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Abstract

We construct a C'-function f: [0,1] — R such that for almost all
z € (0,1), there is 7 > 0 for which f(y) > f(z) + f'(z)(y — ) when
y € (z,z+7) and f(y) < f(z) + f(z)(y — x) when y € (x — r,z). The
existence of such functions is related to a problem concerning conical
density properties of Hausdorff measures on R". We also discuss the
tangential behavior of typical C!-functions, using an improvement of
Jarnik’s theorem on essential derived numbers.

1 Introduction and Notation.

Let us begin by introducing some notation. For 0 < s < n, let H® denote the
s-dimensional Hausdorff measure on R™, and on the real line, let £ stand for
the Lebesgue measure. We use the common notation B(xz,r) for open balls
and for the unit sphere on R” the notation S"~! = {x € R" : |z| = 1} is
used. If z € R™ and A C R", then d(z, A) stands for the Euclidean distance
between = and A. The length of an interval I C R is denoted by 4(I) and the
notion 0A is used for the boundary of a given set A C R. The (symmetrical)
upper and lower densities of a measurable set A C R at x € R are defined as
the upper and lower limits, respectively, of the ratio L((z —r,z +7r)NA)/(2r)
when r | 0. If f:[0,1] — R is differentiable at = € (0,1), the sets AT (f,z)
and A~ (f,z) are given by

AT (f,z) ={y € (0,1): f(y) > f(z) + f'(z)(y — x)},
A (f,x) ={y € (0,1): f(y) < f(x) + f'(z)(y — 2)}.
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Ifz € R*, 6 € S" ! and 0 < 5 < 1, we define the cone H(x,0,n) by setting
H(x,0,n) ={y € R": (y —x) - 0 > n]y — «|}. For half-spaces we use shorter
notation, H(z,0) = H(z,0,0). Finally, we let R = R U {—00, 0} denote the
set of extended real numbers.

Given a set A C R™, it is often of interest to know how it is distributed near
a “generic” point. This paper was inspired by the following conical density
theorem of Marstrand [5, pp. 293-297].

Theorem 1.1. Let 0 < 5 < 2 and A C R? with H*(A) < co.

1. If0<s<1andf € S, then hml%)anS(B(x,T) NH(z,0)NA)/r*=0
for H?-almost all x € A.

2. If 1 < s < 2, then for H*-almost all x € A, there is 0 € S' such that
limlioanS(B(a:,r) NH(z,0)NA)/r*=0.
T

It seems that 1-sets (sets A with 0 < H1(A) < oo) play a special role in
connection with the above theorem. Marstrand’s proof yields that claim (2) is
valid also for 1-sets if half-spaces H(z,0) are replaced by cones H(z,0,7) for
any 17 > 0. On the other hand, Besicovitch [1, Theorem 13] had shown before
that even (1) holds for purely unrectifiable 1-sets, that is, for 1-sets which
intersect every rectifiable curve only in a set of zero H'-measure. A question
arises whether (2) actually holds for all 1-sets.

However, the answer to the above question is negative: Consider a Cantor
set C' C [0,1] with £(C) > 0 and define f(z) = [ dist(¢,C)dt. Then the
graph of f gives us a counterexample, see §3. In Section 2.1 we construct a
Cl-function f: [0,1] — R whose graph does not satisfy claim (2) of Theorem
1.1 anywhere except a set of zero length. In Section 2.2, inspired by our
examples, we study the distribution of the sets AT (f,z) and A~ (f,z) for
functions f € C*[0,1], k € N. We show among other things that for a typical
f € CY0,1], both of the sets AT (f,z) and A~ (f, z) have zero lower density and
unit upper density at x for all € (0,1) except a set of Hausdorff dimension
zero. This is a corollary to an extension of Jarnik’s theorem on essential
derived numbers, Theorem 2.5, which is essentially due to Zajicek [9].

Finally, in Section 3, we discuss the above conical density problem in higher
dimensions.

Acknowledgements. I am grateful to Mika Leikas, Pertti Mattila, Jouni
Parkkonen, Juhani Takkinen, Ludék Zajicek, and Clifford Weil for useful dis-
cussions, comments, and suggestions. I also thank the referees for many cor-
rections and improvements.
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2 Tangential Behavior of Functions.

2.1 An Example.

Our goal in this section is to prove that there are functions f € C1[0,1] so
that both AT(f,z) and A~ (f,z) have positive lower density at = for almost
every € (0,1). This is an easy consequence of the following result. The
proof given here is due to one of the referees. Though resulting to a somewhat
similar function, it is much easier than the authors original construction.

Theorem 2.1. There is a continuous function g: [0,1] — R which is non-
constant on any non-degenerate interval I C [0,1] but has a local minimum
almost everywhere.

ProOF. Let C,D C [0,1] be Cantor sets with £(C) = 0 and L(D) > 0.
Moreover, let ¢: [0,1] — [0,1] be a Cantor function associated to the set C,
that is, ¢ is continuous, nondecreasing, and it is constant on any component
of [0,1] \ C. We also assume that ¢(t) = 0 if and only if ¢t = 0. For any non-
degenerate interval I = (a,b) C [0, 1], put ¢;(z) = £(I)¢(2dist(z, {a, b})/¢(I))
for x € I and pr(z) =0if x £ I. Moreover, for any open interval J = (¢, d)
put Dy = {c} + (d — ¢)D and let

D, =1 (21)
=1

where intervals I, I, ... are open and disjoint. Define ®; =2, ¢y,.

We can now define g by an inductive process as follows: Let g1 = @ 1). If
gi has been defined for k € N, let J;, 4 € N denote its intervals of constancy and
put gr+1 = gr+ sy P, Since ||gri1—gx|| < €51 where £ is the length of the
longest complementary interval of D, the sequence gi, is uniformly convergent
and thus g = lim_. gr € C[0,1]. It is easy to see that g is non-constant on
any non-degenerate interval, and has local minimum almost everywhere. [J

Corollary 2.2. There is a continuously differentiable function f:[0,1] — R
such that for almost all x € (0,1), there is v > 0 for which

(z,z+7)C AT (f, 2),
(x—r,z) C A (f, ).

o N
W b
=z =

PROOF. Let g: [0,1] — R be the function of Theorem 2.1. Defining f(z) =
Jy 9(t)dt for z € [0,1] gives what we want. O
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Remarks. 1. It is easy to construct functions f € C°°[0, 1] so that (2.2) and
(2.3) are valid in a set of positive measure: Define g € C*°|[0, 1] so that g =0
on some Cantor set C' with £(C) > 0, and g > 0 outside this set. If f is given
by f(z) = [; g(t)dt, then (2.2) and (2.3) hold for f in the set C. However,
for any C2-function, these conditions can not hold almost everywhere, see
Proposition 2.3 (1).

2. It is not very hard, though it becomes more technical, to prove that g
in Theorem 2.1 may have local minimum everywhere except a set of small
Hausdorff dimension. In fact, given any nondecreasing h: (0,00) — (0,00)
with lim, o h(r) = 0 we can construct g which is nowhere constant and has
local minimum everywhere except a set of zero h-Hausdorff measure. The idea
is as follows: Given g; as in the proof of Theorem 2.1, let J;, i € N denote its
intervals of constancy. Choose Cantor sets D; C J; so that 3, - h(£;) < 27k,
where {/;;};en denote the lengths of the complementary intervals of D;. For
any such complementary interval I, define a Cantor bump, ¢y, such that it
does all its increasing and decreasing in a set of h-measure zero. Now proceed
as in the proof of Theorem 2.1.

However small, the set of local minima for g € C0,1] which is nowhere
constant is always a first category set. This follows from Proposition 2.3 (5)
by considering f = [ g.

3. It might be an interesting question whether there are functions f € C*[0, 1]
so that both of the one-sided lower densities,

limlionf[,((x, z+r)NAT(f,x))/r,

hmlionfﬁ((x, z+7r)NA(f,2))/r

are strictly positive in a set of positive measure. Similar questions may be
posed when intervals (z,x + r) are replaced by some other sets.

2.2 Typical Behavior.

Given a property for functions, it is natural to ask if this property is typical on
a function class in question. The theme of this section is to study the typicality
of some properties related to the above examples. For k € N U {0, 00}, the
space C*[0,1] is given the norm ||f|| = sup{|f/(z)| : = € (0,1),5 = 0,...,k}
where f° = f. When we say that some property holds for a typical f € C*[0,1]
we mean that this property is valid on a residual set of functions on C*[0, 1].

Some very basic facts are listed in the proposition below. To help discus-
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sion, we write for f € C*[0, 1],
Ap={z € (0,1):z € AF(f,a) (A~ (f.2)},
B}' ={x €(0,1) : conditions (2.2) and (2.3) hold for some r > 0}, and
By = B*,.

Proposition 2.3. 1. For any f € C?[0,1], the set Ay is nowhere dense.
2. If2 <k e NU{oc}, then L(Ay) =0 for a typical f € C*[0,1].
3. The set (0,1) \ Ay is dense for any f € C1[0,1].
4. The sets B? and B} are dense for a typical f € C1[0,1].

5. For any f € CY0,1], the sets B;{ and B} are first category sets.

Proor. All five claims may be proved in an elementary manner and thus we
give only the main lines. If f € C?[0,1] and = € (0,1) is such that both of
the sets (z —r,xz +7) N AT (f,z) and (x — r,z +r) N A~ (f,z) are nonempty
for any r > 0, then f”(z) = 0. This implies (1). Also (2) follows since
L{z : f"(z) = 0}) = 0 for a typical f € C¥[0,1] when k > 2. To see this
consider j € N and the set

E;={feCF0,1]: L{z € (0,1) : f"(z) =0}) > 1/5}.

Fix f € C*[0,1], and r > 0. Then we may find ¢ € (—r/2,7/2) and 0 < § < r
such that
L{z € (0,1): f(z) € (c=d,c+0)}) <1/j.

If g(z) = f(z) — cx?/2, then B(g,6/2) C B(f,r) \ E;. Thus E; is nowhere
dense and consequently | ; E; is a first category set.

Claim (3) is geometrically obvious: Given 0 < a < b < 1, choose ¢ € (a,b)
so that the point (¢, f(¢)) maximizes the distance to the line segment joining
(a, f(a)) and (b, f(b)) among all the points on the graph of f| ). Then
C f Af.

Claim (4) follows using a similar argument as in Corollary 2.2 since the
derivative of a typical C'-function has a dense set of minima and maxima, see
[2, Theorem 10.20] for example.

For (5) we give some details: Suppose on the contrary that there is for
example an f € C'[0,1] so that B}" is a second category set. Since B]'ﬁ' =
Ure; B, where By, = {z € (0,1) : (v, 2+ 1/k) C AT(f,z) and (x — 1/k,z) C
A~ (f,x)} it follows that there is k € N and a nonempty open interval I C (0,1)
with ¢(I) < 1/k so that By, is dense on I. It follows that f is both convex and
concave on I which forces f to be linear on I, a contradiction. O
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A natural question arising from our examples is the following: Is it true that
for a typical f € C1[0, 1], both of the sets AT (f,z) and A~ (f, ) have strictly
positive lower density at x for almost every x € (0,1). This is, however, not
the case; as we shall see, both of these sets have typically unit upper density
and thus also zero lower density for almost every z. We shall prove this by
using a generalization of a well known theorem of Jarnik [3]. We start by
proving a simple special case and then discuss a more general result using
Zajicek’s notion of [g]-porosity. We say that ¢ € R is a symmetrical essential
derived number of f: [0,1] — R at « € (0,1), denote ¢ € SEDN(f, z), if there
is a set E = E(x,c) C R such that E has unit upper density at = and

L) b ACORY (2.4)
eeovTe

To avoid confusion, we note that in this context the term “symmetrical” does
not refer to symmetric differentiation but to symmetrical upper density.

Theorem 2.4. For a typical f € C[0,1], we have SEDN(f,z) = R for almost
every x € (0,1).

Remarks. A number ¢ € R is called a right essential derived number of f at
if there is £ C R satisfying (2.4) with limsup,. o £((z,z +7)NE)/r = 1. Left
essential derived numbers are defined in an analogous way. A point z € (0,1)
is an essential knot point of f if every ¢ € R is simultaneously left and right
essential derived number of f at x. Jarnik [3] proved that almost all points
are essential knot points for a typical function f € C[0, 1]. The above theorem
is stronger than Jarnik’s result since it allows us to choose E such that it is
simultaneously big at both sides of = for some small scales, and not only big
at left for some scales and big at right for some (possibly different) scales.

If w e R? ¢ €R, and a > 0, we denote by £, . the line through w with
slope ¢ and put X (w, ¢, o) = {v € R? : d(v —w, ly ) < a|lv—w|}. These cones
are useful since ¢ € SEDN(f,z) if and only if

x € ﬂ {z €(0,1) : 30 < r < 1 such that
g,0,To (25)

Ly e (z=rz+71):(y, f(y) € X((2 [(2)),c,0)}) > (2 =)}

where the intersection is taken over all positive rationals ¢, o and rg, see also
[10, Lemma 1].

PrROOF OF THEOREM 2.4. For f € C[0,1], let

F=F(f)={x € (0,1) : SEDN(f,z) # R}.
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It follows from (2.5) that

F= U {re0,): L{ye(@x—rx+7r):

C,E,0,T0

(y, f(y)) £ X((z, f(x)),c,a)}) >erforall 0 <r <ro}

where the union is taken over all ¢ € Q, and 0 < &, a, 79 € Q. Thus

{fecoi:LF()>0t= |J A@.ceam)

d,c,e,a,T0
where ¢ € Q, 0 < §,¢,, 19 € Q, and A(d, ¢, e, a,19) C C0,1] is given by

A(b,c,e,a,rg) ={f € C[0,1] : Lz € (0,1): L{y € (x —r,z+7):
(y, f(v) &€ X((z, f(x)),c,a)}) >erforall 0 <r <rg}) > d}.

Fix numbers ¢ € R, and §,¢,,79 > 0. It suffices to prove that the set
A(d, ¢,e, a,rp) is nowhere dense on C10, 1]. Take f € C[0,1] and let 0 < r < rg.
Let g € C[0,1] be piecewise linear with ||f — g|| < r/2 so that (see [9, Lemma
1]) there are disjoint intervals Iy,..., I C (0,1) with Zle oI;) >1—-46/2
such that g has slope ¢ on each interval I;. Let 0 < £ < min;—, x¢(I;),
0 <t <min{d/4,79}, and 0 < s < min{aet/4,r/2}. Take h € B(g, sf). Tt is
easy to see that if z € I; with d(z,d0I;) > t¢, then (y, h(y)) € X ((x, h(x)),c, @)
forall y € (z —tl,x +tl) \ (v — 28l/a, x + 2sf/). Tt follows that for such z,
we have

LAye (x—tlhx+tl): (y,h(y)) € X((x,h(x)),c,a)}) < 4sl/a < tle. (2.6)

Since (2.6) holds in a measurable set whose measure is greater than 1 —¢6/2 —
k2t¢ > 1 — ¢, we conclude that h £ A(J,c, e, a,10). Thus B(g, s¢) C B(f,r)\
A(d,¢,e,a,rg) and the claim follows. O

Zajicek [9] strengthened Jarnik’s result using porosity notions. His result
is also in a sense one-sided and does not seem to imply Theorem 2.4. However,
only a minor change in his method gives even stronger theorem. The following
notation is from [9]. If A C R and I C R is an interval, the number p(A4, )
denotes the length of the largest subinterval I’ C I\ A. We denote by G
the collection of all strictly increasing continuous functions g on (0,00) for
which g(z) > z for all 0 < < o0. If g € G, we say that E C R is [g]-
porous from the right (left) at « € R if there is a sequence r; | 0 such that
gp(E, (x,z + 1)) > r; (gp(E,(x —riyx))) > 1) for all i € N. A number

¢ € R is a right (left) [g]-derived number of f at z if there is a set E C R for
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which R\ F is [g]-porous from the right (left) at = such that (2.4) holds for E.
A point z is a [g]-knot point of f if every ¢ € R is both left and right [g]-derived
number of f at x. Zajicek [9, Theorem 2] showed that for a typical f € C[0,1],
the set of points from (0, 1) which are not [g]-knot points of f is o-[g]-totally
porous. A set A C R is called totally [g]-porous if for any € > 0, we can find a
point ¢ € R and a number 0 < § < € so that g(p(4, [a+nd,a+ (n+1)d])) > ¢
for all n € Z. A set A is o-[g]-totally porous if it is a countable union of
[g]-totally porous sets. To compare [g]-porosity with other notions of porosity,
see [8] and [9].

Modifying the above notation, we say that A C R is symmetrically [g]-
porous at x if there is a sequence 7; | 0 so that

min{g(p(4, (z —ri,2))),9(p(A, (z,2 + 7))} > 7

for each i € N. A number ¢ € R is a symmetrical [g]-derived number of f at
x if there is a set E C R such that R\ E is symmetrically [g]-porous at x and
(2.4) holds for E. A point z is a symmetrical [g]-knot point of f if each ¢ € R
is a symmetrical [g]-derived number of f at z.

Theorem 2.5. Let g € G. Then for a typical f € C[0,1], the set of points
x € (0,1) which are not symmetrical [g]-knot points of f is o-[g]-totally porous.

This theorem can be proved by modifying Zajicek’s method only slightly
and thus we shall not repeat the argument. For the convenience of an inter-
ested reader we comment that the main point is that in [9, Lemma 2(b)] one
may assert: For any h € U(a,b,s,d) and x € UZj[k/n + 20, (k + 1)/n — 2v]
the inequalities g(p({y : (h(y) — h(x))/(y — z) £ [a,b]}, [z, 2 + v])) > v and
9({y : (hy) = h(2))/(y — ) £ [a,b]}, [z —v,2])) > v hold.

We now turn our attention back to our original question related to the
distribution of the sets A*(f, z) and A~ (f, z) for typical functions f € C*[0, 1].

Theorem 2.6. Let g € G. For a typical f € C[0,1], both of the sets R\
AT(f,z) and R\A™(f, ) are symmetrically [g]-porous at x for allx € (0,1)\ A
where A is a o-[g]-totally porous set (depending on f).

PROOF. Making g smaller if necessary, we may assume that lim, o g(r) = 0.
By symmetry, it suffices to prove that for a typical f € C[0,1], the set
R\ AT(f,z) is symmetrically [g]-porous at z for a set of points = € (0,1)
whose complement is o-[g]-totally porous. Take g € G so that

im 70 _ g_l(r))Q = 00
lmo r—g-i(r) 27)
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One may choose, for example, g for which g='(r) > r (1 — (r — g~'(r))?) for
all (small) » > 0. Since (2.7) implies that g(r) > g(r) for small r, using
Theorem 2.5, we see that for typical f € C*[0, 1], there is a set A C [0,1] so
that [0,1] \ A is o-[g]-totally porous and all points x € A are [g]-knot points
of f/. To see this we use the fact that if B C C[0,1] is residual on C]0, 1],
then the set B = {f € C![0,1] : f € B} is residual on C*[0,1]. Fix such a
function f and z € A = A(f). Now there is £ C (0,1) whose complement is
symmetrically [g]-porous at « and for which

NVUOEYE

teE t—=x

t—x

=2. (2.8)

Replacing F by its closure if necessary, we may assume that it is measurable.
Choose 0 < M < oo so that |f/'(z)| < M for all € [0, 1]. Using (2.8) and
(2.7), we may choose 0 < r¢g < 1 so that

(f'(t)— f'(x))/(t —x) >1forallt € (x —rg,z+19) NE\{z} and (2.9)
(r—g t(r)? > (36M +9)(r — g '(r)) for all 0 < r < 7. (2.10)

Now we may find arbitrary small radii 0 < r < rg such that g(p(R\ E, (z,z +
r))) > r and g(p(R\ E,(x — r,2))) > r. For such a radius r we get (x +
(r—gt(r),z+r—(r—g'(r)) C Eandsince z + (r — g 1(r)) < x+ (r —
g i)/ 3<az+r—(r—gt(r)/3<z+r—(r—g1(r)) by (2.10), for any
yE(@+(r—g '(n)/3,x+r—(r—g '(r)/3), weget (x+r—g '(r),y) C E
and, using (2.9) and (2.10), we estimate

y y z+r—g~ ' (r)
/ fldc = / fldc + / fldc
@ er—g1(r) x
> [ @ oy Mo -5 )
z+r—g—1(r)
> fla)y—2)+ Sy —a)? = L —g () - 2M(r =g} (r))
> @)y —2)+ & (r—g7 ()" = @M + 1 — g7 (r))
> f(z)(y — ).

Thus f(y) = f(x) + fj fldc > f(z) + f'(z)(y — x) giving y € AT(f,z). In a
similar manner, we see that y € AT (f,z) alsoify € (x—r+(r—g=1(r))/3,2—
(r—g%(r))/3). It follows that

g(pR\ AT (f,2), (w2 +71))) = g(r = 3(r—g7'(r) > g(g7"(r) =r
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and similarly g(p(R\ AT (f, z), (x —r,z))) > r. We conclude that R\ AT (f, z)
is symmetrically [g]-porous at x for all x € A. O

In terms of densities and dimensions, we get the following corollary.

Corollary 2.7. For a typical f € C[0,1], both of the sets A*(f,z) and
A~ (f,x) have unit upper density and zero lower density at x for all x € (0,1)
except a set of Hausdorff dimension zero.

PRrROOF. This follows easily from Theorem 2.6 choosing, for example, g(r) =
re T O

Remarks. One can not use Theorem 2.4 to deduce information about the
densities limsup,. o L(AT(f,z) N (z—r,z+71))/(2r), etc. If we argue as in the
proof of Theorem 2.6 and try to prove that

lirr:is(:)up LAY (f,z)N(x—rz+7))/(2r) =1

assuming limsup, o L(E N (z — 7,z +7))/(2r) = 1 where

lim  (f'(y) = f'(2))/(y — 2) =2,
yebE,y—x
we end up with problems. We need to know that the set £ can be chosen so
that liminf, o £((z —r,z +7)\ E)/r* = 0. We could prove this by modifying
the proof of Theorem 2.4, but as we can see, using Theorem 2.5 gives a much
stronger result with the same effort.

3 Conical Densities.

In this section we discuss briefly what do our examples tell about possible
generalizations of Theorem 1.1 and what is still unknown.

Let f be as in Corollary 2.2 and let C C (0,1) denote the set where
conditions (2.2) and (2.3) hold. Define G = {(t, f(¢)) : t € (0,1)} and Go =
{(t, f(£)) : t € C).

Fix z = (¢, f(t)) € Gc. It is clear that

lin}li()anl(B(m,r) NGNH(z,0)/r >0 (3.1)

whenever 6 € S is not perpendicular to the tangent of G at x. Therefore we
consider only directions of the form § = +(—f'(¢),1)/(1+f'(t)*)"/2. Ifr > 0is
small, then (s, f(s)) € B(x,r) for s € (t—cr,t4+cr) and ¢ = (1 +2f/(t)) /2.
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It follows from (2.2)—(2.3) that H'(B(x,r) NG N H(x,0)) > cr. We conclude
that (3.1) holds for all € Go and # € S'. In particular, it holds H!-almost
everywhere on the curve G.

By modifying the above example, one can easily construct m-rectifiable
surfaces S on R™, for any integer 1 < m < n, so that

limlionfr_mHm(B(a:, r)NH(z,0)NS) >0 (3.2)

for any 6 € S"~! and for H™-almost all 2 € S. One can take, for example, S
to be the graph of the function

g: (Oal) X Rm71 — R (xlw"axm) = (f(xl)a--.af(‘rl))v

where f is as above.

Marstrand’s argument from [5, pp. 293-297] can be generalized to prove
that in R™ claim (1) of Theorem 1.1 holds for 0 < s < 1, and claim (2) for
n—1 < s < n, see also [6, Theorem 11.11]. For general 0 < s < n, the
following is known, see Lorent [4] and Suomala [7]. If m € N, then a set
A C R”™ is called m-rectifiable if H™-almost all of it can be covered with a
countable union of C''-images of R™. A set A is called purely m-unrectifiable,
if it intersects every C''-image of R™ only in a set of H™ measure zero.

Theorem 3.1. Let A C R™ with H*(A) < 0o and let V be an m-dimensional
linear subspace of R™. If either 0 < s < m or if s = m and A is purely
m-unrectifiable, then for H® almost every x € A, there is § € V N S"~! such
that

h%%nfrszS(B(x, rYNH(z,0,n)NA)=0 (3.3)

for any n > 0.

The examples discussed above show that one cannot always take n = 0
in (3.3) when s € [1,m) NN and A is s-rectifiable. On the other hand, Besi-
covitch’s argument from [1, pp. 317-320] can be modified to prove that even
claim (1) of Theorem 1.1 holds for any purely 1-unrectifiable set A C R™ with
HY(A) < oco. It remains unknown if Theorem 3.1 holds with = 0 when
either s € (1,n — 1) is non-integral, or s € [2,n —1] NN and A is purely
s-unrectifiable.
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