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QUASICONTINUITY AND
MEASURABILITY OF FUNCTIONS OF
TWO VARIABLES

Abstract
In this article we establish some conditions concerning the sections
fY of a function f : R*> — R having Lebesgue measurable sections f,
which imply the measurability of f. The first condition is more general
than condition A introduced in [5].

Let R be the set of all reals and let D C R be a nonempty set.

A function h : D — R is quasicontinuous [resp. upper semi-quasicontinuous|
{lower semi-quasicontinuous}([6, 7]) at a point x € D if for every positive
real n and for every open interval I containing x there is an open interval
J C I such that JN D # ( and h(J N D) C (h(x) — n,h(x) +n) [resp.
h(J (D) C (=00, hiw) +n)] {h(J N D) C (h(x) — n,0)}.

Denote by p the Lebesgue measure in R and by p. the outer Lebesgue
measure in R. For a set A C R and a point & we define the upper (lower)
outer density D, (A,z) (D;(A,z)) of the set A at the point z as

 pe(Anfe — oz +h)
lim sup
h—0+ 2h

.. o He(AN[z—h,z+h])
1 f
(b o o7
A point x is said to be an outer density point (a density point) of a set
A if Di(A,x) = 1 (if there is a Lebesgue measurable set B C A such that
Dy(B,z) =1).
The family, Ty, of all sets A for which the implication

respectively).

r € A = x is a density point of A
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holds, is a topology called the density topology ([1, 11]). The sets A € T, are
measurable.

In [5] the family, A, of all functions g : R — R for which the sets D(g)
of all discontinuity points of g are nowhere dense and for each nonempty set
E C D(g) belonging to the density topology, Ty, the restricted function g [ E
is quasicontinuous, was introduced and the following theorem is proved:

Theorem 1. Let f : R?2 — R be a function such that all sections f., v € R,
are (Lebesque) measurable. If all sections fY, y € R, are quasicontinuous and
belong to the family A then f is (Lebesque) measurable as the function of two
variables.

In this article, I generalize this theorem.

Let £ be the family of all functions g : R — R which are upper and lower
semi-quasicontinuous at each point z € R such that for each nonempty set
E C D(g) belonging to the density topology the restricted function g | F is
upper and lower semi-quasicontinuous at each point u € F.

It is obvious to observe that the family of all quasicontiuous functions
g € A is a nowhere dense subset in the space of all functions g € £ with the
metric

pc(g, h) = min(1, sup lg(z) — h(z)])

of uniform convergence. So, the following theorem is a generalization of The-
orem 1.

Theorem 2. Let f: R?> — R be a function such that the sections f,, x € R,
are measurable. If the sections fY € € for y € R then f is measurable as the
function of two variables.

In the proof of this theorem we apply the following Lemma which is a
particular case of Davies Lemma from [2] and a remark on functions from the
family £.

Lemma 1. Let f : R? — R be a function. If for every positive real n and
for each measurable set A C R? of positive measure there is a measurable
set B C A of positive measure such that oscg f < n then the function f is
measurable.

Remark 1. Let g € £ be a bounded function and let A C R be a nonempty
set belonging to Ty. For each positive real 1 there is an open interval I such
that I A # 0 and oscirnay g < 1.

Proor. If A\ D(g) # () then g is continuous at a point belonging to A and
in this case the proof is obvious. So suppose that A C D(g). The function
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g is bounded on A then we find a point 2 € A such that g(x) > sup, g — 7.
Since the restricted function g/A is lower semi-quasicontinuous at x, there is
an open interval I with I N A # () and g(I N A) C (g(x) — %, 00). But

g(INA)C(~o0,g(z)+ 7),

13

80 05C(1nA) 9 < 5 < 7).

PROOF OF THEOREM 2. Without loss of the generality we may assume that
f is bounded, since in the contrary case we can consider the function arctgf.

We will show that the function f satisfies the assumptions of the above
Lemma. Let A C R? be a set of positive measure and let n be a positive real.
For z,y € R denote by A, = {u € R;(z,u) € A} the vertical section of the
set A corresponding to z and respectively by AY = {t € R;(t,y) € A} the
horizontal section of the set A corresponding to y. Moreover let

K = {(z,y) € A;x is adensity point of AY},

E={(z,y) € K;x € D(f")}

and let H = K\ E. Denote by p» the Lebesgue measure in R? and observe that
by well known theorem from Saks monograph [9] (p. 130-131) us(A\ K) = 0.

Now we will consider two cases.

Case I. The set H is not of measure 0.

Then for every point (z,y) € H there are open intervals I(z,y) 3 = and
J(x,y) with rational endpoints such that p(I(z,y) N KY) > 0 and d(J(z,y) <
7 (d(J(x,y)) denotes the length of the interval J(z,y)) and fY(I(z,y)) C
J(x,y). Let I, I, ..., I,,... be asequence of all open intervals with rational
endpoints, let Jy,...,J,,... be an enumeration of all open intervals with
d(Jn) < 7 and for n,m =1,2,... let

An,m = {(xay) € H;I(x,y) = I, and ‘](xvy) = Jm}'

Then H = Uf:)m:l Ay m, and consequently there is a pair of positive integers
J, k for which the set A; j is not of measure zero. Let

Vv :{y; Elx(fvy) € A]}k}
U ={y;y is an outer density point of V'}

and X = K N (I; x U). The set X is measurable and by Fubini’s Theorem
it is of positive measure. Put B = X N f~!(Ly), where Ly = [a,bx] is the
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closed interval having the same center as Ji and the length equal 1. Evidently,
KnN(I; xV)cCB.

We will prove that the set X \ B is of measure zero. Really, if the set X \ B
is of positive outer measure, then by the equality

X\ B=(Xnf7((—00,ax)) U (X N fH((b,00))),

at least one of the sets on the right side of the above equality is of positive outer
measure. Assume that the set Y = X N f~1((—o0, ax)) is not of measure zero.
By the upper semi-quasicontinuity of the sections f¥ for each point (z,y) € Y
there is an open interval K(x,y) C I; with rational endpoints such that for
t € K(z,y) we have f(t,y) < ax. Let K7 be an open interval such that the set

Z =A{(z,y) €Y; K(z,y) = K1}

is of positive outer measure. Put W = {y € R;3,(z,y) € Z} and let v € K;
be a point. Then for y € W we have f(v,y) € R\ Li and for y € V the
relation f(v,y) € Jp C Ly holds.

Observe that V, W C U, the set W is of positive outer measure, every point
of the set U is an outer density point of the set V and f,(W) C R\ Ly and
fo(V) C Li. This contradicts to the measurability of the section f,.

Let B C X and p2(X \ B) = 0. Then the set B C A is measurable and
p2(B) > 0 and oscp f < n.

Case II. The set H is of measure 0.

In this case we put F} = {(x,y) € E;x is a density point of E¥}. Since all
sections fY € £, y € R, analogously as in case I by Remark 1 we find open
intervals I, J and a set P C R such that d(J) < 7, P is not of measure zero,
IN(F)Y #0fory e Pand f(z,y) € J for (z,y) € F1 N (I x P). Let

Z = {y; the outer density of the set P at y is equal 1}

and S = F1 N (I x Z). Then the set S is measurable and by Fubini’s Theorem
pu2(S) > 0. Put U = {(z,y) € S; f(z,y) € R\ L}, where L is the open interval
of length equal 1 having the same center as J.

We will prove that ps(U) = 0. Really, in the opposite case since the
sections fY € &, there are an open interval Iy C I and a set By C Z which is
not of measure zero such that u(I N S;) > 0 for y € By, and f(z,y) € R\ J
for (z,y) € SN Iy x By). If x € I is a point such that p(S;) > 0 then we
obtain a contradiction with the measurability of the section f,.

So, p2(U) =0, the set B =S\ U C K C A is measurable, us(B) > 0 and
oscg f <. O
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Remark 2. It is obvious to observe that the family of all functions g : R — R
satisfying the hypothesis of Theorem 1 is a nowhere dense subset in the space
of all functions satisfying the hypothesis of Theorem 2 with the metric pc of
uniform convergence.

Before the formulation of the next theorem we recall two examples of non-
measurable functions of two variables.

Example 1. (W. Sierpifiski [10]). There is a nonmeasurable set A C R? such
that for every straight line p the inequality card(A Np) < 2 is true. Let ¢ be
the characteristic function of the set A.

Example 2. (R. O. Davies [2]) Martin’s Axiom (Continuum Hypothesis)
implies that there is a nonmeasurable function 1 : R? — [0, 1] such that the
sections ¥Y, y € R, are approximately continuous and for each x € R the set
{t € R; f(z,t) # 0} is of measure zero (is countable).

Remark 3. Observe that for every countable set G C R there is a set H C R
of measure zero such that the restricted sections {¢?/(R\H)}yec and {¢¥/(R\
H)}yeq are equal zero.

We will say that the sections f¥, y € R, of a function f : R? — R satisfy
the condition

(*) if for each positive real n, for each nonempty open set U C R and for
all u,v € R the condition

d({z € Us[f(z,u) — f(z,0)| <n}) DU
(cl denotes the closure operation) implies the inequality

|f(t,u) — f(t,v)| <nforall t € U.

In [8] O’Malley introduced the topology T, generated by the basis of all
sets A belonging to the density topology which are simultaneously F,-sets and
Gs-sets.

Observe that if the sections fY are T,-continuous then they satisfy the
condition (k).

We will say that a function f : R? — R satisfies the condition (%) if the
sections fY, y € R, are of the first Baire class, the sections f,, x € R are
measurable and for each nonempty set A € Ty there is a point y € A such
that for each nonempty set B € Ty and for each positive real n there are a
nonempty set F' C A belonging to Ty and a sequence (uy, ), such that y € F,
Bnint(cl({un;n > 1})) # 0 and |f(un, z) — f(un,t)] < nfor all z,¢t € F and
n=1,2,... (int denotes the interior operation).
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Theorem 3. If a function f : R? — R satisfies the conditions () and (*x)
then f is measurable.

ProOF. We will prove that f satisfies the hypothesis of Lemma 1. For this
fix a real n > 0 and a measurable set H C R? of positive measure. There
is a set G C H such that us(H \ G) = 0 and for each point (z,y) € G the
sections G, GY € T4 ([3]). Since the sections fY, y € R, are Baire 1 class,
for each point y € Pry(G) = {y;3.(x,y) € G} there is an open interval I(y)
with rational endpoints such that I(y) N GY # 0 and osc(;ngvy fY < 7. The
family of intervals with rational endpoints is countable, so there is an open
interval I for which the set M = {y € Pry(G);I(y) = I} is of positive outer
measure. Let A be the set of all outer density points of the set M. The
set A is nonempty and belongs to Ty. Put P = GN (I x A). The set P is
measurable, and by Fubini’s theorem, ps(P) > 0. So, there is a nonempty
set K € T, which is contained in the set {y € Pry(P);u(PY) > 0}. By
the hypothesis (xx) there is a point v € K such that for each nonempty set
B € T, there are a nonempty set F € Ty and a sequence (uy), such that
veF CK and |f(un,t) — f(un,y)] < 7 forall t,y € F and n > 1 and
Bnint(cl({uy;n > 1})) # 0. Find a nonempty set F' € T, and a sequence
(un)n satisfying the above conditions for the set B = PV. Let E = PN(I x F).
Then E C H is a measurable set of positive measure and for arbitrary points
(x,y), (s,t) € E, we have
n_n

F ) = Hs 01 < |f@y) = sl + 1)~ fs0)] < T+ T =1,

So, oscp f < 4 <. O

Observe that the functions ¢ and 1 from Examples 1 and 2 satisfy the con-
dition (**) but they are not measurable. So they do not satisfy the condition
().

An open problem is the following.

Problem. ([4], Probl. 1232.) Let f : R> — R be a function such that the sec-
tions fY, y € R, are T,.-continuous and the sections f,, x € R, are measurable.
Must the function f be measurable as the function of two variables?

The next example shows that there are T,.-continuous functions g : R — R
which do not belong to the family £. So, the answer to the above problem
does not result from Theorem 2. Theorem 3 gives only a partial answer to
this problem.

Example 3. Let C C (0,1) be a Cantor set of positive measure and let (I,),
be an enumeration of all components of the set (0,1)\ C. In every component
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I, = (an,bn), n > 1, of the open set (0,1) \ C we find a closed interval
Jn = [en,dy] C I, and a continuous function f, : (an,b,) — [0,1] such that:
fu(Jn) =[0,1] and f,((an,bn) \ Jn) = {1}, and

dy, — cp, 1

< —.
min(¢, — an, by —dy) m

Putting

folz) forzel,, n>1
g(z) = .
1 otherwise

we obtain an approximately continuous function which is continuous at each
point € R\ C and such that the restricted function g | C is also continuous.
So g is in the class By (see [8]) and consequently T,.-continuous.

Let A C C is a nonempty set belonging to Ty and for every index n > 1
let K,, C J,, be an open interval for which f(K,) C [0, 3]. Then the set

M =AUl JK, € Ty,
n

but the restricted function g/M is not upper semi-quasicontinuous at points
x € A. So the function g is not in the class £.
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