
there exists a sequence {F,} of additive interval functions on I satisfying the
following conditions:

(1) VukFn([a,b]) < oo for each n;

(ii) given that Z C E is negligible and € > 0, there exists a gauge §, inde-
pendent of n, on Z such that

V(Fn, Z,06) <€ for all n.

We remark that the proofs of Corollary 3.6, Theorem 3.7 and Corollary 3.9
do not generalize to the higher dimensional interval E := [a1,b1] X [ag, bo] X
o X [am, by ] of R™. Indeed, the proof is based on Theorem 3.4, for which no
satisfactory analogue in higher dimensions is known. As a result, we have the
following conjecture.

Conjecture 1. If the sequence of additive interval functions {F),} satisfies
the following condition:

Given that Z C F is negligible and € > 0, there exists a gauge §, inde-
pendent of n, on Z such that

V(Fn, Z,0) < eforalln

then there exists a sequence of functions {f,} on E satisfying the following
conditions:

(i) for each n =1,2,..., F, is the indefinite HX-integral of f,, on F;
(i1) {fn} is Henstock-Kurzweil equi-integrable on FE.
If we assume that F,, = F for all n, then conjecture 1 turns out to be true.
This result was obtained for m =1 in [1], and for m > 1 in [8].

The proof of Corollary 3.6 is real-line dependent. As a result, it is natural
to ask whether the next conjecture is true for m > 2.

Conjecture 2. If f € HIC(E), then given ¢, | 0, there exists an increasing
sequence {X,,} of closed sets satisfying the following conditions:

(i) U X.=E;
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(ii) f e L£(X,,) for each n;

(iii) for each n, there exists a positive constant 7, such that whenever {(1;,&,)}_,
is a n,-fine partition anchored in X,,, we have

(L)/anf—(HK)/Iif

Since the proof of Theorem 3.7 depends on Corollary 3.6, it is also natural
to ask whether the following analogue of Theorem 3.7 holds if m > 2.

P

>

i=1

< €p.

Conjecture 3. If f € HI(FE), then there exists an increasing sequence { X, }
of closed sets {X,,} satisfying the following conditions:

(i) X, C F for all n;
(i) Z:= E\;L_le & has m-dimensional Lebesgue measure zero;

(i) f € L(X,) for each n;

(iv) {fXx, oz} is Henstock-Kurzweil equi-integrable on £.
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