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THE NON-UNIFORM RIEMANN
APPROACH TO THE MUTLIPLE

ITÔ-WIENER INTEGRAL

Abstract

The Riemann approach to integration is well-known for its explic-
itness and directness. In this paper we use the Non-Uniform Riemann
Approach to give an alternative definition of the Multiple Itô-Wiener In-
tegral and prove that our definition is in fact equivalent to the classical
definition.

1 Introduction

The theory of Multiple Stochastic Integral was first studied by N. Wiener in
1938, see [11]. This study was followed up in greater details by K. Itô in the
early 1950s, see [5]. Similar to his study of the stochastic integral in one-
dimension, he gave a non-explicit L2 procedure in defining what we call the
Multiple Itô-Wiener integral.

A natural question that arises is whether it is possible to use an explicit
procedure of defining Multiple Itô-Wiener integral by the Riemann approach,
which is well known for its explicitness and directness. In fact, it was proved
that by using Riemann approach with non-uniform mesh, stochastic integral
can be seen as the limit of a sequence of Riemann sums, see [1], [10], [12].

In this paper, we shall show that in fact the non-uniform Riemann approach
can also be used to give an alternative definition to the Multiple Itô-Wiener
integral and that this definition, which we shall call Multiple Itô-McShane
integral, is equivalent to the classical Multiple Itô-Wiener Integral.
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2 Classical Multiple Itô-Wiener Integral

In this section we shall review the construction and some basic results of
the classical Multiple Itô-Wiener Integral. The details of the results can be
obtained from [5], Section 2, Pp 183 - 186 ].

Let T = [0, 1] and Tm = [0, 1]m. We shall denote Lebesgue measure on
T by λ. Let λm be the corresponding Lebesgue measure on Tm. For any
interval I of T , we may use |I| or λ(I) to denote the length of I. The norm in
L2(Tm, λm) is denoted by || · ||m.

Definition 2.1. Let (Ω, P ) be a probability space and W = {Wt(ω) : t ∈
[0, 1]} be a family of random variables. Then W is said to be a canonical
Brownian motion if it satisfies the following properties:

1. W0(ω) = 0 for all ω ∈ Ω,

2. it has Normal Increments; that is, Wt−Ws has a Normal distribution
with mean 0 and variance t − s for all t > s (which naturally implies
that Wt has a Normal distribution with mean 0 and variance t),

3. it has Independent Increments; that is, Wt − Ws is independent of
its past; that is, Wu, 0 ≤ u < s < t and

4. its sample paths are continuous; i.e., for each ω ∈ Ω, Wt(ω) as a function
of t is continuous on [0, 1].

Definition 2.2. Let {I1, I2, I3, . . . , In} be a collection of left-open subintervals
which form a partition of (0, 1]; i.e., the intervals I1, I2, . . . In are disjoint and⋃n

k=1 Ik = (0, 1]. An elementary function on Tm is a function g : Tm → R
that can be expressed in the form

g =
n∑

i1,i2,...,im=1

ai1,i2,...,im
1Ii1×Ii2×···×Iim

(1)

where {Ii1 , Ii2 , . . . , Iim
} is a subset from {I1, I2, I3, . . . , In} and ai,i2,...,im

= 0
if any two of the indices i1, i2, . . . im are equal.

Note that the definition of an elementary function shows that g vanishes
on the set of elements in Tm which have some equal components; that is, if
t = (t1, t2, t3, . . . , tn) ∈ Tm such that ti = tj for some i 6= j, then g(t) = 0.

The Multiple Itô-Wiener integral of an elementary function g is defined by

IW (g) =
n∑

i1,i2,...,im=1

ai1,i2,...,im

m∏
j=1

W (Iij ),
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where W is Brownian motion (see Definition 2.1) and W (I) denotes Wb−Wa

if I = (a, b]. It is known that E(IW (g))2 ≤ m!||g||2m, see [5], p. 162].
Let f ∈ L2(Tm, λm). Then there exists a sequence {fn} of elementary

functions on Tm such that limn→∞ ||fn − f ||m = 0. On the other hand,
E (IW (fp − fq))

2 ≤ m!||fp − fq||2m. Hence {IW (fn)} is a Cauchy sequence in
L2(Ω). By completeness, the limit exists and hence the Multiple Itô-Wiener
integral IW (f) of f is defined by limn→∞ E ((IW (fn)− IW (f))2 = 0, see [5],
p. 162].

Definition 2.3. Let f : Tm → R be a real-valued function. For each π ∈
Sm where Sm is the set of all permutations on m objects, let fπ denote the
permuted function of f under π, which is the function

fπ(t1, t2, t3, . . . , tm) = f(tπ(1), tπ(2), . . . , tπ(m))

for each (t1, t2, . . . , tm) ∈ Tm.
The symmetrization of the function f , denoted by f̃ , is the function f̃ :

Tm → R defined by

f̃(t1, t2, . . . , tm) =
1
m!

∑
π∈Sm

fπ(t1, t2, . . . , tm)

where the summation is over all π ∈ Sm.

Theorem 2.4. [See, for example, [5]] Let f : Tm → R and g : Tm → R be
Multiple Itô-Wiener integrable. Then

(i) f̃ is Multiple Itô-Wiener integrable and IW (f) = IW (f̃),

(ii) E [IW (f)] = 0 and

(iii) af + bg is Itô-Wiener integrable for any constants a, b ∈ R, and further

IW (af + bg) = aIW (f) + bIW (g).

3 Multiple Itô-McShane Integral

In this section we shall use the non-uniform Riemann approach to define the
Multiple Itô-McShane integral. First we shall define the non-uniform division
of Tm that we shall consider. This type of division in one-dimension was
considered by McShane. Hence we call our integral the Multiple Itô-McShane
integral.
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The intervals of Tm that we shall consider in the rest of this paper are of

the form I =
m∏

i=1

Ii, where each Ii is a left-open interval of [0, 1] of the form

(ai, bi].

Definition 3.1. Let δ be a positive function defined on Tm, ξ = (ξ1, ξ2, . . . , ξm)

∈ Tm and I =
m∏

i=1

Ii be an interval of Tm. An interval-point pair (I, ξ) is said

to be δ-fine if Ik ⊂ [ξk − δ(ξ), ξk + δ(ξ)] for each k = 1, 2, 3, . . . ,m.

Note that ξk may or may not be in Ik for each k = 1, 2, 3, . . . ,m. A finite
collection D of interval-point pairs {(I(i), ξ(i)) : i = 1, 2, 3, . . . , n} is said to be
a δ-fine division of Tm if

(i) I(i), i = 1, 2, 3, . . . , n, are disjoint left-open intervals of T ;

(ii)
n⋃

i=1

I(i) = (0, 1]m.

We remark that for any given positive function δ on Tm, a δ-fine division
of Tm exists, which is a direct consequence of the Heine-Borel open covering
theorem or can be proved directly using continued bisection.

Notation. It can be seen that Tm consists of two parts; namely, the diagonal
part of Tm

D = {(x1, . . . , xm) ∈ Tm : xi = xj for some i 6= j},

and
Dc = {(x1, . . . , xm) ∈ Tm : xi 6= xj for any i 6= j},

which is the non-diagonal part of Tm. The non-diagonal set Dc plays a basic
role in the construction of the multiple Itô-Wiener integral, as can be seen in
Definition 2.2 that the elementary function vanishes on the diagonal set D.
The non-diagonal set can be decomposed to m! open connected sets in Tm.

For each π ∈ Sm, the group of all permutations of m objects, we let

Gπ = {(x1, x2, x3, . . . , xm) ∈ Tm : xπ(1) < xπ(2) < xπ(3) < · · · < xπ(m)},

and there are m! such sets. Each of these sets is said to be contiguous to the
diagonal D.
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In this paper, we shall focus on the integral on the non-diagonal Dc of Tm.
The classical treatment of the integral on the diagonal D can be found in [9].
Let f be a real-valued function on Tm. Define a function by

f0(x) =

{
f(x) if x ∈ Dc

0 otherwise.

Then f0 is called the non-diagonal part of f .
Let f be a real-valued function on Tm. If D = {(I(i), x(i))} is a δ-fine

division of Tm, then we let S(f, δ,D) denote the Riemann sum

S(f, δ,D) = (D)
∑

f(x(i))W (I(i)),

where W (I(i)) =
∏m

j=1 W (I(i)
j ), I(i) =

∏m
j=1 I

(i)
j and each I

(i)
j is a left-open

interval of T .

Definition 3.2. A function f : Tm → R is said to be Multiple Itô-McShane
integrable to a function IM(f) on Tm if for every ε > 0, there exists a positive
function δ such that E

(
|S(f0, δ, D)−IM(f)|2

)
< ε whenever D = {(I(i), x(i)) :

i = 1, 2, 3, . . . , n} is a δ-fine division of Tm.

Lemma 3.3. Let δ be a positive function on Tm and {Dk} be a finite family
of δ-fine divisions of Tm. Then there exists a partition {A1, A2, . . . , Aq} of
[0, 1] and a finite family of δ-fine divisions of Tm denoted by {D′

k} such that
each interval of any D′

k is of the form Al1 ×Al2 × · · · ×Alm and each D′
k is a

refinement of Dk. Furthermore, S(f0, δ, Dk) = S(f0, δ, D
′
k) for all k.

Proof. The assertion follows from the following facts. First, if (I, ξ) is δ-fine
in Tm, and if I = J∪K, where J and K are two disjoint left-open subintervals,
then (J, ξ) and (K, ξ) are δ-fine. Second, f(ξ)W (I) = f(ξ)W (J)+f(ξ)W (K),
and by taking {A1A2, A3, . . . , Aq} to be all the intervals formed by taking all
the division points of Dk, the proof is easily completed. �

Definition 3.4. A finite collection of δ-fine division of Tm of the form D′
k

(in Lemma 3.3) is said to be a standard δ-fine division of Tm; that is, all the
partitions of {D′

k} have the same division points on T .

In view of Lemma 3.3, we shall assume that all finite collections of δ-fine
divisions of Tm that we consider in Definition 3.2 are all standard divisions.

Remark 3.5. From standard properties of Brownian motion, we know that

(A): if Ii = (ui, vi] and Ij = (uj , vj ] are disjoint, then E
(
W (Ii)W (Ij)

)
= 0
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while

(B): if Ii = Ij = (u, v], then E
(
W (Ii)W (Ij)

)
is a function of |v − u|.

By using a standard division (as in Definition 3.4) of Tm, we ensure that that
(A) occurs. Thus we are able to have Lemma 4.9, which is crucial to prove the
Equivalence Theorem. This is the rationale for using standard δ-fine divisions
instead of the δ-fine divisions of Definition 3.1.

Proposition 3.6. The Multiple Itô-McShane integral, if it exists, is unique.

Proof. The proof is standard in the theory of Henstock integration. For
details, see for example [7, p. 32, Theorem 2.4.6] for the proof.

In view of Proposition 3.5, we may let IM(f) denote the Multiple Itô-
Wiener integral of f for our subsequent sections.

4 Basic Properties of Multiple Itô-McShane Integral

In this section we shall state and prove the basic results of the Multiple-Itô
Stochastic Integral.

Proposition 4.1. A function f is Multiple Itô-McShane integrable on Tm

if and only if given ε > 0, there exists a positive function δ on Tm such
that E

(
|S(f0, δ, D1)−S(f0, δ, D2)|2

)
< ε whenever D1, D2 are standard δ-fine

divisions of Tm.

Definition 4.2. A function f : Tm → R is said to be Multiple Itô-McShane
integrable on an interval I of Tm if f1I is Multiple Itô-McShane integrable on
Tm.

Using Cauchy’s Criteria (Proposition 4.1), we have the following two results
on the integrability of subintervals. The proof is standard in the theory of
Henstock integration and hence is omitted.

Proposition 4.3. Let f be Multiple Itô-McShane integrable on Tm. Then f
is Multiple Itô-McShane integrable on any interval I of Tm.

Proposition 4.4. Let f be Multiple Itô-McShane integrable on Tm. Suppose
that I = J ∪K, where I, J and K are intervals from Tm, then f is Multiple
Itô-McShane integrable on Tm and IM(f, I) = IM(f, J) + IM(f,K) where
IM(f, I) denote the Multiple Itô-McShane integral of f over I in Tm.
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Lemma 4.5. Let f be Multiple Itô-McShane integrable function on Tm. Then
there exist positive functions δn on Tm, n = 1, 2, 3, . . . , with δn+1 < δn for all
n = 1, 2, 3, . . . such that IM(f) is the limit of S(f, δn, Dn) in the L2-norm.

Proof. For each n = 1, 2, . . . , there exists a positive function δn on Tm such
that the inequality in Definition 3.2 holds with ε = 1

n . For each n = 1, 2, 3, . . . ,
fix a δn-fine division Dn. We may assume that δn+1(ξ) < δn(ξ) for each n and
each ξ ∈ Tm. Hence we have limn→∞ E

(
|S(f0, δn, Dn)− IM(f)|2

)
= 0.

Proposition 4.6. Let f be Multiple Itô-McShane integrable on Tm with prim-
itive IM(f) ∈ L2(Ω). Then E [IM(f)] = 0.

Proof. By using Lemma 4.5, we have E[IM(f)] = limn→∞ E [S(f0, δn, Dn)]
and it is clear that E[S(f0, δn, Dn)] = 0 for all n.

Proposition 4.7. Let f be Multiple Itô-McShane integrable with value IM(f)
and let f̃ denote the symmetrization (see Definition 2.3) of the function f .
Then f̃ is also Multiple Itô-McShane integrable and IM(f) = IM(f̃).

Proof. Given ε > 0 there exists a positive function δ such that

E
(∣∣(D)

n∑
i=1

f0(ξi)
m∏

r=1

W (Iir )− IM(f)
∣∣2) <

ε

(m!)2

for any δ-fine standard division D =
{( ∏m

r=1 Iir
, ξi

)
: i = 1, 2, 3, . . . , n

}
of

Tm. For each π ∈ Sm let (f0)π denote the permuted function of f under π
(see Definition 2.3); that is, (f0)π(t1, t2, . . . , tm) = f0(tπ(1), tπ(2), . . . , tπ(m))
for any (t1, t2, . . . , tm) ∈ Tm. Let δπ be the permuted function of δ, so that
considering any δπ-fine standard division Dπ =

{( ∏m
i=1 Iiπ(r) , ξ

i
π

)}
of Tm we

have

E
(∣∣(Dπ)

n∑
i=1

(f0)π(ξi
π)

m∏
r=1

W (Iiπ(r))− IM(f)
∣∣2) <

ε

(m!)2
.

Note that
m∏

r=1

W (Iir ) =
m∏

r=1

W (Iiπ(r)). Let δ(ξ) = minπ∈Sm δπ(ξ) for all

ξ ∈ Tm. Consider any δ-fine standard division D =
{( ∏m

r=1 Iir , ξ
i
)

: i =
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1, 2, . . . , n
}

of Tm. We have

E
(∣∣(D)

n∑
i=1

(f̃)0(ξi)
m∏

r=1

W (Iir
)− IM(f)

∣∣2)
=E

(∣∣(D)
n∑

i=1

( 1
m!

∑
π∈Sm

(fπ)0(ξi)
) m∏

r=1

W (Iir
)− IM(f)

∣∣2)
≤ 1

(m!)2
E

(∣∣(D)
∑

π∈Sm

{ n∑
i=1

(fπ)0(ξi)
m∏

r=1

W (Iir )− IM(f)
}∣∣2)

≤ 1
(m!)2

(m!)
∑

π∈Sm

E
(∣∣(D)

n∑
i=1

(fπ)0(ξi)
m∏

r=1

W (Iir
)− IM(f)

∣∣2)
≤ 1

m!

∑
π∈Sm

ε = ε.

Lemma 4.8. Let f be Multiple Itô-McShane integrable on Tm, and let F (I)
be the Multiple Itô-McShane integral of f on the subinterval I ⊂ Tm. Let I
and J be two disjoint intervals from Tm in the same contiguous set Gπ for
some π ∈ Sm such that the components of I and J are either disjoint or equal;

that is, if I =
m∏

i=1

Ii and J =
m∏

j=1

Jj and if Ii

⋂
Jj 6= φ, then Ii = Jj. Then

(i) E[W (I)W (J)] = 0,

(ii) F has the orthogonal increment property; that is, E[F (I)F (J)] = 0,

(iii) E[W (I)F (J)] = 0 and

(iv) E[(cW (I)− F (I))(cW (J)− F (J))] = 0.

Proof. Let I and J be as defined as in the above statement of the lemma.
Then it is clear that there exists an Ii, i = 1, 2, 3, . . . ,m such that Ii

⋂
Ik

is empty for all k = 1, 2, 3, . . . ,m, since both I and J are from the same
contiguous set Gπ. By the orthogonal increment of the Brownian motion, (i)
follows easily.

The proofs of parts (ii), (iii) and (iv) follow from Part (i) using Lemma 4.5
and hence are omitted.

Lemma 4.9. Let f be Multiple Itô-McShane integrable on Tm with F (I) de-
noting the integral on the interval I. Let a positive function δ on Tm be given
and D = {(I, ξ)} be a standard δ-fine partial division of Tm (recall Definition
3.4). Then
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(i) E

(∣∣∣∑ f1Gπ
(ξ)(W (I))

∣∣∣2) =
∑

f21Gπ(ξ)|I|

(ii) E

(∣∣∣∑ f1Gπ
(ξ)W (I)− F (I)

∣∣∣2) = E
(∑

|f1Gπ
(ξ)W (I)− F (I)|2

)
.

Proof. First, we remark that the condition that the components of I and
J are either disjoint or equal (see the statement of Lemma 4.8) is guaran-
teed by using standard δ-fine partial division (see Definition 3.4) since all the
components have the same division points.

To prove (i), observe that

E
(∣∣∣ ∑

f(ξ)W (I)
∣∣∣2) =

∑
E

(
f2(ξ)W (I)2

)
by Lemma 4.8(i)

=
∑

f2(ξ)|I|.

To prove (ii), by Lemma 4.8 (iv) we have

E

(∣∣∣∑(f(ξ)W (I)− F (I)
∣∣∣2) = E

(∑
|(f(ξ)W (I)− F (I)|2

)
.

In other words, Lemma 4.9 says that we have orthogonal increment prop-
erty if all the intervals from Tm that we consider are from the same set G
contiguous to the diagonal. The next theorem we are going to prove is Itô’s
isometric inequality. Before we proceed further, we quote one result of classi-
cal Henstock integration theory for Euclidean space about the equivalence of
McShane and Lebesgue Integrals on Tm. We remark that by Lemma 3.3, we
may replace a δ-fine division by a standard δ-fine division.

Proposition 4.10. A function f : Tm → R is Lebesgue integrable to A ∈ R if
and only if for every ε > 0, there exists a positive function δ on Tm such that
for every standard δ-fine division of Tm, denoted by D = {(I, x)}, we have
|(D)

∑
f(x)|I| −A| < ε.

Lemma 4.11. Let f be a function defined on Tm. Then f1Gπ
∈ L2(Tm, λm)

if and only if there exists a real number B, a decreasing sequence {δn} of
positive functions on Tm such that for any sequence of δn-fine division Dn of
Tm, we have limn→∞

∣∣∣Ŝ(f, δnDn)−B
∣∣∣ = 0.

The proof of Lemma 4.11 is similar to that of Lemma 4.5; hence we shall
not repeat the proof here.
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Proposition 4.12. Let f : Tm → R. Suppose that f is Multiple Wiener-Itô
integrable. Then f2 is Lebesgue integrable there and

E
(
IM(f2

)
≤ m!

∫
T m

f2 dλm (2)

where the integral on the right hand side is the Lebesgue integral on Tm.

Proof. We just need to prove that E
(
IM(f1Gπ

)2
)

= (L)
∫

T m f21Gπ
(t) dt

for any contiguous set Gπ of Tm. Thus

E(IM(f1Gπ ))2 = lim
n→∞

E
(
|S(f1Gπ , Dn, δn)|2

)
= lim

n→∞
E

(∑
f(x)1GπW (I)

)2

= lim
n→∞

∑
f2(x)1Gπ

|I| by Lemma 4.9.

The Riemann sum
∑

f21Gπ
|I| converges to

∫
T m f21Gπ

dλm by Lemma 4.11.
Hence

∫
T m f21Gπ

dλm = E
(
IM(f1Gπ

)2
)
.

Lemma 4.13. Let A be a set of λm-measure zero in Tm. Suppose that A∩B =
φ, where B is the diagonal set in Tm. Then 1A is both McShane and Itô-
McShane integrable on Tm and IM(1A) = 0.

Proof. We remark that the condition A∩B is empty is necessary. It is suffi-
cient to consider the case where A lies entirely in one of the sets G contiguous
to the diagonal. Let ε > 0. Then there exists an open set O ⊂ G such that
A ⊂ O and O ∩ B = φ with λm(O) < ε. Now we shall define δ(ξ) > 0 on
Tm. If ξ ∈ A, define δ(ξ) > 0 such that I ⊂ O whenever (I, ξ) is δ-fine. It is
possible since O is open. If ξ 6∈ A, then δ(ξ) can take any positive value. Let
D = {(I(i), ξ(i)) : i = 1, 2, . . . , n} be any standard δ-fine division of Tm. By
Lemma 4.8,

E
(∣∣(D)

n∑
i=1

1A(ξ(i))
m∏

k=1

W (I(i)
k )

∣∣2) =
∑

ξ(i)∈A

m∏
k=1

λ(I(i)
k ) < λm(O) < ε.

Hence IM(1A) = 0.

5 Equivalence Theorem

The objective of this section is to establish that the Multiple Itô-McShane
integral defined in this paper is in fact equivalent to the classical Multiple
Itô-Wiener integral. The idea of the proof is a generalization of that from [1].
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Lemma 5.1. Let g be an elementary function on Tm in the form (1). Then
g is Multiple Itô-McShane integrable on Tm and

IM(g) =
n∑

i1,...,im=1

ai1,i2,...,im

m∏
k=1

W (Iik
).

Proof. It is sufficient to prove the special case when g = 1I1×I2×···×Im
,

where Ii, i = 1, 2, . . . ,m, are disjoint left-open subintervals of [0, 1]. Let I =
I1× I2× · · ·× Im and ∂I be the boundary of I. It is clear by definition that g
does not vanish only on one of the set G contiguous to the diagonal. Denote∏m

k=1 W (Ik) by W (I). By Lemma 4.9, we need only consider g = 1I\∂I since
∂I is a set of measure zero. Let ε > 0. There exists an open set O ⊃ ∂I and
G ⊃ O such that λm(O) < ε. Now we shall define δ(ξ) > 0 on Tm. If ξ ∈ I\∂I,
define the positive function δ to be such that J ⊂ I\∂I whenever (J, ξ) is δ-fine.
If ξ ∈ ∂I, define δ(ξ) > 0 such that J ⊂ O whenever (J, ξ) is δ-fine. If ξ 6∈ I,
then δ(ξ) can take any positive value. Let D = {(J (i), ξ(i)) : i = 1, 2, . . . , n}
be a δ-fine division of Tm, where J (i) = J

(i)
1 × J

(i)
2 × · · · × J

(i)
m . Then

E

(∣∣∣(D)
∑

g(ξ(i))W (J (i))−W (I)
∣∣∣2)

=E
(∣∣(D)

∑
ξ(i)∈I\∂I

g(ξ(i))W (J (i))−W (I)
∣∣2)

=E
(∣∣(D)

∑
ξ(i)∈I\∂I

W (J (i))−W (I)
∣∣2)

≤2E
(∣∣(D)

∑
ξ(i)∈I

W (J (i))−W (I)
∣∣2) + 2E

(∣∣(D)
∑

ξ(i)∈∂I

W (J (i))
∣∣2)

≤2E
(∣∣(D)

∑
ξ(i)∈I

W (J (i))−W (I)
∣∣2) + 2ε (since λm(O) < ε )

≤4E
(∣∣(D)

∑
ξ(i)∈I

[
W (J (i))−W (I ∩ J (i))

] ∣∣∣2)
+ 4E

(∣∣(D)
∑

ξ(i)∈I

W (I \ J (i))
∣∣2) + 2ε

≤4ε + 0 + 2ε, (since λm(O) < ε) = 6ε.

Hence IM(f) =
m∏

k=1

W (Ik). From the classical definition, IW (f) =
m∏

k=1

W (Ik).

Therefore f is Multiple Itô-McShane integrable with IM(f) = IW (f).
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Lemma 5.2. Let f be Multiple Itô-McShane integrable on Tm and IM(f1I) =
A(I) for every subinterval I of Tm. Then for every ε > 0, there exists a
positive function δ on Tm such that for any partial standard δ-fine division
D = {(I(i), ξ(i)) : i = 1, 2, . . . , n} of Tm we have

E
(∣∣(D)

n∑
i=1

{fo(ξ(i))W (I(i))−A(I(i))}
∣∣2) < ε.

The proof of Lemma 5.2 is standard in the theory of Henstock integration,
see for example [6, p. 11, Theorem 3.7] or [7, pp. 81–82, Theorem 3.2.1].

Definition 5.3. Let A,A(n), n = 1, 2, 3, . . . , be real-valued functions defined
on the set of all left-open intervals of Tm. Then A(n) is said to be variationally
convergent to A if for every ε > 0 there exists a positive integer N such that
for any finite collection of disjoint left-open intervals {I(i) : i = 1, 2, 3, . . . , q}
we have E

(∣∣ ∑q
i=1{A(n)(I(i))−A(I(i))}

∣∣2) < ε whenever n ≥ N .

Theorem 5.4. Let f, f (n), n = 1, 2, . . . be real-valued functions defined on
Tm such that f (n) converges to f a.s. on Tm. Suppose that each f (n) is Mul-
tiple Itô-McShane integrable to A(n). Let A(n)(I) be the Multiple Itô-McShane
integral of f (n) on subinterval I. If A(n) variationally converges to A, then f
is Multiple Itô-McShane integrable to A(Tm) on Tm.

Proof. We may assume that f and f (n) vanishes on Tm except over a
particular set G contiguous to the diagonal. Given ε > 0, by the variational
convergence property, we may assume that for each n = 1, 2, 3, 4, . . . ,

E
(∣∣(D)

∑
{A(n)(I)−A(I)}

∣∣2) <
ε

22n

for any finite collection of disjoint intervals {I} of Tm. By Lemma 5.2, for
each positive integer n, there exists a positive function δn on Tm such that for
any δn-fine partial McShane division of Tm, denoted by Dn = {(I, ξ)} we have
E

(∣∣(Dn)
∑
{f (n)

0 (ξ)W (I) − IM(f (n))(I)}
∣∣2) <

ε

22n
. By Lemma 4.9, we may

assume that f (n) → f everywhere on Tm. So, for each ξ ∈ Tm, there exists
a positive integer n(ξ) such that |fn(ξ)

0 (ξ)− f(ξ)| <
√

ε. Take δ(ξ) = δn(ξ)(ξ)
and let D = {(I, ξ)} be a δ-fine McShane full division of Tm. Then

E
(∣∣(D)

∑
f0(ξ)W (I)−A

∣∣2) ≤ 3E
(∣∣(D)

∑
[f0(ξ)− f

n(ξ)
0 (ξ)]W (I)

∣∣2)
+ 3E

(∣∣(D)
∑

f
n(ξ)
0 (ξ)W (I)−An(ξ)(I)

∣∣2)
+ 3E

(∣∣(D)
∑ {

An(ξ)(I)−A(I)
} ∣∣2) = 3(I1 + I2 + I3).
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I1 =E
(∣∣(D)

∑
[fn(ξ)

0 (ξ)− f0(ξ)]W (I)
∣∣2)

≤εE
(∣∣(D)

∑
|W 2(I)|

∣∣2) ≤ 3ε
∑

|I|2 ≤ 3ε.

I2 =||(D)
∑ {

f
n(ξ)
0 (ξ)W (I)−An(ξ)(I)

}
||2

≤
(
||(D)

∑ {
fk
0 (ξ)W (I)−Ak(I)

}
||
)2

≤
( ∞∑

k=1

ε

2k

)2

≤ ε.

I3 =E
(∣∣(D)

∑ {
An(ξ)(I)−A(I)

} ∣∣2) = ||
∣∣(D)

∑ {
An(ξ)(I)−A(I)

} ∣∣2||2
≤

( ∞∑
k=1

||(Dk)
∑ {

Ak(I)−A(I)
}
||
)2

≤
( ∞∑

k=1

ε

2k

)2

≤ ε

We are now ready to prove the equivalence Theorem.

Theorem 5.5. (Equivalence Theorem). Let f ∈ L2(Tm, λm). Then f is
Multiple Itô-McShane integrable on Tm and IM(f) = IW (f).

Proof. By Theorem 5.1, the result of Theorem 5.5 holds for any elemen-
tary function of the form (1). Let f ∈ L2(Tm, λm). By the definition of
the Multiple Itô-Wiener integral, there exists a sequence of elementary func-
tions {f (n)} such that f (n) converges to f a.s. on Tm and limn→∞ ||f (n) −
f ||m = 0. Furthermore E

(
IW (f (n) − f)

)2 ≤ m!||f (n) − f ||m for all n, and

limn→∞ E
(
IW (f (n))− IW (f)

)2
= 0. Let A(n)(I) and A(I) be the Itô-Weiner

integrals of f (n) and f on a subinterval I respectively. Then

E
(
IW (f (n)1E − f1E)

)2

≤ m!||(f (n) − f)1E ||2m ≤ m!||f (n) − f ||2m

where E is the union of finite disjoint left-open subintervals. Hence A(n) vari-
ationally converges to A. Note that A(n)(I) is also the Multiple Itô-McShane
integral of f (n) on I by Theorem 5.3. By Theorem 5.4, f is Multiple Itô-
McShane integrable on Tm and IM(f) = IW (f).

6 Characterization of Integrable Functions

We have shown that if f is L2-integrable on Tm, then f is Multiple Itô-
McShane integrable on Tm. We shall next characterize the class of all Multiple
Itô-McShane integrable functions.
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It can be seen from classical integration theory that f ∈ L2(Tm, λm) if and
only if given any ε > 0, there exists a positive function δ such that for any
δ-fine belated division of Tm, denoted by D = {(I, x)}, we have∣∣∣(D)

∑
f2(x)λm(I)−

∫
T m

f2 dλm
∣∣∣ < ε.

Also since the diagonal is a set of Lebesgue-measure zero, f is integrable if
and only if f0 is integrable there.

Given a positive function δ, we shall let Ŝ(f, δ,D) = (D)
∑

f2(x)λm(I)
where D is a δ-fine division of Tm. Let f1Gπ

be a function on Tm. Then, by
Lemma 4.9(i), we have E

(
|S(f1Gπ

, δ, D)|2
)

= Ŝ(f1Gπ
, δ, D).

Theorem 6.1. Let f be a function on Tm. Then f1Gπ
is Multiple Itô-

McShane integrable on Tm if and only if f1Gπ
∈ L2(Tm, λm). Furthermore,

E(IM(f1Gπ
)2) = (L)

∫
T m

f21Gπ
dλm.

Proof. By Proposition 4.10, if f1Gπ
is Multiple Itô-McShane integrable,

then f1Gπ
is square-Lebesgue integrable there. We just need to prove the

converse. Suppose f1Gπ is square-Lebesgue integrable. By Theorem 5.5, f1Gπ

is Multiple Itô-McShane integrable. Then by Proposition 4.10,

(L)
∫

T m

f21Gπ
dλm = lim

n→∞
Ŝ(f, δn, Dn) = lim

n→∞
E

(
(Dn)

∑
f(x)1Gπ

W (I)
)2

= lim
n→∞

E
(
|S(f1Gπ , Dn, δn)|2

)
= IM(f1Gπ )2.

7 Conclusion

We have used the Non-Uniform Riemann approach to give an equivalent def-
inition to the classical Multiple Wiener integral. We remark that the Non-
Uniform Riemann approach can also be used to give an alternative definition
to the Stratonovich integral and Fubini’s Theorem and the classical Hu-Meyer
Theorem can be derived. This will appear as a paper elsewhere.
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