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EXTENSIONS OF REAL AND VECTOR
FUNCTIONS OF ONE VARIABLE WHICH

PRESERVE DIFFERENTIABILITY

Abstract

Let f : F → X be a locally bounded function from a closed set F ⊂ R
to a normed linear space. Then there exists its extension f∗ : R → X
which is differentiable at all points at which f is differentiable. Moreover,
f∗ is Lipschitz if f is Lipschitz and, in the case X = R, the extension
“preserves Dini derivatives”. The paper partly extends results proved
by V. Jarńık (1923), G. Petruska and M. Laczkovich (1974) and J. Mař́ık
(1984).

1 Introduction.

In our paper [NZ] we needed the following assertion on extension of real func-
tions with “preservation of differentiability and Lipschitzness”.

Proposition 1.1. Let A ⊂ R be an arbitrary set and h : A → R be a Lipschitz
function which has a derivative with respect to A at each non-isolated point of
A. Then there exists a Lipschitz function g : R → R which is an extension of
h and g′(x) exists for all x ∈ A.
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There exist at least three papers ([J], [PL], [M]) which contain similar
results but these results do not imply Proposition 1.1. On the other hand, it
is not difficult to prove it using methods of [J] or [M].

In this note we slightly modify the method of [J] to obtain not only Propo-
sition 1.1 (see Proposition 3.6) but also

a) a result on extensions of vector functions (f : F → X where F ⊂ R
is closed and X is a normed linear space) with ”preserving of differentiability
and Lipschitzness” and

b) a result on extensions of real functions with “preservation of differentia-
bility”, “preservation of Dini derivatives” and “preservation of Lipschitzness”.

Note that the result on vector functions seems to be new but extensions
preserving Dini derivatives were considered in [J] (cf. also [Pr] ). However,
Jarńık in [J] assumed that F is perfect and f ′F (x) exists at each endpoint x
of a component of R \ F and he did not consider the question of “preserving
Lipschitzness”. Moreover, the result in [J] is proved for the case of finite Dini
derivatives only.

Note that in [PL] and [M] more precise results on “preserving Lipschitz-
ness” are proved but the assumption that f ′F (t) exists at each t ∈ F is made.

In what follows we suppose that X is a fixed normed linear space and we
use the following terminology.
Notation.

(a) If M ⊂ X and ω > 0, then we set

Uω(M) := {x ∈ X; dist(x, M) < ω}

and denote by conv(M) the convex hull of M . Observe that Uω(M) is
convex provided M is convex.

(b) If f is a Lipschitz mapping from a metric space to a metric space, then
we denote by Lip(f) the minimal Lipschitz constant of f .

(c) By f�P we denote the restriction of a mapping f to a set P .

(d) Let M ⊂ R, t a right accumulation point of M and f : M → X be given.
Then we put

f ′+,M (t) := lim
s↘t,s∈M

f(s)− f(t)
s− t

.

Analogously we define the left relative derivative f ′−,M (t) (the relative
derivative f ′M (t)) if t is a left accumulation point of M (an accumulation
point of M).
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(e) Let M ⊂ R, t a right accumulation point of M and f : M → R be given.
Then we define right (relative) Dini’s derivatives of f at t by

D+,Mf(t) = lim inf
s↘t,s∈M

f(s)− f(t)
s− t

, D+
Mf(t) = lim sup

s↘t,s∈M

f(s)− f(t)
s− t

.

Analogously we define the symbols D−,Mf(t) and D−
Mf(t).

Now we will define an auxiliary notion of a D-set which enables us to deal
with derivatives of vector functions and Dini derivatives of real functions at
the same time.

Definition 1.2. Let M ⊂ R, t ∈ M be a right accumulation point of M and
f : M → X be a vector function. We say that a set C ⊂ X is a right D-set of
f at the point t if

(i) C is non-empty, convex and closed and

(ii) dist
(f(tn)− f(t)

tn − t
, C

)
→ 0 whenever tn ↘ t, tn ∈ M .

The notion of a left D-set is defined in an analogous fashion.

It is easy to see that condition (ii) is equivalent to the following condition.
For each ω > 0 there exists T > t such that, for all s ∈ (t, T ) ∩M ,

f(s)− f(t)
s− t

∈ Uω(C). (1.1)

We will apply the notion of a D-set via the following obvious lemma which
we state without proof.

Lemma 1.3. Let M ⊂ R and t ∈ M . Then the following assertions hold:

(i) Let x ∈ X. Then f ′+,M (t) = x if and only if the singleton {x} is a right
D-set of f at t.

(ii) Let X = R, D+,Mf(t) < D+
Mf(t) and −∞ ≤ a < b ≤ ∞. Then the

set C := {x ∈ R; a ≤ x ≤ b} is a right D-set of f at t if and only if
a ≤ D+,Mf(t), D+

Mf(t) ≤ b.

(iii) Let X = R. Then f ′+,M = ∞ (−∞) if and only if [K,∞) ((−∞,K]) is
a right D-set of f at t for each K ∈ R.

Analogous assertions hold for the left derivative and for left Dini derivatives.
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We will need also the following easy fact.

Lemma 1.4. Let F ⊂ R be closed, let f : R → X be a continuous function and
K ≥ 0. Assume that Lip (f�F ) ≤ K and Lip

(
f�(a,b)

)
≤ K for each component

(a, b) of R \ F . Then Lip(f) ≤ K.

Proof. Let t < s be given. Consider the case t ∈ F and s ∈ (a, b) where
(a, b) is a component of R \ F . Then clearly

‖f(s)−f(t)‖ ≤ ‖f(s)−f(a)‖+‖f(a)−f(t)‖ ≤ K(s−a)+K(a−t) = K(s−t).

Analogously we can handle with other cases.

2 An Auxiliary Function.

Recall that X is a fixed normed linear space.
The basic building block of our construction is the function pz constructed

in the following lemma. Put

Z = {z = (a, b, δ, A,B,A′, B′) ∈ R3 ×X4; a < b, 0 < δ < (b− a)/2}.

Lemma 2.1. Let z = (a, b, δ, A,B,A′, B′) ∈ Z and set k = B−A
b−a . Then there

exists a function p(t) = pz(t) : [a, b] → X which satisfies:

p′(t) exists for all t ∈ (a, b), (2.1)
p(a) = A, p(b) = B, p′+(a) = A′, p′−(b) = B′, (2.2)
Lip(p) ≤ 5 max{‖A′‖, ‖B′‖, ‖k‖}. (2.3)
p(t)−A

t− a
∈ conv{A′, k} for t ∈ (a, a + δ], (2.4)

p(t)−B

t− b
∈ conv{B′, k} for t ∈ [b− δ, b),

p(t) = A + k(t− a) if t ∈ (a + δ, b− δ), or (2.5)
t ∈ [a, a + δ] and A′ = k, or t ∈ [b− δ, b] and B′ = k.

Proof. Define a function p on [a, b] by

p(t) =


A + (t− a)

(
(A′ − k) (a+δ−t)2

δ2 + k
)

t ∈ [a, a + δ],

A + k(t− a) t ∈ (a + δ, b− δ),

B + (t− b)
(
(B′ − k) (b−δ−t)2

δ2 + k
)

t ∈ [b− δ, b].

(2.6)
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Clearly (2.5) holds. It is easy to calculate

p′[a,b](t) =


(A′ − k) (a+δ−t)(3a+δ−3t)

δ2 + k t ∈ [a, a + δ],
k t ∈ (a + δ, b− δ),
(B′ − k) (b−δ−t)(3b−δ−3t)

δ2 + k t ∈ [b− δ, b].
(2.7)

Obviously (2.6) and (2.7) imply (2.1) and (2.2).
If a ≤ t ≤ a + δ, then |3a + δ − 3t| ≤ 2δ,∣∣∣∣ (a + δ − t)(3a + δ − 3t)

δ2

∣∣∣∣ ≤ 2

and consequently

Lip(p�[a,a+δ]) ≤ 2‖A′ − k‖+ ‖k‖ ≤ 5 max{‖A′‖, ‖B′‖, ‖k‖}.

Analogously,

Lip(p�[b−δ,b]) ≤ 2‖B′ − k‖+ ‖k‖ ≤ 5 max{‖A′‖, ‖B′‖, ‖k‖}.

This gives with Lemma 1.4 and Lip(p�[a+δ,b−δ]) = ‖k‖ the assertion (2.3).

Clearly, setting λ =
(

a+δ−t
δ

)2
, for t ∈ (a, a + δ] we have

p(t)−A

t− a
= (A′ − k)λ + k = λA′ + (1− λ)k,

which proves the first part of (2.4). The proof of the second part is quite
analogous.

3 Extensions.

Recall that X is a fixed normed linear space. It will be useful to use the
following terminology.

Definition 3.1. Let A ⊂ B ⊂ R and g : B → X be an extension of f :
A → X. We say that g is an (DLCB)-extension (i.e., extension preserving
differentiability, Lipschitzness, continuity and boundedness) of f if it has the
following properties:

(i) If t ∈ A and f ′A(t) exists, then g′B(t) = f ′A(t). If t ∈ B is an accumulation
point of B but not of A, then g′B(t) exists.

(ii) If t ∈ A and C is a right(left) D-set of f at t, then C is a right(left)
D-set of g at t.
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(iii) If f is Lipschitz, then g is Lipschitz.

(iv) If f is continuous at t ∈ A, then g is continuous at t.

(v) If f is (locally) bounded, then g is (locally) bounded.

We will use the following useful obvious fact.
If g is an (DLCB)-extension of f and h is an (DLCB)-extension of g, then

h is an (DLCB)-extension of f .
We will apply the property (ii) via the following lemma.

Lemma 3.2. Let A ⊂ B ⊂ R and g : B → X be an (DLCB)-extension of
f : A → X. Then the following assertions hold:

(i) If t ∈ A and f ′+,A(t)(f ′−,A(t)) exists, then g′+,B(t) = f ′+,A(t)(g′−,B(t) =
f ′−,A(t)).

(ii) If X = R and t ∈ A is a right (left) accumulation point of A, then
D+,Af(t) = D+,Bg(t), D+

Af(t) = D+
Bg(t) (D−,Af(t) = D−,Bg(t), D−

Af(t)
= D−

Bg(t)).

Proof. To prove (i), it suffices to apply property (ii) of Definition 3.1 and
Lemma 1.3 (i) to C := {f ′A,+(t)} (C := {f ′A,−(t)}).

To prove (ii), suppose that t ∈ A is a right accumulation point of A. Clearly
D+,Bg(t) ≤ D+,Af(t) ≤ D+

Af(t) ≤ D+
Bg(t). To prove D+,Af(t) = D+,Bg(t)

and D+
Af(t) = D+

Bg(t), it is sufficient to use (i) if D+,Af(t) = D+
Af(t) ∈ R

and to apply the property (ii) of Definition 3.1 and Lemma 1.3 (ii), (iii) to

(α) C = {x ∈ R; a ≤ x ≤ b}, where a := D+,Af(t), b := D+
Af(t), if

D+,Af(t) < D+
Af(t),

(β) C = [K,∞) for all K ∈ R, if D+,Af(t) = D+
Af(t) = ∞,

(γ) C = (−∞,−K] for all K ∈ R, if D+,Af(t) = D+
Af(t) = −∞.

Lemma 3.3. Let X be a Banach space, A ⊂ R and f : A → X be a Lipschitz
function. Then there exists a unique (DLCB)-extension f∗ : A → X of f .

Proof. Since f : A → X is Lipschitz and consequently, uniformly continuous,
there is a unique continuous extension f∗ : A → X of f . It is easy to see
that Lip(f∗) = Lip(f) and thus the properties (iii), (iv) and (v) of (DLCB)-
extension are satisfied for B := A and g := f∗.

Let us prove (ii). Let t ∈ A and C be a right D-set of f at t. Consider an
arbitrary ω > 0. By (1.1) we can choose T > t such that f(s)−f(t)

s−t ∈ Uω/2(C)
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for each s ∈ (t, T ) ∩ A. If s ∈ (t, T ) ∩ A then there exists a sequence sn ∈
(t, T ) ∩ A such that sn → s. Clearly f(sn)−f(t)

sn−t → f∗(s)−f(t)
s−t and therefore

f∗(s)−f(t)
s−t ∈ Uω/2(C) ⊂ Uω(C), which shows that C is a right D-set of f∗ at

t. The “left case” is quite symmetrical.
Condition (i) easily follows from (ii) (cf. the proof of Lemma 3.2 (i)).

The basic properties of our (modification of Jarńık’s) extension construc-
tion which can be applied both to vector and real case are formulated in the
following proposition.

Proposition 3.4. Let ∅ 6= F ⊂ R be a closed set and f : F → X be a locally
bounded vector function. Then there exists g : R → X which is a (DLCB)-
extension of f .

Proof. We will divide the proof into two steps.
Step 1. Assume that F is perfect. We may suppose that inf F = −∞,
supF = ∞. (Indeed, it suffices to observe that the set F ∗ = F ∪ (−∞, inf F −
1] ∪ [supF + 1,∞) is also perfect and the function f∗ : F ∗ → X defined by
f∗�F = f and f∗ = 0 on (∞, inf F − 1] ∪ [supF + 1,∞) is clearly a (DLCB)-
extension of f .)

Let {(an, bn) : 1 ≤ n < α} (where α ∈ N or α = ∞) be an ordering of all
components of R\F . Let F1 = {an; f ′F (an) exists}, F2 = {bn; f ′F (bn) exists},
kn = f(bn)−f(an)

bn−an
and set

A′
n =

{
f ′F (an) if an ∈ F1,

kn if an /∈ F1;
B′

n =

{
f ′F (bn) if bn ∈ F2,

kn if bn /∈ F2.

For each 1 ≤ n < α, find εn > 0 such that

εn < min
{

1,
bn − an

n + 1

}
; (3.1)∥∥∥f(s)− f(an)

s− an
− f ′F (an)

∥∥∥ <
1
n

for s ∈ [an − εn, an) ∩ F if an ∈ F1; (3.2)∥∥∥f(s)− f(bn)
s− bn

− f ′F (bn)
∥∥∥ <

1
n

for s ∈ (bn, bn + εn] ∩ F if bn ∈ F2. (3.3)

Further choose δn > 0 such that

5 max{‖A′
n‖, ‖B′

n‖, ‖kn‖, 1} δn < min{ε3
n,

1
n
}. (3.4)
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It is easy to see that this choice with (3.1) guarantees δn < (bn − an)/2. Set
pn := pzn

where zn := (an, bn, δn, f(an), f(bn), A′
n, B′

n) and the function pzn

is taken from Lemma 2.1. Set

g(t) =

{
f(t) if t ∈ F,

pn(t) if t ∈ (an, bn).
(3.5)

If f is Lipschitz, then clearly max{‖A′
n‖, ‖B′

n‖, ‖kn‖} ≤ Lip(f). Conse-
quently, (2.3) and Lemma 1.4 imply that g is Lipschitz which proves (iii) in
Definition 3.1.

By (2.3) and (3.4) we have

‖g(t)− f(an)‖ ≤ min{ε3
n,

1
n
} for t ∈ [an, an + δn], (3.6)

and
‖g(t)− f(bn)‖ ≤ min{ε3

n,
1
n
} for t ∈ [bn − δn, bn]. (3.7)

Consequently (2.5) gives

dist
(
g(s), conv{f(an), f(bn)}

)
≤ 1

n
for each s ∈ [an, bn], (3.8)

which easily implies that (iv) and (v) in Definition 3.1 hold.
To prove (ii) in Definition 3.1, it suffices to verify only the “right case”, since

the “left case” is quite analogous. Assume that t ∈ F is a right accumulation
point of F and C ⊂ X is a right D-set of f at t. Let us prove that C is also a
right D-set of g at t. Assume that t is also a right accumulation point of R\F ;
the opposite case is trivial. Consider for each s > t, s /∈ F the integer n(s),
1 ≤ n(s) < α, for which s ∈ (an(s), bn(s)). We already have verified condition
(v) in Definition 3.1; thus there exist L > 0 and T1 > t such that

‖g(s)‖ ≤ L for all s ∈ [t, T1]. (3.9)

Consider an arbitrary ω > 0. By (1.1) we can choose T2 ∈ (t, T1) such that

f(s)− f(t)
s− t

∈ Uω
2
(C) for each s ∈ (t, T2) ∩ F. (3.10)

Further, since clearly n(s) →∞ and bn(s) → t provided s → t+, s /∈ F , it is
possible to find T3 ∈ (t, T2) such that

max
{

εn(s)(εn(s) + 2L),
1

n(s)

}
<

ω

2
for each s ∈ (t, T3) \ F (3.11)
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and also
bn(s) < T2 for each s ∈ (t, T3) \ F. (3.12)

Now fix an arbitrary s ∈ (t, T3) \ F and let n := n(s), an := an(s), bn :=

bn(s), εn := εn(s), δn := δn(s), kn :=
f(bn)− f(an)

bn − an
. Distinguish four possible

cases.
I. Let g(s) = f(an) + kn(s − an). Since an < s < bn, there is λ ∈ (0, 1)

such that
s = λan + (1− λ)bn. (3.13)

Consequently, s− an = (1− λ)(bn − an) and

g(s) = f(an) + kn(s− an) = f(an) +
f(bn)− f(an)

bn − an
(1− λ)(bn − an)

= λf(an) + (1− λ)f(bn)

which gives

g(s)− f(t)
s− t

=
1

s− t

(
λf(an) + (1− λ)f(bn)− f(t)

)
= λ

an − t

s− t

f(an)− f(t)
an − t

+ (1− λ)
bn − t

s− t

f(bn)− f(t)
bn − t

.

Since by (3.13)

λ
an − t

s− t
+ (1− λ)

bn − t

s− t
=

1
s− t

(
λan + (1− λ)bn − t

)
=

s− t

s− t
= 1,

we obtain

g(s)− f(t)
s− t

∈ conv
{f(an)− f(t)

an − t
,
f(bn)− f(t)

bn − t

}
.

Now, by (3.12) and (3.10) we obtain
f(an)− f(t)

an − t
∈ Uω

2
(C),

f(bn)− f(t)
bn − t

∈
Uω

2
(C) which gives with the convexity of Uω

2
(C)

g(s)− f(t)
s− t

∈ Uω
2
(C). (3.14)

II. Let g(s) 6= f(an)+kn(s−an) and s ∈ (bn−δn, bn). Since δn <
bn − an

2
,

we have by (3.1) bn − an − δn >
bn − an

2
> εn, which gives with (3.7), (3.9),
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(3.4) and (3.11)∥∥∥g(s)− f(t)
s− t

− f(bn)− f(t)
bn − t

∥∥∥ =
∥∥∥g(s)− f(bn)

s− t
+

f(bn)− f(t)
bn − t

bn − s

s− t

∥∥∥
≤

∥∥∥g(s)− f(bn)
s− t

∥∥∥ + ‖f(bn)− f(t)‖ bn − s

(bn − t)(s− t)

≤ ε3
n

bn − an − δn
+ 2L

δn

(bn − an − δn)2
<

ε3
n

εn
+

2Lε3
n

ε2
n

= εn(εn + 2L) <
ω

2
.

Using this with f(bn)−f(t)
bn−t ∈ Uω

2
(C), we obtain

g(s)− g(t)
s− t

∈ Uω(C). (3.15)

III. Let g(s) 6= f(an)+kn(s−an), s ∈ (an, an + δn) and t ≤ an− εn. Since
s− t > an − t ≥ εn we have by (3.6), (3.9), (3.4) and (3.11)∥∥∥g(s)− f(t)

s− t
− f(an)− f(t)

an − t

∥∥∥ =
∥∥∥g(s)− f(an)

s− t
+

f(an)− f(t)
an − t

an − s

s− t

∥∥∥
≤

∥∥∥g(s)− f(an)
s− t

∥∥∥ + ‖f(an)− f(t)‖ s− an

(an − t)(s− t)

≤ ε3
n

εn
+ 2L

δn

ε2
n

≤ εn(εn + 2L) <
ω

2
.

Using this with
f(an)− f(t)

an − t
∈ Uω

2
(C), we obtain

g(s)− g(t)
s− t

∈ Uω(C). (3.16)

IV. Let g(s) 6= f(an) + kn(s− an), s ∈ (an, an + δn) and an− εn < t < an.
Note that by (2.5) we have an ∈ F1. Observe that

g(bn)− g(t)
bn − t

=
g(bn)− g(an)

bn − an

bn − an

bn − t
+

g(an)− g(t)
an − t

an − t

bn − t
(3.17)

and by (2.4) there exists 0 ≤ λ ≤ 1 such that

g(s)− g(t)
s− t

=
g(s)− g(an)

s− an

s− an

s− t
+

g(an)− g(t)
an − t

an − t

s− t
(3.18)

=
(
λf ′F (an) + (1− λ)kn

) s− an

s− t
+

g(an)− g(t)
an − t

an − t

s− t
.
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Setting

D :=
(
λ

g(an)− g(t)
an − t

+ (1− λ)kn

)s− an

s− t
+

g(an)− g(t)
an − t

an − t

s− t
(3.19)

we obtain by (3.18), (3.19), (3.2) and (3.11) that∥∥∥g(s)− g(t)
s− t

−D
∥∥∥ = λ

∥∥∥f ′F (an)− g(an)− g(t)
an − t

∥∥∥(s− an

s− t

)
<

1
n

<
ω

2
. (3.20)

Since kn =
g(bn)− g(an)

bn − an
, the equalities (3.17) and (3.19) can be rewritten in

the form
g(bn)− g(t)

bn − t
= kn.µ +

g(an)− g(t)
an − t

(1− µ), (3.21)

and

D = kn.µ∗ +
g(an)− g(t)

an − t
(1− µ∗) (3.22)

where µ :=
bn − an

bn − t
and µ∗ = (1 − λ)

s− an

s− t
. Clearly, 0 ≤ µ∗ < µ ≤ 1, and

so, (3.21) and (3.22) easily imply (it is geometrically obvious) that

D ∈ conv
{g(an)− g(t)

an − t
,
g(bn)− g(t)

bn − t

}
.

Using (3.10) and (3.12) we obtain D ∈ Uω
2
(C) and therefore (3.20) implies

g(s)− g(t)
s− t

∈ Uω(C).

Using also (3.14), (3.15) and (3.16), we obtain that C is a right D-set of g at
t, which proves (ii).

To prove the first part of (i) in Definition 3.1, suppose that t ∈ F and
f ′F (t) exists. If t ∈ F \ (F1 ∪ F2), it is sufficient to apply (ii) to C := {f ′F (t)};
in the opposite case we use moreover (2.2) and the definition of A′

n and B′
n.

The second part of (i) follows immediately from (2.1).
Step 2. Now suppose that F ⊂ R is a closed non-perfect set. According to
Step 1 it suffices to find a perfect set P ⊃ F and a function h : P → X which
is a (DLCB)-extension of f .

Denote by F ′ the (closed) set of all accumulation points of F and suppose
that {rn; 1 ≤ n < α}, α ∈ N ∪ {∞} is an ordering of all isolated points of F .
For each 1 ≤ n < α set

dn := dist(rn, F \ {rn}), δn := min
{

1
4
dn, d3

n

}
(3.23)
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and Jn := [rn − δn, rn + δn]. Clearly, Jn ∩ F ′ = ∅ for each 1 ≤ n < α. First
we will show that

|s− t| ≥ 1
2
|rn − rm| for 1 ≤ n, m < α, n 6= m and t ∈ Jn, s ∈ Jm. (3.24)

Indeed, the above inequality immediately follows from inequalities

δn ≤
1
4
|rn − rm| , δm ≤ 1

4
|rn − rm| (3.25)

and |rn − rm| ≤ |t− s|+ δn + δm. In particular, the intervals {Jn; 1 ≤ n < α}
are pairwise disjoint.

Moreover, we will show that for each t ∈ R \ F ′ there exists εt > 0 such
that (t− εt, t + εt) intersects at most one interval Jn and as a consequence we
obtain that P := F ∪

⋃
{Jn; 1 ≤ n < α} is closed and therefore perfect.

Indeed, if t = rn for some 1 ≤ n < α, then we can choose εt := δn.
Otherwise, t /∈ F and it suffices to set εt := 1

4dist(t, F ). To see it, suppose
that, for some n 6= m,

Jn ∩ (t− εt, t + εt) 6= ∅, Jm ∩ (t− εt, t + εt) 6= ∅.

Then εt ≤ 1
4 |t − rn|, |t − rn| ≤ εt + δn and consequently, δn ≥ 3

4 |t − rn|.
Analogously we have δm ≥ 3

4 |t− rm| and using (3.25) we obtain

|rn − rm| ≤ |t− rn|+ |t− rm| ≤
4
3
(δn + δm) ≤ 2

3
|rn − rm|,

which is a contradiction.
Define a function h : P → X by h(t) = f(t) if t ∈ F ′ and h(t) = f(rn) if

t ∈ Jn and let us prove that h is a (DLCB)-extension of f .
The properties (iv) and (v) in Definition 3.1 are easy to see.
To prove (iii) in Definition 3.1, let K := Lip(f) and t, s ∈ P be given. If

t ∈ Jn and s ∈ F ′, then (3.23) implies

|t− s| ≥ |rn − s| − δn ≥
3
4
|rn − s|

and therefore

|h(t)− h(s)| = |f(rn)− f(s)| ≤ K|rn − s| ≤ 4
3
K|t− s|.

If t ∈ Jn, s ∈ Jm, n 6= m, then by (3.24) we obtain

|h(t)− h(s)| = |f(rn)− f(rm)| ≤ K|rn − rm| ≤ 2K|t− s|.
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Consequently Lip(h) ≤ 2K.
To prove (ii) in Definition 3.1, it suffices to verify only the “right case”, since

the “left case” is quite analogous. Assume that t ∈ F is a right accumulation
point of F and C ⊂ X is a right D-set of f at t. Let us prove that C is also
a right D-set of h at t. Assume that t is also a right accumulation point of
R \ F ; the opposite case is trivial.

Let ω > 0. By (1.1) there exists T > t such that

dist
(f(r)− f(t)

r − t
, C

)
<

ω

2
for r ∈ F ∩ (t, T ]. (3.26)

Consider for each s ∈ P \ F ′ the integer n(s) for which s ∈ Jn(s). Since h is
locally bounded, there exists t < T1 < T and L > 0 such that

‖h(s)‖ ≤ L for s ∈ P ∩ [t, T1].

By (3.23) we have

|s− t| ≥ |rn(s) − t| − |rn(s) − s| ≥ dn(s) −
1
4
dn(s)

and ∣∣∣ 1
s− t

− 1
rn(s) − t

∣∣∣ =
|s− rn(s)|

(s− t)(rn(s) − t)
≤

d3
n(s)

3
4d2

n(s)

=
4
3
dn(s).

Since dn(s) → 0 if s → t+, s ∈ P \ F , it is possible to find T2, t < T2 < T1,
such that for s ∈ (P \ F ) ∩ (t, T2] we have

2L
∣∣∣ 1
s− t

− 1
rn(s) − t

∣∣∣ <
ω

2
and rn(s) < T.

It gives with (3.26) that, for each s ∈ (P \ F ) ∩ (t, T2],

dist
(h(s)− h(t)

s− t
, C

)
= dist

(f(rn(s))− f(t)
s− t

, C
)

≤
∥∥∥f(rn(s))− f(t)

s− t
−

f(rn(s))− f(t)
rn(s) − t

∥∥∥ + dist
(f(rn(s))− f(t)

rn(s) − t
, C

)
≤ 2L

∣∣∣ 1
s− t

− 1
rn(s) − t

∣∣∣ +
ω

2
< ω.

Therefore C is a right D-set of h at t, which proves (ii). To prove the first
part of (i) in Definition 3.1, it is sufficient to apply (i) to C := {f ′F (t)}. The
second part of (i) is obvious from the construction of h.
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As easy consequences of Proposition 3.4 we obtain the following main re-
sults of the paper.

Theorem 3.5. Let ∅ 6= F ⊂ R be a closed set and X be a normed linear
space. Then for each locally bounded f : F → X there exists g : R → X which
extends f and has the following properties:

(i) If t ∈ F and f ′F (t) exists, then g′(t) = f ′F (t).

(ii) g′(t) exists if t /∈ F or t is an isolated point of F .

(iii) If t ∈ F and f ′+,F (f ′−,F ) exists, then g′+(t) = f ′+,F (g′−(t) = f ′−,F ).

(iv) If f is continuous (Lipschitz) on F , then g is continuous (Lipschitz) on
R.

Proof. By Proposition 3.4 there exists a (DLCB)-extension g : R → X of
f : F → X. By Definition 3.1 and Lemma 3.2 (i) g has all properties (i)-(iv).
(Note that g is continuous at t /∈ F by (ii).)

We obtain easily also the following generalization of Proposition 1.1.

Proposition 3.6. Let A ⊂ R be an arbitrary set and X be a Banach space.
Then for each Lipschitz f : A → X there exists a Lipschitz g : R → X which
extends f and has the following properties:

(i) If t ∈ A and f ′A(t) exists, then g′(t) = f ′A(t).

(ii) g′(t) exists if t /∈ A or t is an isolated point of A.

Proof. By Lemma 3.3 there is a (DLCB)-extension f∗ : A → X of f : A →
X. Since f∗ is Lipschitz and so, locally bounded, by Proposition 3.4 there
exists a (DLCB)-extension g : R → X of f∗. Because g is a (DLCB)-extension
of f , it has properties (i), (ii).

For real functions we obtain the following results.

Theorem 3.7. Let F ⊂ R be a closed set and f : F → R be a locally bounded
function. Then there exists g : R → R which extends f and has the following
properties:

(i) If t ∈ F and f ′F (t) ∈ R exists, then g′(t) = f ′F (t).

(ii) g′(t) ∈ R exists if t /∈ F or t is an isolated point of F .
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(iii) If t ∈ F and D+
F f(t) (D+,F f(t), D−

F f(t), D−,F f(t)) is defined, then
D+g(t) = D+

F f(t) (D+g(t) = D+,F f(t), D−g(t) = D−
F f(t), D−g(t) =

D−,F f(t)).

(iv) If f is continuous (Lipschitz) on F , then g is continuous (Lipschitz) on
R.

Proof. By Proposition 3.4 there exists a (DLCB)-extension g : R → R of
f : F → R. By Definition 3.1 and Lemma 3.2 it has all properties (i)-(iv).

Similarly we obtain the following result on extensions from arbitrary sub-
sets of R.

Proposition 3.8. Let A ⊂ R be an arbitrary set and f : A → R be a Lipschitz
function. Then there exists a Lipschitz function g : R → R which extends f
and has the following properties:

(i) If t ∈ A and f ′A(t) ∈ R exists, then g′(t) = f ′A(t).

(ii) g′(t) exists if t /∈ A or t is an isolated point of A.

(iii) If t ∈ A and D+
Af(t) (D+,Af(t), D−

Af(t), D−,Af(t)) is defined, then
D+g(t) = D+

Af(t) (D+g(t) = D+,Af(t), D−g(t) = D−
Af(t), D−g(t) =

D−,Af(t)).

Proof. By Lemma 3.3 there exists a (DLCB)-extension f∗ : A → R of f :
A → R and by Proposition 3.4 there exists a (DLCB)-extension g : R → R of
f∗. Thus g is an (DLCB)-extension of f and by Definition 3.1 and Lemma 3.2
it has all properties (i)-(iii).
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