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A NEW CHARACTERIZATION OF
BUCZOLICH’S UPPER

SEMICONTINUOUSLY INTERGRABLE
FUNCTIONS

Abstract

It is shown that if f is Henstock-Kurzweil integrable on a compact
interval E in Rm, then f is upper semicontinuously integrable on E if
and only if there exists an increasing sequence {Xn} of closed sets whose
union is E, and f |Xn is bounded for each positive integer n.

1 Introduction.

In [2] Buczolich proved that if f is Henstock-Kurzweil integrable on a compact
interval E in Rm, then f is upper semicontinuously integrable on E if and only
if there exists a Baire 1 function g on E such that |f(x)| ≤ g(x) for all x ∈ E.
However, his proof involves transfinite induction. In this paper, we shall prove
that f is upper semicontinuously integrable on E if and only if there exists
an increasing sequence {Xn} of closed sets whose union is E, and f |Xn

is
bounded for each positive integer n. As a result, we obtain a simpler proof of
[2, Theorem 1].

2 Main Results.

For the rest of this paper, we shall follow the notations and terminologies used
in [3]. The following results are crucial for this paper.
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Theorem 2.1. [3, Theorem 3.9] Let X be a measurable subset of E. If F is
the indefinite HK-integral of a function f on E, then f ∈ L(X) if and only if
VHKF (X) is finite. Moreover,

(L)
∫

X

|f | = VHKF (X)

even if one of the sides is equal to ∞.

Theorem 2.2. [4, Theorem 3.1] Let F be an additive interval function on
I such that VHKF is absolutely continuous. If the following conditions are
satisfied:

(i) f : E −→ R is a function such that f = F ′ almost everywhere on E;

(ii) f is bounded on a nonempty closed set X ⊆ E and VHKF (X) is finite,

then for ε > 0 there exists an upper semicontinuous gauge δ on X such that

p∑
i=1

|f(ξi) |Ii| − F (Ii)| < ε

for each δ-fine partition {(Ii, ξi)}p
i=1 anchored in X.

Our main result, which is equivalent to [2, Theorem 1], is

Theorem 2.3. If F is the indefinite HK-integral of a function f on E, then
the following conditions are equivalent:

(i) There exists an increasing sequence {Xn} of closed sets whose union is
E, and f |Xn

is bounded for each positive integer n.

(ii) For ε > 0 there exists an upper semicontinuous gauge δ on E such that

p∑
i=1

|f(xi) |Ii| − F (Ii)| < ε

for each δ-fine partition {(I1, x1), . . . , (Ip, xp)} in E.

(iii) There exists a Baire 1 function g : E −→ R such that |f(x)| ≤ g(x) for
all x ∈ E.
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Proof. (i) =⇒ (ii). An application of Theorem 2.1 yields

VHKF (Xk) = (L)
∫

Xk

|f |

for each positive integer k. Since F ′ = f almost everywhere on E, and f |Xn

is bounded for each positive integer n, an application of Theorem 2.2 shows
that there exists an upper semicontinuous gauge ∆k on Xk such that

q∑
i=1

|f(ξi) |Ji| − F (Ji)| <
ε

2k+1

for each ∆k-fine partition {(J1, ξ1), . . . , (Jq, ξq)} anchored in Xk.

Define a gauge δ on E by

δ(x) =

{
∆1(x) if x ∈ X1

min{∆k,dist(x,Xk−1} if x ∈ Xk \Xk−1 for some k ∈ {2, 3, . . . }.

It is now clear that δ is upper semicontinuous on E, and assertion (ii) holds.

(ii) =⇒ (iii). For ε = 1 there exists an upper semicontinuous gauge δ on
E such that

p∑
i=1

|f(xi) |Ii| − F (Ii)| < 1 (1)

for each δ-fine partition {(I1, x1), . . . , (Ip, xp)} in E.

For each positive integer n, we set Xn := {x ∈ E : δ(x) ≥ 1
n}. The upper

semicontinuity of the gauge δ on E implies that {Xn} is an increasing sequence
of closed sets whose union is E. Moreover, we may also assume that each Xn

is nonempty. For each x ∈ Xn, we fix a subinterval Jn of E such that x ∈ Jn,
reg(Jn) = 1 and |Jn| = 1

(2n)m . Now, our choice of Xn implies that {(Jn, x)}
is a δ-fine partition anchored in {x}. By (1), we have

|f(x)| ≤ 1 + |F (Jn)|
|Jn|

≤
[
1 + ω(F,E)

]
(2n)m,

observing that the finiteness of ω(F,E) follows from the continuity of F .
Set X0 = ∅. An application of [1, Theorem 10.12] shows that the function
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x 7→
[
1 + ω(F,E)

] ∞∑
k=1

(2k)mχ
Xk\Xk−1

(x) gives the desired function g.

(iii) =⇒ (i). This follows immediately from [1, Theorem 10.12]. The proof
is complete.

Although the proof of Theorem 2.3 seems to be short and easy, the theo-
rems used in the proof contain most of the difficulties of the proof of Theorem
2.3. As a simple application of our main result, we give a somewhat surprising
corollary.

Corollary 2.4. If f is upper semicontinuously integrable on E, then the in-
definite HK-integral of f is strongly derivable (see [5] for definition) almost
everywhere on a portion of E.

Proof. This follows from Theorem 2.3, the Baire Category Theorem and
Ward’s Theorem for the Strong derivative [5].
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