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IDEALS OF COMPACT SETS ASSOCIATED
WITH BOREL FUNCTIONS

Abstract

We investigate the connection between the Borel class of a func-
tion f and the Borel complexity of the set C(f) = {C € J(X): flc
is continuous} where J(X) denotes the compact subsets of X with the
Hausdorff metric. For example, we show that for a function f: X — Y
between Polish spaces; if C(f) is F,s in J(X), then f is Borel class one.

1 Introduction

Given a Polish space X let J(X) denote the collection of nonempty compact
subsets of X with the Hausdorff metric. We investigate the connection between
the Borel class of a function f and the Borel complexity of the set C(f) = {C €
J(X): flc is continuous}. Generally, the set C(f) is an ideal. One can see
the subject of this paper from at least two directions. First, one can see
the complexity of C(f) as a measure of how discontinuous f is, since for f
continuous C(f) = J(X), which is a very simple set. Secondly, descriptive set
theorist have an interest in finding natural examples of objects such as ideals
of compact sets which are complex.

2 Preliminaries

Let X be a set. We let | X| denote the cardinality of X. Given a cardinal x
we let [X]<%, [X]=" and, [X]* denote the subsets of X of cardinality strictly
less than k, less or equal to x, and equal to k, respectively. Given a function
f: X =Y and A C X, we let f]4 denote the restriction of f to A. Given
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16 FRANCIS JORDAN

a product of two sets X x Y, we let mx and my denote the usual projections
onto X or Y, respectively.

Suppose X is a Polish space with metric d. For a set A C X, we write
clx(A4), intx(A), bdx(A) for the closure, interior, and boundary of A in
X, respectively. When it is understood what space we are referring to, the
subscript will be dropped. Given sets A, B C X, we define dist(A, B) =
inf({d(x,y): z € A & y € B}). Given sets A, B C X we define the Hausdorff
distance between A and B to be Hy(A, B) = max(sup({dist({z},B): z €
A}),sup({dist(A4,{y}): v € B})). When H, is restricted to the compact sub-
sets of X, it is a metric known as the Hausdorff metric. The diameter of a
nonempty set A C X is defined by diam(A) = sup{d(z,y): z,y € A}, if A =10
we let diam(A) = 0. It is known that if X is Polish, then J(X) is Polish as
well [6, 4.25].

By a Cantor set we mean a compact totally disconnected metric space with
no isolated points.

Let X be Polish. By B(X) we denote the Borel subsets of X as defined in
[6, 11.A]. For 0 < o < wy let ¥2(X), Y (X), A% (X) stand for the subclasses
of B(X) defined as in [6, 11.B] (e.g., I3 is G5 and X9 is F,). The analytic
subsets of X and the coanalytic subsets of X as defined in [6] will be denoted
by ¥1(X) and I1}(X), respectively. A set A C X is said to be coanalytic hard
provided that for any zero-dimensional Polish space Y and coanalytic B CY
there is a continuous function f: Y — X such that f~!(A4) = B. To say that
A is coanalytic hard is essentially saying that A is at least as complex as any
coanalytic set. In particular, if A is coanalytic hard, then A is neither Borel
nor analytic.

If a function f: X — Y has the property that for every open set U C Y
the set f~1(U) € B3(X), then we say f is a Borel class one function. Let By
denote the Borel class one functions. If a function f: X — Y has the property
that for every open set U C Y the set f~1(U) € B(X), then we say f is a
Borel function. We let B denote the Borel functions. For a function f: X — Y
and S C X we let osc(f,S) = sup{dist(f(x), f(y)): x,y € S}. For a function
f: X =Y welet D(f) denote the set of discontinuity points of f.

We say f: X — Y is a discrete limit of a sequence of functions {f,}necw
provided that for every x € X there is an n, € w such that fi(z) = f(z) for
all k& > n,. For more facts about discrete limits see [4].

3 Results

If a function f: X — Y has the property that for every x € X there exist
open sets U C X and V' C Y such that z € U, f(z) € V, and f[as-1(v)nu) is
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continuous then we say f € Ty. If a function f: X — Y has the property that
for every x € X there exist open sets U C X and V C Y such that f(z) € V,
x €U, and fly-1(y)nu is continuous, then we say f € Ty.

We may now state our theorems.

Theorem 1. If X and Y are Polish spaces and f: X — Y is a function, then
f is continuous if and only if C(f) € I3(J(X)).

Theorem 2. If X and Y are Polish spaces and f: X — Y, then the following
are equivalent:

(i) f € To
(i) C(f) € B9(J(X))

(iii) there is a C-increasing sequence {Ty}new of closed subsets of X such

that C(f) = U,ew J(Th)
(iv) C(f) € AJ(I(X)).
Moreover, if Y = R the conditions (i)-(iv) are equivalent to:
(v) f is open in cl(f)

(vi) f is the discrete limit of continuous functions { fn}new such that C(f) =
{C € J(X): {fulc}tnew is eventually constant}.

Theorem 3. If X and Y are Polish spaces and f: X — Y, then (i) = (i7) =
(#i1) where:

() C(f) e M(I(X))
(i) f € By
(iii) C(f) € MY(J(X))

and none of the implications may be reversed. Moreover, there is a By function
f such that C(f) ¢ $9(J(X)).

Theorem 4. If X and Y are Polish spaces, and f: X — Y, then the following
are equivalent:

(i) ¢(f) € Z3(J(X))
(ii) f €Ty and f has Gs-graph.

The following theorem shows the importance of the assumption in Theo-
rem 4 (ii) that f has Gs-graph:
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Theorem 5. If X andY are Polish and f: X — Y is Borel, then the following
are equivalent:

(1) C(f) is Borel,
(ii) f has G graph, and
(iii) C(fla) is coanalytic hard for no A € J(X).

In particular, let g be the characteristic function of the rationals. Clearly,
g € Ty but does not have Gs-graph, so C(g) ¢ £3(X).
We note the following propositions which will be used repeatedly.

Proposition 6. [6, 23.1] The set
{0 €2*Y: (Vm € w)(Fk € w)(¥Yn > k)(c({m,n))) = 0}.
is in TI(29%@) \ B9(2@*«).
We will let H denote the subset of 2¢*“ described in Proposition 6.
Proposition 7. [6, 23.6] The set
{o €2“*¥: (Tl e w)(¥Ym > 1)(Fk € w)(Vn > k)(c((m,n)) = 0)}.
is in X (29%w) \ TIF(2«*«).

We will let I denote the subset of 2*“ described in Proposition 7.

4 Proof of Theorem 1

If f: X — Y is continuous, then C(f) = J(X) € I3(J(X)). Suppose now
that f: X — Y is not continuous. There exists x € X and z,, € X such that
lim,, o ¢, = x and no subsequence of {f(z,)}ne, converges to f(z). Let
A ={z,:n € w}U{z}. Notice that B = {Y € J(A): z € Y} is compact
in J(X) and has no isolated points. Clearly, a compact set K € C(f) N B
if and only if K is finite. Since the finite members of B form a countable
dense subset of B, we have that BN C(f) € X9(J(X)) \ TI3(J(X)). Thus,

O

C(f) ¢ M(J(X)).

5 Proof of Theorem 5

We begin with two lemmas the first being a version of the Blumberg Theorem
[3] the proof of which is similar to the method used in [1].
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Lemma 8. Let X and Y be separable metric spaces with | X| > 1. If f: X —
Y has no isolated points, then there is a nonempty set D C X such that D
has no isolated points and fp is continuous.

PROOF. Let U and V be countable bases for X and Y, respectively. We may
assume that both bases are closed under the operation Wi \ cl(W3) where
Wi, Wy € U or Wi, W5 € V. Let R denote the rational rectangles; i.e., sets
of the form U x V where U € Y and V € V. Let X; C X be a countable set
such that flx, is dense in f. Notice that f[x, has no isolated points. Let
A C X; and |A| > 1. We define the mesh of A to be mesh(A) = sup{dist(x, A\
{z}): z € A}.
Let P be the collection of all pairs (4, 5) € [X1]<¥ x [R]<“ such that

(0) [A[>1,
(1) mx[Ri]N7mx[Rz] =0 for all distinct Ry, Re € S, and
(2) fracus.

We say (A1,S1) < (Ag,S2) provided Ay C A;, mesh(A;) < mesh(A3), and
US; C USy. Now (P, <) is a reflexive and transitive ordering.
For each x € X7 and n > 0, let

EX={(A,S) e P:if (x, f(x)) € T € S, then diam(ny[T]) < 1/n}.

We show EZ¥ is dense in P. Let (A, S) € P. If (x, f(x)) ¢ US, then (A, S) € EZ
by failure of hypothesis. So we may assume that (z, f(z)) € T for some
T € S. Pick V €V so that diam(V) < 1/n and f(z) € V. If x € A, then
pick U open such that cl(U) C nx(T) and {z} = ANU = Ancl(U). If
x ¢ A, then pick an open set U such that cl(U) C wx[T] and ANU = . Let
§* = (S\|{THU{U XV, (rx [T\el(U)) x (my [T]\cl(V)) }. Now (4,5%) < (4, 5)
and (A, S*) € EX. So, E¥ is dense for all z € X; and n € w.
For each n > 0, let

F, ={(A,S): dist({z}, A\ {z}) < 1/n for all z € A}.

We show F), is dense in P. Let (A,S) € P. Fix z € A. Since (4,95) € P,
there is a T' € S such that (z, f(z)) € T. Since T is open and f[x, has
no isolated points we can find an z* € X; \ A such that (z*, f(z*)) € T
and dist(z,2*) < min{mesh(A4),1/n}. Let A* = AU {a*: 2 € A}. Now
(A*,S) < (A,S) and (A*,S) € F,,. So, F, is dense in P for all n > 0.

Since [{E¥:z € X1 & n > 0} U{F,: n > 0}| < w we may find a filter
G C P such that G has nonempty intersection with each of the dense sets
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defined. Let D = |J{A: (A,S) € G}. For every (4, S) € G we have f[pC US.
To see it let € D and (A, S) € G. By definition of D, there is an (A4;,57) €
G such that x € A;. Pick (As,S2) € G such that (A2,5) < (4,S5) and
(A2,S2) < (A1,S1). Since x € Ay there is a T € Sy such that (z, f(z)) € T.
Thus, (z, f(z)) € T C USy C US.

We show that f[p is continuous. Let z € D and ¢ > 0. Pick n > 0
such that 1/n < e and pick (A,S5) € GN EX. Since z € D, there is an
(A1,S1) € G such that z € A;. Pick (B, M) € G such that (B, M) < (A1, S1)
and (B, M) < (A,S). Now z € Bsothereisa N € M such that (x, f(x)) € N.
Since (B, M) < (A, S), we have N C UM C US. So, (z, f(z)) € US. Hence,
there is a T' € S such that (z, f(z)) € T and 7y [T] < 1/n. Since flpnr <
T, there is an open neighborhood U of = such that dist(f(x), f(w)) < 1/n < e
for all w € U N D. Therefore, f[p is continuous.

We now show that D has no isolated points. Let x € D and € > 0.
Pick n > 0 such that 1/n < e. There is an (A,S) € G such that © € A.
Pick (A1,S51) € GN FE,. Pick (43,52) € G so that (A2,5;) < (4,S5) and
(AQ,SQ) < (Al,Sl). Now z € A,. Since (A27SQ) < (AhSl) and mesh(Al) <
1/n, we have mesh(A3) < 1/n. Thus, there is a w € Ay C D such that
dist(x,w) < 1/n < e. Thus, D has no isolated points. O

Lemma 9. Let C be a Cantor set and D C C be countable and dense. If S
is the collection of all K € J(C) such that K N D and K N (C \ D) are both
compact, then S is coanalytic hard.

PROOF. Let N C 2% be the set all binary sequences 7 such that 77%(1) is
finite. Notice that N is countable and dense in 2. Tt is well known [6, 33.B]
that I = {K € J(2¥): K C N} is a coanalytic hard set. For K C 2“ and
n€wlet K|, ={o|,: 0 € K}.

Define O: J(2¢¥) — J(2¢) by

O(K) =cl(|J{o € 2°: ofn € K|n & (Vk > n)(a (k) = 0)})

new

for every K € J(2¥). It is easily seen that O is continuous. It should be
clear that ©(K) C N if K C N. On the other hand, suppose K \ N # (.
Let k € K\ N. Now k € O(K) and there exist {n; € N}, such that
lim;_o, n; = k. So, in this case ©(K)N N is not compact. Thus, ©~1(S) = I.
Therefore, S is coanalytic hard. O

Lemma 10. Let X be Polish. If G € TI3(X) is dense and D is a dense set
disjoint from G, then there is a countable E C D such that E is dense in X
and GUE € TI3(X).
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PROOF. Let X \ G = U, ¢,, Fn where each F, is closed. We may assume that
limy, o diam(F,,) = 0 and that F,, \ U,,.,, Fn # 0 for every m € w. Fix
m € w. If (Fry \ Upem Fn) N D # 0, pick e € (Fin \ Uy Fn) N D. Let
E={en: DN (Fp \Upem Fn) # 0}. Clearly, E € 9(X) and E C D.

Let U C X be a nonempty open set. Since F,, is nowhere dense for every
n € w and D is dense, there is no N € w such that DNU C Un<N F,,. Thus,
there is a d € D and a k € w such that (Fy \ U, Fn) N D # 0 and Fj, C U.
Now e € U. Thus, FE is dense in X.

Since EUG = X \ (U,peo, Frn \ E) and Fy,, N E is finite for every m € w,
we have EUG € I(X). O

PROOF OF THEOREM 5 Clearly, (i) implies (iii).

We show that (ii) implies (i). First, notice that the set J(f) is a Gs-
subset of J(X x Y') and that C(f) is an injective continuous image of J(f) by
the function ©: J(f) — J(X) defined by ©(K) = nx[K]. Since C(f) is an
injective image of a Borel set, C(f) is Borel by [6, 15.1].

We now show that (iii) implies (ii). Suppose f: X — Y is Borel and f does
not have Gs-graph. Since f is Borel we have that f is a IIi-subset of X x Y.
By a theorem of Hurewicz [6, 21.18], there is a relatively closed subset B of
f such that B is homeomorphic to the rational numbers. Let B; = 7x(B).
Since f[p, has no isolated points, by Lemma 8, there is a Ba C By such that
f1B, is continuous and By has no isolated points. Let C' C X be a Cantor set
such that Bs is dense in C'. Since f is Borel, there is a dense G§-subset D of C'
such that f[p is continuous. By Lemma 10, there is a dense subset B3 of By
such that DUBs3 € TI3(C'). Notice Bs has no isolated points. Let d € D. Since
B is relatively closed in f, there exists €,d > 0 such that for any x € Bs(d)ND
and w € Bs(d) N Bs, we have |f(z) — f(w)| > €. Let C; C Bs(d) N (D U Bs)
be a Cantor set such that B3 N Cy is countable and dense in C7. It is clear
that C(f[¢,) is exactly the compact subsets P of Cy with the property that
both B3N P and (Cy \ B3) N P are both compact. By Lemma 9, C(f[¢,) is
coanalytic hard. O

6 Proof of Theorem 4

Suppose X and Y are Polish spaces and f: X — Y.
We show that (i) implies (ii).

Lemma 11. IfC(f) € B3(J(X)), then f € T;.

PROOF. Suppose f ¢ T;. Let & € X be such that for every pair of open
sets U C X and V C Y with € U and f(x) € V we have f[s-1(y)ny not
continuous. Let {V, },e. be a decreasing sequence of open subsets of Y such
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that Hy(Vi,, f(x)) < 1/2™ and f(z) € V,, for every n € w. Let {Up}new be
a decreasing sequence of open subsets of X such that Hy(U,,z) < 1/2™ and
x € U, for every n € w. For each n € w pick x, € D(f[s-1(v,)nv, ). For each
n € w we may find {wy,x € (V) N Uy tkew such that limg_oo wy p = @y
and no subsequence of {f(wn i) }rew converges to f(zy), we may also assume
that cl({{wn i, f(wni)): k € w}) N el({{wm g, fwmi)): k € w}) = 0 for all
n,m € w such that n # m. Let C' = cl({wp k: n,k € w}). Define h: 29%¥ —
J(C) by k(o) = {wnk: o((n,k)) = 1} U {x,: n € w} U {z}. Notice that h
is continuous. It is straight forward to check that f[y,(s) is continuous if and
only if
(Vm € w)(Fk € w)(¥Yn > k)(c((m,n))) =0.

Thus, h=1(C(f) N J(C)) = H. By Proposition 6 and the continuity of h, we
have C(f) N J(C) ¢ £3(J(X)). Since J(C) is closed, C(f) ¢ Z3(J(X)). O

We now show that (ii) implies (i). We first define an operation M on
collections of subsets of product spaces. Given a collection A4 of subsets of
X x Y. Define

M) = (ﬁ;l({x}) N({AcA:ze ﬂX[A]}) .

Lemma 12. If f: X — Y is a function and A is a finite collection of subsets
of X XY such that wx [A] is closed for every A € A and f|~ 1any is continuous
for each A € A, then flrmany 18 continuous.

PROOF. Let {x,, }new be a sequence of points in 7y [M (A)N f] which converges
to some z € Tx[M(A) N f]. Since A is finite, we may assume that there is
an A € A such that z, € wx[A N f] for every n € w. Since A has closed
X-projection, * € mwx[A]. Since z € wx[M(A) N f] and =z € 7wx[A4], we
have (z, f(z)) € A. In particular, {z,: n € w} U{z} C 7wx[AN f]. Thus,
lim,e, f(xn) = f(x). Therefore, fl: (ar(a)ny is continuous. O

Lemma 13. If A is a finite collection of closed subsets of X X Y such that
mx[A] is closed for every A € A, then M(A) € I3 (X x Y).

PrOOF. Notice that for every A € A we have
AU ((mx[UA]\ Tx[A]) x Y) € I3 (X x Y).
It is easily checked that

M(A) = ()] (AU ((rx[UA] \ mx[A]) x V).

AcA

Thus, M(A) € IY(X x Y). O
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Lemma 14. Let f € Ty and By and By be countable bases for X and Y,
respectively. If v € A C X and f| 4 is continuous, then there exist By € By and
By € By such that f1§-1(c1(By))nel(B,) 5 continuous and f[ANcl(By)] C cl(By).

PROOF. Since f € T, there exist open sets U C X and, V C Y such that = €
U, f(x) € V,and f[-1(v)ny is continuous. Pick By € By and By € Bj so that
c(By) CU, cl(By) CV,z € By, and f(x) € By. Since f~1(cl(Bz))Ncl(By) C
f7H(V) N U, we have that f]p-1((p,))nei(s,) is continuous. Since f[4 is
continuous we may assume B is small enough that f[ANcl(By)] C cl(Bz). O

Lemma 15. If f € Ty and f has Gs-graph, then C(f) € X3(X).

PROOF. Let B; and Bs be countable bases for X and Y respectively. Let W
be the collection of all finite collections Z = {Wy,...W,} of sets of the form
Wi = cl(By) x cl(Bz) (where By € By and By € By) such that f[r.(a(z)ny)
is continuous. Let Z € W. By Lemma 13 and the assumption that f has G-
graph, M(Z)N f € HY(X xY). Since [l (nr(z2)nys is continuous, wx[M(Z)N
fl € IY(X). Thus, T = U{J(rx[M(Z)N f]): Z € W} € 23(X).

The proof will be complete if we show that C(f) = 7. The containment
T C C(f) is obvious. We work for the opposite containment. Let C' € C(f).
We will construct a finite collection W = {Wy, Wy, ...W,,} of sets of the form
W; = cl(By) x cl(Bg) where By € By and By € By such that

(a) ffcg U W?
(b) flrxifnw,] is continuous for every 1 <i <n, and
(c) Flenmxwi)© Wi for every 1 <@ < n.

By Lemma 14, for every « € C there exist BY € By and B5 € By such that x €
BY, f(z) € BS, flf-1(c(Bg))nel(Bg) is continuous, and f[cl(Bf) NC] C cl(B5).
Since fl¢ is compact, we we may find a finite subcover W* = {W},.. . W>*}
of {Bf x Bj: x € C}. For each 1 < i < mnlet W; = cl(W;). The collection
W = {W;...W,} clearly satisfies conditions (a), (b), and (c).

By (b), and Lemma 12, f[ [fna(wy is continuous. So W € W. We will
be done if we show that C C wx[M(W)N f]. Let « € C. By (a), there is some
W; € W such that (z, f(z)) € W;. By (c¢), for any Wy, € W if x € wx (W),
then (x, f(x)) € Wy. Thus, (z, f(zx)) € M(W)N f. So, x € mx[M(W) N f].
Therefore, C C nx[M (W) N f]. O

7 Proof of Theorem 2

Suppose X and Y are Polish spaces and f: X — Y.
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Lemma 16. IfC(f) € AY(J(X)), then f € Ty.

PROOF. By way of contradiction assume f ¢ Ty. Let z € X be such that
for every pair of open sets U C X and V C Y with z € U and f(z) € V we
have f[(s-1(v)nuy not continuous. Let {V,},e. be a decreasing sequence of
open subsets of Y such that Hq(V,, f(z)) < 1/2™ and f(x) € V,, for every
n € w. Let {U, }new be a decreasing sequence of open subsets of X such that
Hy(U,,z) < 1/2™ and = € U, for every n € w. By Lemma 11, we may assume
that f[r-1(v,)nu, 18 continuous.

Fix n € wand n > 0. Since flas-1(v,)nv,) 1S not continuous and
f1s-1vp)nu, is continuous, we may find an @, € cl(f~H(V,)NU)\ (f1(Vo)N
Up). There exist {w,m € f~1(Vy) NUp}tmew such that lim,, oo wnm = .
Since z, & f~1(Vo), limy— oo f(Wnm) # f(20).

Since z,, # z for all n € w, we may assume that cl({wpt1,m: m € w}) N
cl({wig1,m: m € w}) = 0 for distinct n,! € w. Let C = cl({wpt1,m: n,m €
w}). We will have a contradiction if we show that C(f) N J(C) & A3(J(C)).

Define h: 2*% — J(C) by h(o) = {z} U (U, e, Ln) where
0 if {m:o((n+1,m))=1} =10
L, = ¢ {zpnt1} if {m: o({n+1,m)) =1} is infinite;

{wnJrl,max{m: o’((n,m)):l}} otherwise.

We claim that h € B;. For each | € w define hy: 29*“ — J by hy(o) =
{z} U (U,ew Lni) where

L., = {wn+1,max{m§l: U((Tb’m>):1}} if {m <lI: 0’(<n + 1,m>) = 1} 7é (Z);
0 if {m <1:o((n+1,m)) =1} =0.

Notice that h; is continuous for all [ € w and that h;(c) — h(o) for every
o € 2“*¥ So h € B;. Notice that h(c) € C(f) if and only if o € I where
I is the set from Proposition 7. In particular, h=*(C(f)) ¢ I19(2***). Since
h € By, we must have C(f) ¢ II3(J(C)). Hence, C(f) ¢ AS(J(C)). Thus, we
have the desired contradiction. O

Lemma 17. If f € Ty, then there exist {(Un, Vi) bnew such that for everyn €
w we have: (Un,Vy) € S9(X) X YY), flacr—1(cl(vy)nel(u,)) is continuous,
and f € Upew Un X Var.

PROOF. Let z € X. Let U} € X(X) and V;* € X{(Y) be such that = €
Uz, f(z) € V¥, and flacs—1(veynus) is continuous. Pick U, € ¥{(X) and
V, € £9(Y) such that cl(U ) C UL, cl(Vy) CVE, x e U, and f(x) € V,,. Since
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cl(f~H(cl(Vy))Nel(Uy)) C el(f~H(VF)NU}), we have that f fe1(F =1 (cl(Va) nel(U,)
is continuous. Since the graph of f is second countable and f C | J,c x Uz XV,
we may find the desired countable collection. O

Lemma 18. If f € Ty, then there exists a C-increasing sequence {W, }new
of closed subsets of X such that C(f) = U, e, J(Why). In particular, C(f) €
SH(I(X)).

new

PrROOF. Let U = {U,, x V,}new be as in Lemma 17. For each n € w let
W, = Uk<ncl(f_1(cl(Vk)) N cl(Uy)). We show that C(f) = U,c,, J(Whn).
Fix n € w. Since fler-1(c(vi)nei(u,)) 18 continuous for every k < n, we
have that f[w, is continuous. Thus, J, o, J(Wn) C C(f). We now show the
reverse inequality. Suppose C is compact and f[¢ is continuous. Since f[¢ is
compact, f[c is contained in a finite number of members of 4. So C C W,
for some n € w. Thus, C(f) € U,c, J(Wh). O

Lemma 16 and Lemma 18 show that (i) (ii) (iii), and (iv) of Theorem 2
are equivalent when X and Y are Polish spaces.

We now assume that ¥ = R and X is Polish.

Lemma 19. If for a function f: X — R there exists a C-increasing sequence
{Whtnew of closed subsets of X such that C(f) = U,c, J(Wh), then f is a
discrete limit of continuous functions { fn}new such that

C(f) ={C € J(X): {fulc}tnew is eventually constant }.

PRrROOF. Fix n € w. Since J(W,,) C C(f), we have that f[w, is continuous.
By the Tietze Extension Theorem there is a continuous f,: X — R such that
falw,= flw,, . Clearly, {fn}new converges discretely to f. We show {f, }new
is as desired.
Suppose C € C(f). By assumption C C W,, for some n € w. In particular,
fmlcC fulw, for all m > n. Thus, {f,[c}new is eventually constant.
Suppose C € J(X) and {f,[c}new is eventually constant. There is an

n € w such that flc= fnlc. Thus, C € C(f). O

Lemma 20. If f: X — R is a discrete limit of continuous functions { fn}necw
such that C(f) = {C € J(X): {fulc}tnew s eventually constant }, thenC(f) €
S5(J(X)).

PROOF. For each n € wlet Z, = {z € X: (Vm > n)(fo(r) = fm(2))}
It is easily checked that Z,, is closed for every n € w. Now for every n €
w we have that J(Z,) = {C € J(X): (Vm > n)(fulc= fmlc)} is closed
in J(X). Therefore, C(f) = {C € 2%X: {f,]c}new is eventually constant} €
¥I(J(X). O
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Lemma 19 and Lemma 20 show that (v) is equivalent to (i), (ii), and (iii)
when Y = R.

Lemma 21. Let f: X — Y. IfC(f) € X3(J(X)), then f is open in cl(f).

PROOF. Suppose f is not open in cl(f). There is an z € X and {{zn, yn) }new
such that (2., yn) € cl(f)\ f for every n € w and lim,—, o0 (Tpn, yn) = (z, f(2)).
For each n € w we may find a sequence {w, x}rew of points in X such that
limy, o0 (Wi ks f(Wn k) = (Tn,Yn). Notice that (x,,yn) # (Tn, f(zn)). We
may assume that

cl({(wn i, fwnk)): k€ wl) Nel({(Wm g, fwmpi)): k€w}) =10

for all distinct n,m € w. Let C = cl{wpr: n,k € w}). We will have a
contradiction if we show that C(f)NJ(C) ¢ £9(J(C)). Define g: 2¢*« — J(C)
by h(o) = cl({wnk: o(n, k) = 1}) U {z}. We claim that h € B;. For each
m € w, define hy,: 2¢*¥ — J(C) by

hm (o) ={wpk: o(n, k) =1and k <m} U {z}.

Notice that hy, is continuous for all m € w and that h,,(c) — h(o) for every
o €2¥%Y So h € By. It is also easy to see that h(c) € C(f) if and only if
o € Xo. In particular, h=1(C(f)) ¢ ¥9(2***). Since h € By, we must have
C(f) ¢ ¥9(J(C)). Thus, we have the desired contradiction. O

Lemma 22. Let f: X — R. If f is open in cl(f), then f € Ty.

PROOF. Let x € X. Since f is open in cl(f), we may find an open set
U C X and a bounded open interval V' C R such that z € U and f(z) € V
and cl(f)N (U xV) = fn (U xV). Pick open sets Uy C U and V; C V
containing x and f(z), respectively such that cl(U;) C Uy and cl(Vy) C V4.
Now f N (cl(Uy) x cl(V1)) = cl(f) N (cl(Uy) x cl(V7)). By way of contradiction,
assume that f[cs-1(v;)nu,) is not continuous. Let {wy }n o be a sequence of
points in cl(f~1(V1)NU1) and w € cl(f~(V1)NU;) be such that lim, e, w, = w
and limy, e, f(wy) # f(w). Without loss of generality, we may assume that
no subsequence { f(wy) }new, converges to f(w). Since cl(V1) is compact, there
is a r € cl(V1) such that lim,¢e, f(w,) = r. However, f N (cl(Uy) x cl(V1)) is
closed so f(w) = r which contradicts our choice of {wy, }new- O

Lemma 21 and Lemma 22 show that (vi) is equivalent to (i), (ii), and (iii)
when Y = R. Which completes the proof of Theorem 2.
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8 Proof of Theorem 3

We show that (i) implies (ii).

Lemma 23. Let K be a Cantor set with a countable dense subset D. If
S C J(K) is the collection of compact sets C' with the property that C N D is
finite and C'\ D is compact, then S € L3(J(K)) \ H$(J(K)).

PROOF. First we show that S € X9(J(K)). Let D = {d,: n € w} be an
enumeration of D. Define f: K — R so that f(d,) = n+ 1 for every n € w
and f(x) =0 for x € K\ D. Notice that C(f) = S. Since f has Gs-graph and
f € Ty, Theorem 4 guarantees that S = C(f) € X3(J(K)).

We now work to show that S ¢ TI3(J(K)). In what follows we let w + 1
denote wU{w} topologized to be a convergent sequence of isolated points with
limit point w. Let L = {7 € (J(w+1))*: (Vn € w)(w € 7(n))} and E C L be
the collection of all 7 € L such that for some n € w we have |7(k)| < w for
all k < nand 7(k) = w+ 1 for all & > n. Since L is a Cantor set and E is
countable and dense in L, we may assume that K = L and D = FE.

Define ©: 29*¥ — [ by setting ©(c)(n) = {k € w: o((n,k)) = 1} U {w}
for every o € 2“*“ and n € w. Notice that © is continuous.

Define ¥: L — J(L) by letting ¥(7) be the closure of the collection of all
p € L such that for some n € w we have p[,= 7[, and p(k) = w + 1 for all
k > n. If for infinitely many n € w we have 7(n) # w + 1, then ¥(7) is a
convergent of sequence points in L with limit point 7. If there is an n € w
such that for all £ > n we have 7(k) = w + 1, then ¥(7) is a finite subset of L
containing 7.

We claim that ¥ is continuous. Suppose {7 }necw IS a sequence points in
L converging to some 7 € L. We show that limye,, U (1) = U(7).

Suppose there exist an infinite A C w such that py, € U(7y) for every k € A
and limge 4 pr, = p. We claim that p € (7). We will consider two exhaustive
cases. First, suppose that there is an N € w such that for infinitely many
k € A we have pi(l) = w+ 1 for all [ > N. We may assume that N is
minimal with respect to this property. Let A* be the set of all k& € A such
that pg(l) = w + 1 for all [ > N. By minimality, there are only finitely many
k € A* such that pi (N — 1) = w + 1. So, for almost all k£ € A* we have
prIN= TkIn. Thus, we have p/xy= 7|y and p(l) = w+ 1 for all I > N, so
p € ¥(7). For the second case, suppose that for every N € w there are only
finitely many k € A such that pi(I) = w41 for all I > N. In this case we have
limgea pr () = limgea 7 (5) = 7(4) for every j € w. Thus, p =7 € ¥U(7). By
cases, we have the claim.

We show that for every p € ¥(r) there is a sequence {pj}reo such that
pr € ¥(1) and limg oo pr = p. If p = 7, then we can let pp = 74 for every
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k € w and have limg_,o, pr = p. If there is an n € w such that p[,= 7], and
p(l) =w+1 for all I > n, then we pick pp € ¥(7y;) such that py[,= 74 [, and
pr(l) =w+1for all I > n to get limg_o0 px = p-

By the proceeding two paragraphs, lim,c, ¥(7,) = (7). Thus, ¥ is
continuous.

Let I': 29%¢ — J(L) be defined by I'(0) = ¥(6(0)). Clearly, I is contin-
uous. We claim I'"}(S) = 29*% \ H where H is the set from Proposition 6.
Suppose o € 29*¢\ H. By definition of H there is a smallest n € w such that
|©(0)(n)| = w. It follows that at most n elements of ¥(©(c)) are in E. We will
show that ¥(©(0)) \ E is compact. If ©(c) ¢ E, then either U(0(0)) is finite
or U(O(0)) is a convergent sequence with limit point not in E. If ©(c) € E,
then ¥(©(0)) is finite. In any of the three cases above ¥(0(c))\ E is compact.
Thus, 2¢*“\ H C T~1(S). Suppose o € H. By definition of H, |©(c)(n)| < w
for every n € w. Thus, ¥(O(0)) is a convergent sequence of elements of
with limit point ©(c) ¢ E. So, ¥(O(0)) ¢ S. Hence, I~}(S) C 2¢*« \ H.
Since I71(8) = 2¢*« \ H and H ¢ £3(2“*%), we have S ¢ II3(J(K)). O

Lemma 24. If X is Polish and G € TI3(X) is countable, the set I of isolated
points of G is a dense open subset of G.

PROOF. Clearly, G is a countable dense Gs-subset of cl(G). Since cl(G) is
countable and closed, the set J of isolated points of cl(G) form a dense open
subset of cl(G). Clearly, I = J. So, I = GNJ is dense and open in G. O

PROOF THAT C(f) € H3(J(X)) IMPLIES f € By. Let f ¢ By. If f does not
have Gs-graph, then, by Theorem 5, C(f) is not Borel and so C(f) ¢ T1$(J(X)).
So, we may assume that f has Gs-graph.

Since f ¢ By, there is a Cantor set C such that f[¢ is nowhere continuous.
We may assume that there is a K > 0 such that

osc(flc,z) > 3K (1)

for every « € C. Since f is Borel, there is a G§-set G such that G is a dense
subset of C' and f[¢g is continuous.

Let U be a nonempty open subset of C. Let + € GNU. There is an open
set V. C U such that x € V and diam(f[V N G]) < K. By (1) there is a
d € V such that Hy(f(d), f[VNG]) > K. Since U was arbitrary we may find
a countable dense subset D of C such that for every d € D there is an open
set Vg such that d € Vg and Hy(f(d), f[VaNG]) > K. By Lemma 10, there is
a countable dense subset E of D such that G; = GU FE is a Gg-subset of C.
Since f|g and f[g are disjoint open subsets of f[g, which is a Gs-subset of
X x Y, we have that f[g is a countable Gs-set. By Lemma 24, the collection
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J of isolated points of f[g is dense in f[g. So, we may find a countable dense
E; C E such that f[g,= J is the collection of isolated points in f[q,. Find
a compact perfect set K C G U E; such that Fy N K is dense in K. Letting
Q =E;NK and H =K\ Q it should be clear that C(f[x) is the collection
of compact sets L € J(K) with the property that L N @ is finite and L N H is
compact. By Lemma 23, C(f[x) ¢ II3(J(K)). Since C(f) N J(K) = C(f|k),
we have that C(f) ¢ II3(J(X)). O

PROOF THAT f € By MPLIES C(f) € ITJ(J(X)). Since Y is Polish, we can
consider Y as subset of [0, 1] with the usual product topology and f to be a
function from X into [0, 1]“. Since every B function into [0, 1] is a pointwise
limit of continuous functions, we have that f: X — [0,1]* is a pointwise limit
of continuous functions f;: X — [0, 1]*.

For each n, k,l € w let

| —

Agin={P € J(X): (Fz,w e P)(Vi > n)(d(z,w) <

\)

)
(d(fi(a), Fi(w) > 50)).

We show that Ay, is closed. Let P; € Ay, and P; — P. For each
j € w, there are z;,w; € P; such that d(x;,w;) < 1/2! and for all i > n
we have d(fi(x;), fi(w;)) > 1/2%. Taking a subsequence if necessary we may
assume that there exist z,w € P such that lim;c,{z;, w;} = {z,w} in J(X).
Clearly, d(z,w) < 1/2!. For i > n fixed the continuity of f; implies that
d(fi(x), fi(w)) > 1/2%. Hence, P € Ay 1 n. So, Ay n is closed.

Let £ = Upco Nicw Unew Ak,iin- Clearly, E € $3(J(X)). We will be done
if we show that C(f) = J(X) \ E. Suppose P € E. There is a k € w such
that P € (;c, Unew Aki,n- So for every I € w there exist x;,w; € P such that
d(xg,wy) < 1/28 and d(f;(z1), fi(wi)) > 1/2F for all sufficiently large i € w. It
follows that d(f(x;), f(w;)) > 1/2*. Since P is compact, there is a p € P such
that limje,{z;, w;} = {p} in J(X). Clearly, the oscillation of f[p at z is at
least 1/2%. Hence, P ¢ C(f).

Suppose P ¢ C(f). There is a p € P and a k € w and a sequence (p;)icw
of elements of P such that d(p;,p) < 1/2! for every | € w and

d(f(p0), f(p)) = 1/2". (2)

Since (f;)iecw converges to f pointwise, (2) implies we may find for each l € w
a n; € w such that for all i > n; we have d(f;(p1), fi(p)) > 1/2%. Thus,
PcE. O

We now show that none the implications of Theorem 3 may be reversed.
Let {¢n,: n € w} be an enumeration of the rational numbers in R. Define
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f(a:):{n+1 if x = qp;

0 otherwise.

Now f ¢ By since it has no point of continuity. However, C(f) € X3(J(X)) C
9(J(X)) since f is T} and has Gs-graph. So, the implication (ii) = (iii) may
not be reversed.

Let f: R — R be the characteristic function of a convergent sequence
without its limit point. Clearly, f € B;. However, f is not Ty so C(f) ¢
AJ(J(X)). Since f is Ty and has G-graph, we have C(f) € X3(J(X)). Thus,
C(f) ¢ TI3(J(X)). So, the implication (i) = (i) may not be reversed.

We construct a Bj function f: R — R such that C(f) € TI(J(X)) \
$9(J(X)). For each n € w pick an increasing sequence (wWp m)mew in (1 —
1/2",1 — 1/2"*1] which converges to 1 — 1/2"*!. Define f: R — R by

0 otherwise.

It is easily seen that f € B;. For each n,m € w let (zy,m,1)ic be an
increasing sequence in (1 — 1/2" wy, o] if m = 0 or (Wpm—1, Wn,m] if m # 0,
in either case let lim;cy, 2n,m,i = Wn,m. Let I be the set from Proposition 7.
Define J = e, I. By [6, 23.3], J € IY((29%@)«) \ BO((22>«)»).

Define h: (2¢*¥)¥ — J(R) by

1
h(a):{l}U{l—WnEcu}U U Ln,'rnv
n,mew
where L,, ,,, is defined by
0 it {l: o(n)(m,l)=1}=10
Lym = {wm,n} if {lI: o(n)(m,l) = 1} is infinite;

{Zn,m,max{l: U(n)(m,l):l}} otherwise.

By an argument similar to the one used in the proof of Lemma 11, one can
show that h is in By. It is easy to verify that h=1(C(f)) = J. Since h € By,
we have C(f) ¢ X3(J(X)).
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