Real Analysis Exchange
ISSN:0147-1937
Vol. 31(1), 2005/2006, pp. 133-142

Frangois G. Dorais, Department of Mathematics, Dartmouth College, 6188
Bradley Hall, Hanover, NH 03755, USA.
email: francois.g.dorais@dartmouth.edu

Rafal Filipéw? Institute of Mathematics, University of Gdansk, Wita Stwosza
57, 80-952 Gdansk, Poland. email: rafal.filipow@math.univ.gda.pl

ALGEBRAIC SUMS OF SETS IN
MARCZEWSKI-BURSTIN ALGEBRAS

Abstract

Using almost-invariant sets, we show that a family of Marczewski—
Burstin algebras over groups are not closed under algebraic sums. We
also give an application of almost-invariant sets to the difference prop-
erty in the sense of de Bruijn. In particular, we show that if G is a
perfect Abelian Polish group then there exists a Marczewski null set
A C @ such that A + A is not Marczewski measurable, and we show
that the family of Marczewski measurable real valued functions defined
on G does not have the difference property.

1 Introduction.

The algebraic sum of two subsets A, B of a group G is the set A+ B = {a+b:
a € A,b € B}. If Ais an algebra of subsets of the group G it is natural to
ask whether A is closed under algebraic sums. It is a well-known result that
the algebras of Lebesgue measurable sets and sets with the Baire property
are not closed under algebraic sums over R. In fact, there is a null (resp.
meager) A C R such that A + A is not Lebesgue measurable (resp. A + A
does not have the Baire property). For various proofs of these facts (and some
generalizations) see [9], [15] and [10], for example.
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In this paper we show that certain of Marczewski—Burstin algebras, includ-
ing Marczewski and Miller algebras on Abelian Polish groups, are not closed
under algebraic sums. If IC is a family of subsets of an infinite Abelian group
G, we define

SK)={ACG: VK e K)FK' e K)K' CKNAVK' CK\ A},
So(K)={ACG: (VK € K)(3K' ¢ K)K' C K \ A}.

It is easy to see that S(K) is an algebra of subsets of G and Sy(K) C S(K) is
an ideal. The set S(K) (resp. So(K)) is the Marczewski—Burstin algebra (resp.
Marczewski—Burstin ideal) associated with the family K. (cf. [2] or [1].)

A set B C G is K-Bernstein if KNB # () and K\ B # () for all K € K.
Obviously, B ¢ S(K) when B is K-Bernstein.

We also address the question of whether the family of S(K)-measurable
functions on G has the difference property. For any function f : G — R
and y € G we define the difference function Ayf: G — R by A,f(z) =
fl+y) — f(x) for every x € G. A family F of real valued functions defined
on G is said to have the difference property (in the sense of de Bruijn) if
every function f: G — R such that A, f € F for each y € G is of the form
f =g+ h, where g € F and h is an algebraic homomorphism. The notion of
the difference property was introduced by de Bruijn [4], see [12] for a recent
survey.

The key to our approach is to relate these questions to the existence of
appropriate almost-invariant sets. Let J be an arbitrary ideal on G. A set
A C G is J-almost-invariant if the symmetric difference (A 4+ g)AA € J for
every g € G. We simply say that A is almost-invariant if it is [G]<!¢I-almost-
invariant.

The relationship between algebraic sums and almost-invariant sets is pro-
vided by the following theorem.

Theorem 1 (Ciesielski-Fejzi¢-Freiling [3]). Let G be an infinite Abelian group
of size k and let IC be a family of subsets of G such that |[K| =k and |K| =k
for every K € K. If there is a set A C G such that |(A+ g) N (—A)| = &k for
every g € G then there is B C A such that B + B is a K-Bernstein set.

Although Ciesielski, Fejzi¢ and Freiling only consider the above theorem for
G = R, the reader will have no problem adapting their proof to our more gen-
eral context. Observe that if A is symmetric (i.e. A = —A) almost-invariant
and |A| = k then the condition |(A + g) N (—A)| = & follows immediately.

To relate the difference property to symmetric almost-invariant sets, we
use a theorem of the second author.
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Theorem 2 (Filipéw [5]). Let G be an infinite Abelian group, A a o-algebra of
subsets of G and T C A an ideal. If A is closed under reflections; i.e., A € A
implies —A € A, and there is a symmetric T-almost-invariant set S ¢ A, then
the family of A-measurable functions does not have the difference property.

2 Construction of Almost-Invariant Sets.

Throughout this section G will stand for an uncountable Abelian group of
size k, G = {go : @ < Kk} is a fixed enumeration of G and G, denotes the
subgroup of G generated by {gs : 8 < a}. Note that |G,| < |ajw < & since
K is uncountable. Our results also apply for countable groups G provided
that we may write G = J,, <o Gn where G, is an increasing sequence of finite
subgroups of G.

Sierpinski formulated a construction of almost-invariant sets. Most con-
structions use his method which is summarized in the following proposition.

Proposition 3 (Sierpiriski [16]). For any sequence {x, : a < k} C G, the set
A=y (Ga +z4) is almost-invariant.

It is easy to use this to construct /C-Bernstein almost-invariant sets.

Theorem 4. If K C [G]* is a family of size at most k, then there is a
symmetric almost-invariant set that is IC-Bernstein.

PrOOF. Write K = {K,, : @ < k}. We will construct two sequences {z, : @ <
k} and {y, : a < K} as follows. Take

To € Ko\ (Go + ({£25: f <a} U{zys: B <a}))

and
Yo € Ko\ (Ga + ({£25: 8 < a}U{tys: B <a})).

Now we put S = J,.,.(Ga £24). It follows from Proposition 3 that S is
almost-invariant. It is easy to see that S is symmetric since each G, + z,, is.

Finally, it remains to show that S is JC-Bernstein. We see that SN K # @
for every set K € K (since z, € S for all @ < k). On the other hand, we
show that y, ¢ S for all @ < k. Suppose instead that there is a < x such that
Yo ¢ G\ S. Then there is § such that y, € Gg £ 25. If a > 3, then we get
a contradiction with the definition of points y,. So 8 > «, but in that case
z3 € Gz £y, which is a contradiction. O
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As a consequence of this we obtain our main result regarding the difference
property for S(K)-measurable functions.

Theorem 5. Suppose that KC C [G]" is a family of size at most k that satisfies
the following property

(x) For every set K € K and Z € [G]<", there is a set K’ € K with K’ C
K\ Z.

If moreover S(K) is a o-algebra that is closed under reflections, then the family
of S(K)-measurable functions does not have the difference property.

PrOOF. Note that property (*) is necessary and sufficient for [G]<" C Sy(K).
So every almost-invariant set is also Sp(K)-almost-invariant. The result then
follows immediately from Theorem 2. O

We can also use Sierpinski’s method to construct almost-invariant sets in
So(K) for many families KC.

Theorem 6. Suppose that K C [G]" is a family of size at most k with property
(). If K is invariant under translations and no collection of fewer than k sets
from K cover G, then there is an almost-invariant set T € So(K) with size k.

Proor. Write £ = {K, : @ < k}. We will construct two sequences, {Q, :
a < k} and {z, : a < k}, which satisfy the following induction hypotheses:

1. zo # xg for a # B,
2. Qq €K,

3. Q. C K, for every a < K,

>~

. (Uﬁ<aG5+xﬁ)mU,@<aQ5:®'

Let o < k and suppose that we have already constructed () and zg for
[ < a. First we show that we can find z, € G with

(Ga + 2a) N (Umgﬁumu{xﬁ L6 < a}) - .

For the sake of contradiction, suppose that for every z € G we have

(Ga+x)ﬂ(U5<anUKaU{w5:6<a}) £ 2.
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Then
6 U (UK ) ) - U

9€Ga

where
F=A{P+rg—g:0<a,g€Gy}U{Qp—g: < a,g€ G }U{Ks—g:9€ Gy}

and P is any element of K with 0 € P (so x € P + z for every z € G). Since
K is invariant under translation, we have F C K and |F| < (2|a|+1)|Ga| < K
since |G4| < k by convention. This contradicts the fact that no collection of
fewer than k sets from K cover G so there must be an z, € G as claimed
above.

Now it follows immediately from (*) that there is a @, € K such that
Qo € K, and

Qan |J(Gp+ap) =2

B<a

It is easy to see that this choice of @, z, satisfies our four induction hypothe-
ses. Now let
T = |J(Ga+xa)

a<k

We will show that the set T is as required; i.e., T € Sy(K) is an almost-
invariant set of size k.

Proposition 3 implies that T" is almost-invariant and since z,, are distinct
and z, € G, + x4 we have |T| = k.

To see that T € Syp(K), fix any K € K and let a < & be such that K = K.
We show that Q, NT = &. Take any § < k and let 6 = max{a, 5} + 1. By
condition 4 we have

(U7<6(G’Y + x7)> N <U7<5 Q'y) =9

so (Gg +23) N Qo = @ as well. But the latter holds for every 8 < &, hence
Qo NT = @ as required. This shows that for every K € IC there is a Q € K
with @ C K and Q@ NT = @ and hence T € Sy(K) as required. O

As a corollary we get our main result regarding algebraic sums of sets in
Marczewski—Burstin algebras.

Theorem 7. Suppose that K C [G]" is a family of size at most k with property
(). If K is invariant under translations and reflections and no collection of
fewer than s sets from K cover G, then there is a set A € So(K) such that
A+ A is K-Bernstein and hence not in S(K).
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PROOF. Since K satisfies all the hypotheses of Theorem 6, let T" be as in the
conclusion of that theorem. Then the symmetric set S =T U (=T) € So(K) is
also almost-invariant since K, and hence Sy(K), is invariant under reflections.
The sets (S+¢g)NS = (S+g)N(=9) for g € G necessarily have size x for
every g € G since |(S+g)AS| < k and |(S+g)US| = k. By Theorem 1, there
isaset A C S (hence A € Sy(K)) such that A + A is K-Bernstein. O

3 Applications.

In this section, we apply our two main results about algebraic sums and the
difference property to Marczewski and Miller measurable sets.

3.1 Marczewski Measurable Sets.

Let X be a Polish space. By a perfect set in X we mean a nonempty, closed
subset of X without isolated points. The algebra of Marczewski measurable
subsets of X is defined by (s%) = S(Perfy) where Perfy is the family of
perfect subsets of X. The ideal of Marczewski null subsets of X is similarly
defined by (sg) = So(Perfx).

It is well known (cf. [13]) that (s%) is a o-algebra and that (sf) C (s%)
is a o-ideal. This is a proper o-ideal if and only if X is not o-discrete; i.e.,
X is not a countable union of discrete subspaces. Moreover, we always have
[X]<¢ C (s§") since a perfect set can always be split into ¢ many disjoint perfect
subsets.

If G is a perfect Abelian Polish group, then (s¢) and (s§) are invariant
under translations and reflections since these transformations are homeomor-
phisms.

Theorem 8. If G is a perfect Abelian Polish group, then there is a Marczewski
null set A C G such that A+ A is not Marczewski measurable.

Remark. Theorem 8 was proved later by Kysiak [11] using different methods.

The following easy lemma is key to the proofs of Theorem 8 and, later, for
Theorem 11.

Lemma 9. FEvery perfect Abelian Polish group G has a proper o-compact

subgroup H with |H| = |G/H| = c.

PROOF. A well-known theorem of Mycielski [14] says that we can always find
a nonempty independent perfect set P C G. Choose a compact perfect set
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Py C P with P, = P\ Py of size c. The subgroup H generated by Py is o-
compact and |H| = ¢ since Py is perfect. Since P is independent, the elements
of Py belong to different cosets in G/H and so |G/H| = ¢ also. O

PROOF OF THEOREM 8. Let H be as in Lemma 9 and let I be the family of
all perfect sets P C G such that either

e P C H + g for some g € G, or else
o [PN(H+g)|<1lforallged.

Clearly, the family K is invariant under translations and reflections, and |K| =
¢. Therefore it suffices to verify that no collection of fewer than ¢ many sets
from K can cover G and the result will follow from Theorem 7. Given F €
[K]<¢ we can always find a g € G such that |[PN(H +g)] <1 for all P € F.
But then |[(H 4+ g) NJF| < |F| <c¢=|H+g| and so JF # G.

Finally we show that IC is cofinal in Perfs, from which it follows that
(s9) = S(K) and (s§) = Sp(K). But first we recall a well-known result of
Galvin [7] (or [8], Theorem 19.7), which says that if @ is a perfect Polish
space and ¢ : [Q]?> — {0, 1} is Borel, then there is a perfect set P C @ such
that c is constant on [P]?.

For a perfect set @ C G, let ¢ : [Q]> — {0,1} be given by c{x,y} = 1
iff « —y € H. This is a Borel map since H is o-compact, so by Galvin’s
Theorem there is a perfect set P such that c is constant on [P]?. But c has
constant value 1 iff P C H + g for some g € GG, and ¢ has constant value 0 iff
|IPN(H+g)|<1lforallge G. So P € K is asubset of Q as required. O
Since (s%) is a o-algebra, we obtain a strengthening of a result of Reclaw
and the second author [6] as an immediate consequence of Theorem 5.

Theorem 10. If G is a perfect Abelian Polish group, then the family of Mar-
czewski measurable functions on G does not have the difference property.

3.2 Miller Measurable Sets.

Miller measurability is defined in a similar way to Marczewski measurability.
By a superperfect set we mean a nonempty, closed subset of X in which com-
pact sets are nowhere dense; i.e., have empty interior. The algebra of Miller
measurable subsets of X is defined by (m~) = S(Supery) where Supery is
the family of superperfect subsets of X. The ideal of Miller null subsets of X
is similarly defined by (mg) = Sp(Super ).
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Again, it is well known that (mX) is a o-algebra and that (mg) C (m*) is
a o-ideal. This is a proper o-ideal if and only if X is not o-compact. Moreover,
we always have [X]<¢ C (m{) since a superperfect set can always be split into
¢ many disjoint superperfect subsets.

If G is a superperfect Abelian Polish group, then (m®) and (m§) are
invariant under translations and reflections since these transformations are
homeomorphisms.

Theorem 11. If G is a superperfect Abelian Polish group, then there is a
Miller null set A C G such that A+ A is not Miller measurable.

PROOF. Let H be as in Lemma 9 and let K be the family of all superperfect
sets S C G such that |SN(H 4 g)] <1 for all g € G. Clearly, this family is
invariant under translations, |K| = ¢, and no collection of fewer than ¢ many
elements of X can cover G (or even H). Therefore the family K satisfies the
assumptions of Theorem 7.

To finish we show that the family K is cofinal in Super,, from which it
follows that (s%) = S(K) and (s§) = So(K). To do this we appeal to a recent
result of Spinas [17], which is a generalization to superperfect sets of the result
of Galvin that we used in the proof of Theorem 8: if T is a superperfect Polish
space and ¢ : [T]? — {0,1} is Borel, then there is a superperfect set S C T
such that c is constant on [S]?.

For a superperfect set T C G, let ¢ : [T]?> — {0,1} be given by c{x,y} =1
iff © —y € H. This is a Borel map since H is o-compact, so by Spinas’
Theorem there is a superperfect set S C T such that ¢ is constant on [S]?.
Now ¢ cannot have constant value 1 on [S]? for then we would have S C H +g
for some g € G, which is impossible since H + ¢ is o-compact by definition.
So ¢ must have constant value 0 on [S]?, which means that [S N (H +g)| <1
for all ¢ € G. Hence S € K is a subset of T' as required. O

Also, since (m%)
from Theorem 5.

is a o-algebra, the following result follows immediately

Theorem 12. If G is a superperfect Abelian Polish group, then the family of
Miller measurable functions on G does not have the difference property.
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