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REMARKS ON SOME THEOREMS ON
CONVOLUTION

Abstract

We discuss relations between the Titchmarsh convolution theorem,
the Kierat-Skornik theorem on convolutions and the Brodski-Sakhnovich-
Donoghue theorem on cyclic vectors of the Volterra integration operator
V given by V f (x) =

R x

0
f (t) dt, on a space Lp[0, 1], 1 ≤ p <∞.

1 Introduction.

The symbol Lp[0, 1], 1 ≤ p < ∞, will denote the Banach space of complex
measurable functions f on [0, 1] for which the norm

‖f‖p =
(∫ 1

0

|f (x)|p dx

)1/p

is finite. The convolution ∫ x

0

f (x− t) g (t) dt

will be denoted by f ∗ g. It is well-known that f ∗ g ∈ Lp and ‖f ∗ g‖p ≤
‖f‖p ‖g‖p for all f, g ∈ Lp. Therefore, for each f ∈ Lp the convolution operator
Kf , defined by (Kfg) (x) = (f ∗ g) (x) , is bounded on Lp. In particular,
the Volterra operator (V g) (x) =

∫ x

0
g (t) dt; i.e., the convolution operator

K1, is bounded on each of the Lp spaces. We will say that the function
f ∈ Lp[0, 1] posses the property (Λ) (briefly f ∈ (Λ)), if

∫ λ

0
|f (t)| dt > 0 for

each λ ∈ (0, 1); that is, if there is no right neighborhood of 0 in which the
function f vanishes almost everywhere.

One version (from which others can be derived) of the classical Titchmarsh
convolution theorem (see [1] and its references) is the following.
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Theorem 1. If f and g are functions of Lp[0, 1] such that f ∗ g vanishes on
[0, 1] and if f ∈ (Λ) (i.e., f vanishes on no interval (0, λ)), then g must vanish
on [0, 1]; i.e., kerKf = {0}.

In [2] Kierat and Skornik gave a proof of the Foias theorem (see [3]); i.e., if
f ∈ L1[0, 1] f ∈ (Λ), thenKfL1 = L1, in a short and elegant way without using
transfinite methods. The following result was essentially proved by Kierat and
Skornik [2] (see also [4] ).

Theorem 2. If f is a function of Lp[0, 1] such that f ∈ (Λ) , then KfLp = Lp.

The following well-known result is due to Brodski, Sakhnovich and Don-
oghue (see [1]).

Theorem 3. If f ∈ Lp[0, 1] and f ∈ (Λ) , then f is a cyclic vector for the
Volterra integration operator V on Lp[0, 1]; that is, span{V nf : n ≥ 0} =
Lp[0, 1].

The main purpose of this note is to point out relations between these three
theorems. Theorem 2 is of interest partly because of its connection with the
convolution theorem of Titchmarsh (Theorem 1) and the Brodski, Sakhnovich
and Donoghue theorem (Theorem 3). It has been known for some time that
a proof of Theorem 2 can be based on Theorem 1. Here we shall show that
conversely, Theorem 1 can be derived very simply from Theorem 2. We shall
also obtain new proofs of Theorem 2 and Theorem 1 (see Remark 1 below).

2 Proofs.

Our arguments are essentially based on the author’s paper [4]. For the sake
of completeness, we provide the details.

2.1 Theorem 2 =⇒ Theorem 1.

Indeed, let the functions f, g ∈ Lp satisfy the conditions of Theorem 1. Then
it follows from the equality (f ∗ g) (x) = 0 a.a. x ∈ [0, 1] that (h ∗ f) ∗ g = 0
for all h ∈ Lp. Since by virtue of Theorem 2 {h ∗ f : f ∈ Lp} is a dense set
in Lp, we have from the last equality that 1∗g = 0; that is,

∫ x

0
g (t) dt = 0 for

a.a. x ∈ [0, 1], which implies that g (x) = 0 for a.a. x ∈ [0, 1], as desired.
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2.2 Theorem 2 =⇒ Theorem 3.

Indeed, if f ∈ Lp and f ∈ (Λ) , then by Theorem 2 we have

Lp =KfLp = Kf span{xn

n!
: n ≥ 0}

=span{Kf

(
xn

n!

)
: n ≥ 0} = span{xn

n!
∗ f : n ≥ 0}

=span{V n+1f : n ≥ 0}

(here span{. . . }means the closed linear hull of the set {. . . }), or

span{V n+1f : n ≥ 0} = Lp,

which implies that span{V nf : n ≥ 0} = Lp, because span{V n+1f : n ≥ 0} ⊂
span{V nf : n ≥ 0}, which means that f is a cyclic vector for the operator V.

2.3 Theorem 3 =⇒ Theorem 2.

Since
KfLp = span{V n+1f : n ≥ 0} def

= E,

(see 2.2. above), to prove this implication it suffices to show that

E = span{V nf : n ≥ 0}.

Really, since xk ∗ f ∈ E for all k ≥ 0, we have p ∗ f ∈ E for all polynomials
p (x). Let δn (x) ∈ Lp be any ∗ −approximate unit for the space Lp; i.e,
δn ∗ g → g (n → ∞) in Lp for all g ∈ Lp. If Pn,m (x) are polynomials such
that lim

m
Pn,m = δn in Lp, then clearly δn ∗ f ∈ E. Therefore lim

n
(δn ∗ f) ∈ E,

and hence f ∈ E. Consequently

KfLp = span{V nf : n ≥ 0} = Lp (Theorem 3),

which completes the proof.

Remark 1. Note that in the case p = 2 Brodski [5] and Sakhnovich [6] gave, in
particular, a different proof of Theorem 3 without use of Titchmarsh’s convo-
lution theorem; namely, they have used Livsic’s theory of characteristic func-
tions (see [1] for more detailed information). By combining the above proofs
of Theorem 2 and Theorem 1 (see Subsection 2.3., Theorem 3 =⇒Theorem
2 and Subsection 2.1., Theorem 2 =⇒Theorem 1) with these arguments of
Brodski and Sakhnovich, we obtain new proofs of the Kierat-Skornik theo-
rem and Titchmarsh’s convolution theorem which is in an essential way close
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to one due to Kalish [7]. Kalish has shown that the Titchmarsh convolution
theorem can be derived from the description of the lattice of all V−invariant
subspaces.

We recall that there exist numerous proofs (see, for instance [8] and its
references and references in [1]) of Titchmarsh’s convolution theorem. Most
of these proofs are based on the theory of analytic or harmonic functions.
Mikusinski [8] gave a simple proof based only on methods of analysis of func-
tions of a real variable.

Our next result can be essentially considered as an analogy of a well-known
result due to Daniel (see [1] and [9, Theorem 3]) for the space C∞ = C∞[0, 1]
of infinitely differentiable functions in [0, 1].

Theorem 4. Let f ∈ C∞[0, 1] be a function and assume the convolution op-
erator Kf on the space C∞[0, 1] has a constant cyclic vector. Then a function
g ∈ C∞[0, 1] is a cyclic vector of Kf if and only if g (0) 6= 0.

The proof of this theorem uses the notion of the so-called Duhamel product

(f ~ g) (x)
def
=

d

dx
(f ∗ g) =

d

dx

∫ x

0

f (x− t) g (t) dt

of the functions f, g ∈ C∞[0, 1]. With this multiplication C∞ becomes an
algebra. Let (C∞,~) denote the algebra of infinitely differentiable functions
in [0, 1] with the Duhamel product ~ as multiplication. The following result
is contained in the author’s paper [10, Lemma 2. 2].

Lemma 5. Let f ∈ (C∞,~). Then f is ~-invertible, if and only if f (0) 6= 0.

Proof of Theorem 4. Let Dg, Dgh
def
= g ~ h, be a Duhamel operator

on a C∞. Modulo Lemma 5, Theorem 4 is a simple remark. Indeed, if
Eh denotes the cyclic subspace of Kf generated by a vector h ∈ C∞; i.e.,
Eh = span{Kk

fh : k ≥ 0}, then Eg ∗ 1 = KgE1. Therefore, since the operator
d
dx is continuous in C∞, we have

Eg =
d

dx
(Eg ∗ 1) =

d

dx
(KgE1) = DgE1 (1)

and the assumption E1 = C∞[0, 1] together with the invertibility of Dg (see
Lemma 5 ) yields that if g(0) 6= 0, then g is a cyclic vector of Kf . Conversely,
let g be a cyclic vector of Kf ; i.e., Eg = C∞. If g(0) = 0, then it follows from
(1) and the definition of C∞ that Eg ⊂ {h ∈ C∞ : h(0) = 0} ( 6= C∞), which
is impossible. Thus g(0) 6= 0.
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Remark 2. Note that in such type of questions the Duhamel product can
be considered as a rather useful tool because it rid us of consideration of an
approximative identity when we have a “ usual” one ( see [11-18] for other
applications of the Duhamel products ).
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