
Real Analysis Exchange
Vol. (), , pp. 7–14

Zbigniew Grande∗, Institute of Mathematics, Bydgoszcz Academy, Plac
Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. e-mail: grande@ab-byd.edu.pl

QUASICONTINUITY AND
MEASURABILITY OF FUNCTIONS OF

TWO VARIABLES

Abstract

In this article we establish some conditions concerning the sections
fy of a function f : R2 → R having Lebesgue measurable sections fx

which imply the measurability of f . The first condition is more general
than condition A introduced in [5].

Let R be the set of all reals and let D ⊂ R be a nonempty set.
A function h : D → R is quasicontinuous [resp. upper semi-quasicontinuous]

{lower semi-quasicontinuous}([6, 7]) at a point x ∈ D if for every positive
real η and for every open interval I containing x there is an open interval
J ⊂ I such that J ∩ D 6= ∅ and h(J ∩ D) ⊂ (h(x) − η, h(x) + η) [resp.
h(J ∩D) ⊂ (−∞, h(x) + η)] {h(J ∩D) ⊂ (h(x)− η,∞)}.

Denote by µ the Lebesgue measure in R and by µe the outer Lebesgue
measure in R. For a set A ⊂ R and a point x we define the upper (lower)
outer density Du(A, x) (Dl(A, x)) of the set A at the point x as

lim sup
h→0+

µe(A ∩ [x− h, x+ h])
2h

(lim inf
h→0+

µe(A ∩ [x− h, x+ h])
2h

respectively).

A point x is said to be an outer density point (a density point) of a set
A if Dl(A, x) = 1 (if there is a Lebesgue measurable set B ⊂ A such that
Dl(B, x) = 1).

The family, Td, of all sets A for which the implication

x ∈ A =⇒ x is a density point of A
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holds, is a topology called the density topology ([1, 11]). The sets A ∈ Td are
measurable.

In [5] the family, A, of all functions g : R → R for which the sets D(g)
of all discontinuity points of g are nowhere dense and for each nonempty set
E ⊂ D(g) belonging to the density topology, Td, the restricted function g � E
is quasicontinuous, was introduced and the following theorem is proved:

Theorem 1. Let f : R2 → R be a function such that all sections fx, x ∈ R,
are (Lebesgue) measurable. If all sections fy, y ∈ R, are quasicontinuous and
belong to the family A then f is (Lebesgue) measurable as the function of two
variables.

In this article, I generalize this theorem.
Let E be the family of all functions g : R → R which are upper and lower

semi-quasicontinuous at each point x ∈ R such that for each nonempty set
E ⊂ D(g) belonging to the density topology the restricted function g � E is
upper and lower semi-quasicontinuous at each point u ∈ E.

It is obvious to observe that the family of all quasicontiuous functions
g ∈ A is a nowhere dense subset in the space of all functions g ∈ E with the
metric

ρC(g, h) = min(1, sup
x∈R

|g(x)− h(x)|)

of uniform convergence. So, the following theorem is a generalization of The-
orem 1.

Theorem 2. Let f : R2 → R be a function such that the sections fx, x ∈ R,
are measurable. If the sections fy ∈ E for y ∈ R then f is measurable as the
function of two variables.

In the proof of this theorem we apply the following Lemma which is a
particular case of Davies Lemma from [2] and a remark on functions from the
family E .

Lemma 1. Let f : R2 → R be a function. If for every positive real η and
for each measurable set A ⊂ R2 of positive measure there is a measurable
set B ⊂ A of positive measure such that oscB f ≤ η then the function f is
measurable.

Remark 1. Let g ∈ E be a bounded function and let A ⊂ R be a nonempty
set belonging to Td. For each positive real η there is an open interval I such
that I ∩A 6= ∅ and osc(I∩A) g < η.

Proof. If A \D(g) 6= ∅ then g is continuous at a point belonging to A and
in this case the proof is obvious. So suppose that A ⊂ D(g). The function
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g is bounded on A then we find a point x ∈ A such that g(x) > supA g −
η
4 .

Since the restricted function g/A is lower semi-quasicontinuous at x, there is
an open interval I with I ∩A 6= ∅ and g(I ∩A) ⊂ (g(x)− η

4 ,∞). But

g(I ∩A) ⊂ (−∞, g(x) +
η

4
),

so osc(I∩A) g ≤ η
2 < η.

Proof of Theorem 2. Without loss of the generality we may assume that
f is bounded, since in the contrary case we can consider the function arctgf .

We will show that the function f satisfies the assumptions of the above
Lemma. Let A ⊂ R2 be a set of positive measure and let η be a positive real.
For x, y ∈ R denote by Ax = {u ∈ R; (x, u) ∈ A} the vertical section of the
set A corresponding to x and respectively by Ay = {t ∈ R; (t, y) ∈ A} the
horizontal section of the set A corresponding to y. Moreover let

K = {(x, y) ∈ A;x is a density point of Ay},

E = {(x, y) ∈ K;x ∈ D(fy)}

and let H = K\E. Denote by µ2 the Lebesgue measure in R2 and observe that
by well known theorem from Saks monograph [9] (p. 130-131) µ2(A \K) = 0.

Now we will consider two cases.
Case I. The set H is not of measure 0.

Then for every point (x, y) ∈ H there are open intervals I(x, y) 3 x and
J(x, y) with rational endpoints such that µ(I(x, y)∩Ky) > 0 and d(J(x, y) <
η
4 (d(J(x, y)) denotes the length of the interval J(x, y)) and fy(I(x, y)) ⊂
J(x, y). Let I1, I2, . . . , In, . . . be a sequence of all open intervals with rational
endpoints, let J1, . . . , Jn, . . . be an enumeration of all open intervals with
d(Jn) < η

4 and for n,m = 1, 2, . . . let

An,m = {(x, y) ∈ H; I(x, y) = In and J(x, y) = Jm}.

Then H =
⋃∞

n,m=1An,m, and consequently there is a pair of positive integers
j, k for which the set Aj,k is not of measure zero. Let

V ={y;∃x(x, y) ∈ Aj,k}
U ={y; y is an outer density point of V }

and X = K ∩ (Ij × U). The set X is measurable and by Fubini’s Theorem
it is of positive measure. Put B = X ∩ f−1(Lk), where Lk = [ak, bk] is the
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closed interval having the same center as Jk and the length equal η. Evidently,
K ∩ (Ij × V ) ⊂ B.

We will prove that the set X \B is of measure zero. Really, if the set X \B
is of positive outer measure, then by the equality

X \B = (X ∩ f−1((−∞, ak))) ∪ (X ∩ f−1((bk,∞))),

at least one of the sets on the right side of the above equality is of positive outer
measure. Assume that the set Y = X ∩ f−1((−∞, ak)) is not of measure zero.
By the upper semi-quasicontinuity of the sections fy for each point (x, y) ∈ Y
there is an open interval K(x, y) ⊂ Ij with rational endpoints such that for
t ∈ K(x, y) we have f(t, y) < ak. Let K1 be an open interval such that the set

Z = {(x, y) ∈ Y ;K(x, y) = K1}

is of positive outer measure. Put W = {y ∈ R;∃x(x, y) ∈ Z} and let v ∈ K1

be a point. Then for y ∈ W we have f(v, y) ∈ R \ Lk and for y ∈ V the
relation f(v, y) ∈ Jk ⊂ Lk holds.

Observe that V,W ⊂ U , the set W is of positive outer measure, every point
of the set U is an outer density point of the set V and fv(W ) ⊂ R \ Lk and
fv(V ) ⊂ Lk. This contradicts to the measurability of the section fv.

Let B ⊂ X and µ2(X \ B) = 0. Then the set B ⊂ A is measurable and
µ2(B) > 0 and oscB f ≤ η.

Case II. The set H is of measure 0.
In this case we put F1 = {(x, y) ∈ E;x is a density point of Ey}. Since all

sections fy ∈ E , y ∈ R, analogously as in case I by Remark 1 we find open
intervals I, J and a set P ⊂ R such that d(J) < η

4 , P is not of measure zero,
I ∩ (F1)y 6= ∅ for y ∈ P and f(x, y) ∈ J for (x, y) ∈ F1 ∩ (I × P ). Let

Z = {y; the outer density of the set P at y is equal 1}

and S = F1 ∩ (I ×Z). Then the set S is measurable and by Fubini’s Theorem
µ2(S) > 0. Put U = {(x, y) ∈ S; f(x, y) ∈ R\L}, where L is the open interval
of length equal η having the same center as J .

We will prove that µ2(U) = 0. Really, in the opposite case since the
sections fy ∈ E , there are an open interval I1 ⊂ I and a set B1 ⊂ Z which is
not of measure zero such that µ(I ∩ Sx) > 0 for y ∈ B1, and f(x, y) ∈ R \ J
for (x, y) ∈ S ∩ (I1 × B1). If x ∈ I1 is a point such that µ(Sx) > 0 then we
obtain a contradiction with the measurability of the section fx.

So, µ2(U) = 0, the set B = S \ U ⊂ K ⊂ A is measurable, µ2(B) > 0 and
oscB f ≤ η.
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Remark 2. It is obvious to observe that the family of all functions g : R2 → R
satisfying the hypothesis of Theorem 1 is a nowhere dense subset in the space
of all functions satisfying the hypothesis of Theorem 2 with the metric ρC of
uniform convergence.

Before the formulation of the next theorem we recall two examples of non-
measurable functions of two variables.

Example 1. (W. Sierpiński [10]). There is a nonmeasurable set A ⊂ R2 such
that for every straight line p the inequality card(A ∩ p) ≤ 2 is true. Let φ be
the characteristic function of the set A.

Example 2. (R. O. Davies [2]) Martin’s Axiom (Continuum Hypothesis)
implies that there is a nonmeasurable function ψ : R2 → [0, 1] such that the
sections ψy, y ∈ R, are approximately continuous and for each x ∈ R the set
{t ∈ R; f(x, t) 6= 0} is of measure zero (is countable).

Remark 3. Observe that for every countable set G ⊂ R there is a set H ⊂ R
of measure zero such that the restricted sections {φy/(R\H)}y∈G and {ψy/(R\
H)}y∈G are equal zero.

We will say that the sections fy, y ∈ R, of a function f : R2 → R satisfy
the condition

(∗) if for each positive real η, for each nonempty open set U ⊂ R and for
all u, v ∈ R the condition

cl({x ∈ U ; |f(x, u)− f(x, v)| ≤ η}) ⊃ U

(cl denotes the closure operation) implies the inequality

|f(t, u)− f(t, v)| ≤ η for all t ∈ U.

In [8] O’Malley introduced the topology Tr generated by the basis of all
sets A belonging to the density topology which are simultaneously Fσ-sets and
Gδ-sets.

Observe that if the sections fy are Tr-continuous then they satisfy the
condition (∗).

We will say that a function f : R2 → R satisfies the condition (∗∗) if the
sections fy, y ∈ R, are of the first Baire class, the sections fx, x ∈ R are
measurable and for each nonempty set A ∈ Td there is a point y ∈ A such
that for each nonempty set B ∈ Td and for each positive real η there are a
nonempty set F ⊂ A belonging to Td and a sequence (un)n such that y ∈ F ,
B ∩ int(cl({un;n ≥ 1})) 6= ∅ and |f(un, z) − f(un, t)| ≤ η for all z, t ∈ F and
n = 1, 2, . . . (int denotes the interior operation).
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Theorem 3. If a function f : R2 → R satisfies the conditions (∗) and (∗∗)
then f is measurable.

Proof. We will prove that f satisfies the hypothesis of Lemma 1. For this
fix a real η > 0 and a measurable set H ⊂ R2 of positive measure. There
is a set G ⊂ H such that µ2(H \ G) = 0 and for each point (x, y) ∈ G the
sections Gx, G

y ∈ Td ([3]). Since the sections fy, y ∈ R, are Baire 1 class,
for each point y ∈ PrY (G) = {y;∃x(x, y) ∈ G} there is an open interval I(y)
with rational endpoints such that I(y) ∩ Gy 6= ∅ and osc(I∩Gy) f

y < η
4 . The

family of intervals with rational endpoints is countable, so there is an open
interval I for which the set M = {y ∈ PrY (G); I(y) = I} is of positive outer
measure. Let A be the set of all outer density points of the set M . The
set A is nonempty and belongs to Td. Put P = G ∩ (I × A). The set P is
measurable, and by Fubini’s theorem, µ2(P ) > 0. So, there is a nonempty
set K ∈ Td which is contained in the set {y ∈ PrY (P );µ(P y) > 0}. By
the hypothesis (∗∗) there is a point v ∈ K such that for each nonempty set
B ∈ Td there are a nonempty set F ∈ Td and a sequence (un)n such that
v ∈ F ⊂ K and |f(un, t) − f(un, y)| < η

4 for all t, y ∈ F and n ≥ 1 and
B ∩ int(cl({un;n ≥ 1})) 6= ∅. Find a nonempty set F ∈ Td and a sequence
(un)n satisfying the above conditions for the set B = P v. Let E = P ∩(I×F ).
Then E ⊂ H is a measurable set of positive measure and for arbitrary points
(x, y), (s, t) ∈ E, we have

|f(x, y)− f(s, t)| ≤ |f(x, y)− f(s, y)|+ |f(s, y)− f(s, t)| < η

4
+
η

4
=
η

2
.

So, oscE f ≤ η
2 < η.

Observe that the functions φ and ψ from Examples 1 and 2 satisfy the con-
dition (∗∗) but they are not measurable. So they do not satisfy the condition
(∗).

An open problem is the following.

Problem. ([4], Probl. 1232.) Let f : R2 → R be a function such that the sec-
tions fy, y ∈ R, are Tr-continuous and the sections fx, x ∈ R, are measurable.
Must the function f be measurable as the function of two variables?

The next example shows that there are Tr-continuous functions g : R → R
which do not belong to the family E . So, the answer to the above problem
does not result from Theorem 2. Theorem 3 gives only a partial answer to
this problem.

Example 3. Let C ⊂ (0, 1) be a Cantor set of positive measure and let (In)n

be an enumeration of all components of the set (0, 1) \C. In every component
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In = (an, bn), n ≥ 1, of the open set (0, 1) \ C we find a closed interval
Jn = [cn, dn] ⊂ In and a continuous function fn : (an, bn) → [0, 1] such that:
fn(Jn) = [0, 1] and fn((an, bn) \ Jn) = {1}, and

dn − cn
min(cn − an, bn − dn)

<
1
n
.

Putting

g(x) =

{
fn(x) for x ∈ In, n ≥ 1
1 otherwise

we obtain an approximately continuous function which is continuous at each
point x ∈ R \C and such that the restricted function g � C is also continuous.
So g is in the class B∗1 (see [8]) and consequently Tr-continuous.

Let A ⊂ C is a nonempty set belonging to Td and for every index n ≥ 1
let Kn ⊂ Jn be an open interval for which f(Kn) ⊂ [0, 1

3 ]. Then the set

M = A ∪
⋃
n

Kn ∈ Td,

but the restricted function g/M is not upper semi-quasicontinuous at points
x ∈ A. So the function g is not in the class E .
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