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Abstract

In 2001, Csörnyei, O’Neil and Preiss proved that the composition
of any two Darboux Baire-1 functions [0, 1] → [0, 1] possesses a fixed
point, solving a long-standing open problem. In 2004 Szuca proved
that this result can be generalized to any f in the class J of functions
[0, 1] → [0, 1] with connected Gδ graph. As a consequence, he proved
that for such functions the Sharkovsky theorem is satisfied.

As the main result of this paper we prove that as for continuous
maps of the interval, any f in J has positive topological entropy if and
only if it has a periodic point of period different from 2n, for any n ∈ N.
To do this we show that using Bowen’s approach it is possible to define
topological entropy for discontinuous maps of a compact metric space
with almost all of the standard properties. In particular, the variational
principle is true, and consequently, topological entropy is supported by
the set of recurrent points. We also develop theory of recurrent, ω-limit,
and nonwandering points of functions in J since, in general, standard
results from the topological dynamics, are not true. For example, there
is a Darboux Baire-1 function f (hence, f ∈ J ) such that neither the
set of recurrent points nor the set of ω-limit points of f are invariant.

1 Introduction and the Main Results.

In this paper we show that some classical results concerning dynamical proper-
ties of continuous mappings of the interval are true for more general mappings
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of the interval whose graph is a connected Gδ set; in the sequel we denote the
class of these functions by J . The starting point is the result by Csörnyei,
O’Neil and Preiss [CNP] from 2001, that the composition of any two Darboux
Baire-1 functions has a fixed point and its generalization by Szuca [Szuc] for
maps in J .

A nontrivial consequence of this theorem is the Itinerary Lemma, and the
fact that the classical Sharkovsky’s theorem on the coexistence of periodic
orbits for continuous maps of the interval from 1964 (cf., e.g., [BC]), is true
for the more general maps in J [Szu]. The main aim of this paper is to show
that for maps in J another classical result is true – the Misiurewicz’s charac-
terization of continuous maps of the interval possessing no periodic orbits of
period 6= 2n, for n = 0, 1, 2, . . . , as the maps with zero topological entropy
(for reference, cf., e.g., [BC]). To do this it is necessary to develop a theory of
topological entropy of functions (not necessarily continuous) from a compact
metric space into itself; we do this in Section 3. We define topological entropy
for maps in F using Bowen’s approach with (n, ε)-separated sets, and show
that this notion has the usual properties – cf., e.g., Propositions 3.6 and 3.7
below. The key result is the fact, that topological entropy is supported by
the set of recurrent points of the map, similar to the case of continuous maps,
cf. Theorem 3.8 below. Its proof, for maps in F is not simple. The natural
way is to use the Poincaré Recurrence Theorem for measurable maps, and the
Variational Principle which is proved as Theorem 3.18. The proof is rather
complicated, and follows from a sequence of lemmas and propositions. We
apply the Misiurewicz’s approach for continuous maps (cf. [Sz]), with proper
modifications. We also found some useful ideas in [AKLS].

The proof of our main result is in Section 4. The next section, Section
2 contains a sequence of rather elementary results concerning properties of
periodic, recurrent and nonwandering points of maps in J . Note that dy-
namical properties of systems generated by functions in the Baire class 1 were
considered also in an older paper [K].

In the sequel we use the standard notions and terminology concerning
dynamical systems and real functions, like, e.g., [BC] or [BBT]. We start with
the following definition.

Definition 1.1. Let I = [0, 1] and let f be a function I → I. Then f ∈ Conn
if f has a connected graph, f ∈ Gδ if the graph of f is a Gδ set, f ∈ D if f has
Darboux property and f ∈ B∞ if f is a Baire − 1 function. It is well known
that

DB1 := D ∩ B1 ⊂ Conn ∩ Gδ =: J ⊂ D.

We say that an interval U f -covers V if f(U) ⊃ V ; in this case we write
U →f V .
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Lemma 1.2. (Itinerary Lemma [Szu].) Let f ∈ J . For every family {Ik}1≤k≤n

of closed intervals which satisfies I1 →f I2 →f . . . →f In →f I1 there is an
x ∈ I1 such that fn(x) = x and f i(x) ∈ Ii+1 for every i = 1, 2, . . . , n− 1.

Recall that, for a continuous map f of the interval, the Itinerary Lemma
is well-known. Its proof follows easily by the fact, that if J is a compact
interval and f(J) ⊃ J , then f has a fixed point in J . The Itinerary Lemma
immediately implies the following result, which is the main tool used to prove
Sharkovsky’s Theorem 1.4.

Lemma 1.3. Let f ∈ J , and let π = {I1, . . . , Ik} be a partition of I into
compact subintervals. Let G be a Markov graph of (f, π). Thus, G is an
oriented graph whose vertices are intervals from π. And there is an arrow
from Ii to Ij in G if and only if Ii f-covers Ij. Now if there is a loop

Ik1 →f Ik2 →f . . . →f Ikn →f Ik1

in G of length n which is not repetition of a single smaller loop, then f has a
periodic point of period n.

Theorem 1.4. (Sharkovsky’s Theorem [Szu].) Let ≺ be the linear ordering
of the set of positive integers given by

3 ≺ 5 ≺ 7 ≺ . . . ≺ 2 · 3 ≺ 2 · 5 ≺ . . . ≺ 22 · 3 ≺ 22 · 5 ≺ . . . ≺ 23 ≺ 22 ≺ 2 ≺ 1,

and let m,n be positive integers such that n ≺ m. If f ∈ J has a periodic
orbit of period n, then f also has a periodic orbit of period m.

The following is the main result of our paper.

Theorem 1.5. Let f ∈ J . Then f has positive topological entropy if and only
if f has a periodic point whose period is not a power of 2.

Proof. This follows by Theorem 4.7 and 4.8.

2 Preliminaries.

In this section we provide a list of simple results concerning maps in J , which
will be of some use in the sequel, or which exhibit interesting phenomena
impossible for continuous maps.

Definition 2.1. We say that the map f ∈ J is turbulent if there are compact
subintervals J , K with at most one point in common such that

J ∪K ⊆ f(J) ∩ f(K),

and is strictly turbulent if the subintervals J , K can be chosen disjoint.
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Lemma 2.2. Let f ∈ J and J be a subinterval of I which contains no periodic
point of f . If x ∈ J, fm(x) ∈ J for some m > 0 and y ∈ J, fn(y) ∈ J for some
n > 0, then y < fn(y) if x < fm(x) and y > fn(y) if x > fm(x).

Proof. We suppose that x < fm(x) and put g := fm. Then the interval
[x, g(x)] contains no periodic point of g. If gk(x) > x for some k ≥ 1, then
gk+1(x) > g(x), since gk does not have a fixed point in the interval [x, g(x)].
Evidently gk(x) > x for every k ≥ 1 (by induction). In particular: fmn(x) >
x. If y > fn(y), then in the same way we would obtain y > fmn(y). But since
f ∈ J , fmn has a fixed point between x and y, by the Itinerary Lemma, which
is a contradiction. Similarly we can prove that y > fn(y) if x > fm(x).

Corollary 2.3. Let f ∈ J and J be a subinterval of I which contains no pe-
riodic point of f . Then, for any x ∈ I, the points of the trajectory {fn(x)}n≥0

which lie in J form a strictly monotonic (finite or infinite) sequence.

Proof. Let
{yk}N

k=1 := J ∩ {fn(x)}∞n=1,

where N ∈ N or N = ∞. We may assume that there are positive integers mi

such that fmi(yi) = yi+1 for i < N . By the previous lemma,

y1 < fm1(y1) = y2 < fm2(y2) = y3,

or
y1 > fm1(y1) = y2 > fm2(y2) = y3.

It follows by induction that the sequence {yn}N
n=1 is strictly monotone.

Lemma 2.4. Let f ∈ J and J be an open subinterval which contains no
periodic point of f . Then (i) J contains at most one point of any ω-limit set
ωf (x), (ii) J contains no recurrent point, (iii) if x ∈ J is nonwandering, then

no other point of its trajectory lies in J .

Proof. (i) Let x be a point in I and ωf (x) be its ω-limit set. Suppose
that u, v ∈ ωf (x) ∩ J , u 6= v. Then there exist sequences {fnk(x)}∞k=1 and
{fmk(x)}∞k=1 such that

{fnk(x)}∞k=1 → u, and {fmk(x)}∞k=1 → v.

By Corollary 2.3, {fnk(x)}∞k=1 ∪ {fmk(x)}∞k=1 forms a strictly monotonic se-
quence which is a contradiction and u = v.

(ii) Suppose that x ∈ J∩Rec(f). Let U ⊂ J be a neighborhood of x. Then
there is n ∈ N such that fn(x) ∈ U . If V ⊂ U is a neighborhood of x without
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fn(x), then there exists m > n such that fm(x) ∈ V . Thus either the point
fm(x) lies between x and fn(x) or x is between fm(x) and fn(x). But this is
a contradiction to Corollary 2.3.

(iii) Let x ∈ J ∩ Ω(f) and fm(x) ∈ J for some m > 0. Since x 6= fm(x),
there is an open interval G ⊆ J containing x such that fm(G) ⊆ J and
G ∩ fm(G) = ∅. Assuming that x ∈ Ω(f), we can choose y ∈ G and n > m
such that fn(y) ∈ G. Then fm(y) does not lie between y and fm(y) which is
a contradiction.

The following lemma is stated for f ∈ J , but its proof is valid for any
f ∈ F .

Lemma 2.5. Let f ∈ J . Then Ω(f) = Ω(f).

Proof. Let {xn}∞n=1 be a sequence in Ω(f) and xn → x. Then x lies in Ω(f).
Indeed, if U is a neighborhood of x, then there is an m ∈ N such that xm ∈ U .
Since xm ∈ Ω(f), fp(U) ∩ U 6= ∅ for some p and thus, x ∈ Ω(f).

Lemma 2.6. If f ∈ J , then Rec(f) ⊂ Per(f).

Proof. We can write
I \ Per(f) =

⋃
n=1

Jn,

where every Jn is an open interval and Jn ∩ Per(f) = ∅. By Lemma 2.4,
Jn ∩ Rec(f) = ∅ and Rec(f) must be a subset Per(f).

Lemma 2.7. There is an f ∈ J possessing a finite ω-limit set which fails to
be a cycle. (Recall that for continuous maps this is impossible, cf., e.g. [BC].)

Proof. Let f : [0, 1] → [0, 1] be a function such that f is continuous on the
interval (0, 1) and satisfies the following properties: f(0) = 0, f(x) ∈ (x, 1−x)
for every x ∈ (0, 1

2 ), f( 1
2 ) = 1

2 , f(x) ∈ (1 − x, x) for every x ∈ ( 1
2 , 1) and

f(1) = 1. Then f is continuous everywhere except for x = 0 and x = 1, and
clearly, f ∈ J , but on the other hand, the ω-limit set containing only 0 and
1, which do not form a cycle.

Lemma 2.8. There is an f ∈ J possessing a recurrent point a whose image
f(a) is not recurrent. (Recall that for continuous maps this is impossible, cf.,
e.g. [BC].)

Proof. Let f : [0, 1] → [0, 1] be such that f(x) = 1
2 for x ∈ [ 34 , 1], f(0) = 1,

and f(2−n) = 2−(n+1), for n = 0, 1, 2, . . . . Let f be continuous on any interval
In = [2−(n+1), 2−n] with f(In) = [0, 1]. Then f is continuous everywhere
except for x = 0, and clearly, f ∈ J . On the other hand, a = 0 is a recurrent
point of f but f(a) = 1 fails to be recurrent.
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Lemma 2.9. Let f ∈ J , a ∈ Rec(f), and n0 ∈ N. If fn(a) > a for every
n ≥ n0, n ∈ N, then there is a sequence {pn}∞n=1 ⊂ Per(f) such that pn > a
and limn→∞ pn = a.

Proof. Let δ > 0 be sufficiently small such that, for some k ≥ n0, f i(a) /∈
(a, a + δ) whenever i < k, and fk(a) ∈ (a, a + δ). Let r ≥ n0 be the minimal
integer such that fk+r(a) ∈ (a, fk(a)). Such an r exists since a ∈ Rec(f) and
fn(a) > a, for n > n0. Then, for b = fk(a), we have fr(a) > a and fr(b) < b.
By the Itinerary Lemma there is a point p ∈ (a, b), such that fr(p) = p.

Lemma 2.10. Let f ∈ J and let a ∈ Rec(f). If fk(a) > a, for some
k ∈ N, and if there is a sequence {pn}∞n=1 ⊂ Fix(f) such that pn > a and
limn→∞ pn = a, then f has a periodic point of period 6= 2n, n ∈ N.

Proof. Put ak = fk(a), and let q ∈ (a, ak) ∩ Fix(f). Consider two cases.
CASE A. Let fn+k(a) < a for some n > 0. Then there is a y ∈ (q, ak)

such that fn(y) = a. This follows since fn[q, ak] ⊃ [a, q] and fn ∈ D. By
the Itinerary Lemma (note that fk ∈ D) there are points a < u < p < v < q
such that fk(u) = fk(v) = y (note that fk(a) > y), and p ∈ Fix(f). Let
U = [u, p], V = [p, v]. Then fk(U) ⊃ [p, y]. Hence

fn+k(U) ⊃ fn[p, y] ⊃ [a, q] ⊃ U ∪ V.

Similarly, fk+n(V ) ⊃ U ∪ V . Thus, fn+k is turbulent (cf. Definition 2.1). By
the Itinerary Lemma (or by Lemma 1.3), fn+k has a fixed point and so f has
a periodic point of period (n + k)j, for any j ∈ N.

CASE B. Let fn+k(a) ≥ a for all n ∈ N. We may assume as ∈ (q, ak)
for some s, otherwise we take smaller q. Since fk ∈ D, there is a sequence of
points {ui} such that ui > a, limi→∞ ui = a, and fk(ui) = as (note that every
right neighborhood of a contains a fixed point). Choose u = ui < p < uj = v,
where p ∈ Fix(f), and let U = [u, p], V = [p, y]. Then similar to the previous
case we get

fk+m(U) ∩ fk+m(V ) ⊃ U ∪ V

for any m such that am+s < u.

Lemma 2.11. Let f ∈ J . If Per(f) = Fix(f), then Rec(f) = Per(f).

Proof. Let a ∈ Rec(f) \ Per(f). By Lemma 2.6, there is a sequence {pn}
of fixed points, converging to a, say, from the right. Then, by Lemma 2.10,
fn(a) < a, for every n > 0, and consequently, by the “converse” version of
Lemma 2.9, a is the limit point of fixed points of f from the left. By (the
“converse” version of) Lemma 2.10, this is impossible.
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Lemma 2.12. Let f ∈ J , and let a ∈ Rec(f). If there is a neighborhood U
of a such that, for some n ∈ N, any periodic point of f contained in U has
period 2i, with 0 ≤ i ≤ n, then a is periodic.

Proof. The proof is similar to that for Lemma 2.11. It is based on Lemma
2.9 and a slight variation of Lemma 2.10, since it could happen that, for some
a ∈ Rec(f), a /∈ Rec(fm), for an m > 0. But, in any case, there is a k,
0 ≤ k < m such that a is a cluster point of the sequence {fk+im(a)}∞i=1. An-
other possibility is to apply Lemma 2.2.

Before stating the next lemma recall the following. Let (X,M, µ) be a
measure space, with µ a probability measure on X, and let f : X → X be
an M-measurable map. If, for any A ∈ M, µ(f−1(A)) = µ(A), then µ is an
invariant measure for f .

Lemma 2.13. Let X be a compact metric space, f : X → X a measurable map
with respect to a probability invariant measure µ on X. Then µ(Rec(f)) = 1.

Proof. This result must be known but we are not able to give a reference. By
the Poincaré Recurrence Theorem (cf., e.g., [SmS]), for any measurable A ⊂ X,
a.e. point x ∈ A is recurrent with respect to A. This means that f i(x) ∈ A,
for infinitely many integers i. Let N = X \ Rec(f), and let B = {Bn} be a
countable base of X. Let Nn be the set of points in Bn which are not recurrent
with respect to Bn. To prove the lemma it suffices to show that N =

⋃∞
n=1 Nn.

Clearly, N ⊃
⋃

Nn. To prove the converse, let x ∈ N . Then there is an n
such that x ∈ Bn and, for any k > 0, fk(x) /∈ Bn. Consequently, x ∈ Nn.

3 Topological Entropy for Discontinuous Functions.

In the literature, topological entropy is defined for continuous maps of a
compact metric space (or a compact topological space), while metric entropy
is defined for measurable functions which may be strongly discontinuous. In
this section we show that topological entropy with reasonable properties (cf.,
e.g., [AKLS]) can be defined for an arbitrary map f from a compact metric
space into itself. In the sequel, we assume that (X, ρ) is a compact metric
space, and F is the space of all maps X → X.

Definition 3.1. Let f ∈ F , n ∈ N and ε > 0. A set M ⊂ X is (n, ε)-separated
if for every x, y ∈ M,x 6= y there is 0 ≤ i < n such that ρ(f i(x), f i(y)) > ε.
A set E ⊂ X is an (n, ε)-span if for every x ∈ X, there is y ∈ E such that
ρ(f i(x), f i(y)) ≤ ε for every i ∈ {0, 1, . . . , n}. Let S(f, n, ε) denote an (n, ε)-
separated set with maximal possible number of points, and sn(ε) its cardinality
and similarly rn(ε) = min{#F, F is an (n, ε)-span}.
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Let

s(ε) = lim sup
n→∞

1
n

log sn(ε) and r(ε) = lim sup
n→∞

1
n

log rn(ε).

Lemma 3.2. (i) rn(ε) ≤ sn(ε) ≤ rn( ε
2 ) < +∞, (ii) if ε1 < ε2, then s(ε1) ≥

s(ε2), r(ε1) ≥ r(ε2).

Proof. (i) If M is an (n, ε)-separated set with maximal cardinality, then M is
an (n, ε) spanning set. Therefore rn(ε) ≤ sn(ε). To show the other inequality
suppose M is an (n, ε)-separated set and K is an (n, ε/2) spanning set. Define
ϑ : M → K by choosing, for each x ∈ M , some point ϑ(x) = y ∈ K with

ρ
(
f i(x), f i(y)

)
≤ ε/2,

for every 0 ≤ i < n. Then ϑ is injective and therefore the cardinality of M
is not greater than that of K. Hence sn(ε) ≤ rn( ε

2 ). For every ε > 0, an
(n, ε)-separated set has finite cardinality, since X is a compact interval and
thus (by the first inequality) rn( ε

2 ) < +∞.
(ii) Let ε1 < ε2. Then every (n, ε2)-separated set is also an (n, ε1)-

separated set and hence, by the definition of s(ε), s(ε1) ≥ s(ε2). If K is
an (n, ε1) spanning set with minimal cardinality, then K is also an (n, ε2)
spanning set and hence rn(ε2) ≤ rn(ε1). Therefore r(ε1) ≥ r(ε2).

The following definition was introduced by R. Bowen for continuous maps.

Definition 3.3. The Topological entropy of an f ∈ F is the number

h(f) = lim
ε→0

lim sup
n→∞

1
n

log sn(ε).

If A ⊂ X, then the topological entropy h(f |A) of f |A is given by the same for-
mula, except that sn(ε) means the maximal cardinality of the sets S(f, n, ε) ⊂
A.

Proposition 3.4. For any f ∈ F ,

lim
ε→0

s(ε) = lim
ε→0

r(ε) = h(f).

Proof. It follows by Definition 3.3 and Lemma 3.2.

Proposition 3.5. Let f ∈ F , and let A,B ⊂ X be arbitrary sets. Then
h(f |A∪B) = max{h(f |A), h(f |B)}.

Proof. The proof follows easily by Definition 3.3.
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Proposition 3.6. Let f ∈ F . Then h(fk) = k ·h(f), for every positive integer
k.

Proof. First we show
k · h(f) ≥ h(fk). (3.1)

Let #S(f, n, ε) = sn(ε) and #S(fk, n, ε) = sk
n(ε). Since any set which is

(n, ε)-separated by the function fk, is also (nk, ε)-separated by the function
f , we have sk

n(ε) ≤ snk(ε). It follows that

1
n

log sk
n(ε) ≤ k

nk
log snk(ε),

and consequently,

lim
ε→0

lim sup
n→∞

1
n

log sk
n(ε) ≤ lim

ε→0
lim sup

n→∞

k

nk
log snk(ε),

which yields (3.1). To prove the converse inequality, let Mi, 0 ≤ i < k, be a
maximal subset of S(f, nk, ε) with the following property. For every distinct
x, y in Mi there is a 0 ≤ j < n such that ρ(f i+jk(x), f i+jk(y)) > ε; i.e.,
ρ(f jk(f i(x)), f jk(f i(y))) > ε. By definition of Mi, the points f i(x) and f i(y)
are (n, ε)-separated by the function fk. Hence, #Mi ≤ sk

n(ε). Since the union
of the sets Mi is S(f, nk, ε), we get

snk(ε) ≤ k · sk
n(ε),

k

nk
log snk(ε) ≤ 1

n
log
(
k · sk

n(ε)
)

=
1
n

log sk
n(ε) +

1
n

log k,

k · h(f) ≤ h(fk) + lim sup
n→∞

log k

n
,

and hence,
k · h(f) ≤ h(fk). (3.2)

By (3.1) and (3.2), kh(f) = h(fk).

Proposition 3.7. Assume f , g ∈ F are topologically conjugate via a homeo-
morphism ϕ of I (so that ϕ ◦ f = g ◦ ϕ). Then h(f) = h(g).

Proof. Let n ∈ N, ε > 0. We have

f = ϕ−1 ◦ g ◦ ϕ. (3.3)

Let #S(f, n, ε) = sf
n(ε) and #S(g, n, ε) = sg

n(ε). Take arbitrary points x, y ∈
S(f, n, ε), x 6= y. By definition of (n, ε)-separated set there is 0 ≤ i < n such
that ρ(f i(x), f i(y)) > ε and (3.3) implies

ρ
(
ϕ−1

(
gi ◦ ϕ(x)

)
, ϕ−1

(
gi ◦ ϕ(y)

))
> ε. (3.4)
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Since ϕ is homeomorphism, ϕ−1 is continuous. Hence there is a δ > 0
such that if ρ(u, v) ≤ δ, then ρ

(
ϕ−1(u), ϕ−1(v)

)
≤ ε. By (3.4) we have

ρ
(
gi ◦ ϕ(x), gi ◦ ϕ(y)

)
> δ, so ϕ(x), ϕ(y) ∈ S(g, n, δ) and hence,

#S(g, n, δ) ≥ #ϕ (S(f, n, ε)) .

Consequently, sg
n(δ) ≥ sf

n(ε), and h(g) ≥ h(f). By the symmetry, h(g) ≤ h(f)
and thus, h(g) = h(f).

The remainder of this section is devoted to the proof of the following The-
orem 3.8 which is essential in proving our main result. Theorem 3.8 is a
consequence of Lemma 2.13 and Theorem 3.18 below.

Theorem 3.8. For f ∈ F , h(f) = h(f |Rec(f)).

This result is well-known if f is a continuous map of the interval; the proof
consisting of a sequence of definitions, lemmas and propositions can be found,
e.g., in [Sz]. It can be modified for mappings from F since the major part of
the original argument is based on the fact that a continuous map of the interval
has the Darboux property and is measurable. We start with the definition of
the metric entropy, and an alternative definition of topological entropy.

Definition 3.9. Let (X,M, µ) be a probability measure space (i.e., µ(X) =
1), such that µ is an invariant measure of a map f : X → X. Let ξ = {Ai, i =
1, . . . ,m} be a decomposition of X, where Ai ∈M. If

Rn−1(ξ) :=
n−1∨
k=0

f−k(ξ)

is the set containing all intersections of the form Ai1 ∩ f−1(Ai2) ∩ . . . ∩
f−(n−1)(Ain

), then

hµ(f, ξ) = − lim
n→∞

1
n

∑
B∈Rn−1(ξ)

µ(B) · log µ(B).

The Metric entropy, with respect to the measure µ, is the number

hµ(f) = sup
ξ

hµ(f, ξ).

Let X be a compact topological space and α, β two covers of set X (not
necessarily by open sets). Then α∨β := {Ai∩Bj , Ai ∈ α, Bj ∈ β}, f−1(α) :=
{f−1(Ai), Ai ∈ α}, and similarly for f−k(α).



Dynamics of Functions with Connected Gδ Graphs 627

Definition 3.10. Let α be a cover of X with a finite subcover. The entropy
of α is defined to be

H0(α) = log N(α),

where N(α) is the minimal number of sets in any finite subcover.

Lemma 3.11. Let f ∈ F . Then for every cover α of X with a finite subcover

lim sup
n→∞

1
n

H0

(
n−1∨
k=0

f−k(α)

)
=: h(f, α) ≤ H0(α).

Proof. Obviously N(
∨n−1

k=0 f−k(α)) ≤ N(α)n, for every n ∈ N. Hence

1
n

H0(
n−1∨
k=0

f−k(α)) =
1
n

log N(
n−1∨
k=0

f−k(α)) ≤ 1
n

log N(α)n = log N(α),

and consequently, h(f, α) ≤ log N(α) = H0(α).

A cover β is said to be a refinement of a cover α, in symbols α ≺ β, if
every set of β is a subset of a set in α.

Lemma 3.12. Let f ∈ F , and let α be a cover of X with finite subcover. If
α ≺ β, then h(f, α) ≤ h(f, β).

Proof. Let α ≺ β. Then clearly

α ∨ f−1(α) ∨ f−2(α) ∨ . . . ∨ f−n(α) ≺ β ∨ f−1(β) ∨ f−2(β) ∨ . . . ∨ f−n(β)

so that

H0(
n−1∨
k=0

f−k(α)) ≤ H0(
n−1∨
k=0

f−k(β)) and h(f, α) ≤ h(f, β).

For f ∈ F , we set
d(f) = sup

α
h(f, α), (3.5)

where the supremum is taken over all open covers α of X.

Proposition 3.13. Let f ∈ F , and let αn be a cover of X consisting of open
balls with diameter < 1

n . Then d(f) = limn→∞ h(f, αn).

Proof. It follows from (3.5) by Lemmas 3.11 and 3.12.
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Proposition 3.14. Let f ∈ F . Then h(f) = d(f).

Proof. Let αε = {Ci} be a cover, where each Ci is a open ball with diameter
smaller than ε. Let α̃n

ε be a minimal subcover of the cover

αn
ε =

n−1∨
k=0

f−k(αε).

Choose one point of every element α̃n
ε and let these points form a set F . Then

F is an (n, ε)-span and hence,

N(αn
ε ) = N(α̃n

ε ) = #F ≥ rn(ε),

which is equivalent, for n →∞,

d(f) ≥ h(f, αε) ≥ r(ε).

Letting ε → 0 we get
d(f) ≥ h(f). (3.6)

Let α = {Ai} be an open cover with diam(α) < ε and δ > 0 be a number
such that for every set A ⊂ X with diam(A) ≤ δ there is Ai ∈ α so that
A ⊂ Ai. Since X is compact, such a positive δ (the Lebesque number of
covering α) always exists. Let Fn be a minimal (n, ε/2)-spanning set and

Bx =
n−1⋂
k=0

{y ∈ X, ρ
(
fk(x), fk(y)

)
<

1
2
δ},

for every x ∈ Fn. Then diam(Bx) < δ and each set Bx is contained in an
element of cover αn. If x ∈ ∩n−1

k=0f−k(Aik
), then

fk(Bx) ⊂ {y, ρ
(
fk(x), y

)
<

1
2
δ} and fk(Bx) ⊂ Aik

.

Hence Bx ⊂
⋂n−1

k=0 f−k(Aik
). The cover βn = {Bx : x ∈ Fn} is a refinement of

αn and N(βn) = #Fn = rn( 1
2δ). Thus N(αn) ≤ N(βn) = rn( 1

2δ). Hence

h(f, α) = lim
n→∞

1
n

log N(αn) ≤ lim sup
n→∞

1
n

log rn(
δ

2
) = r(

δ

2
).

Letting ε →∞ we get, by Proposition 3.4,

d(f) ≤ h(f). (3.7)



Dynamics of Functions with Connected Gδ Graphs 629

By (3.6) and (3.7), h(f) = d(f).

Let α = {Ai} be an open cover. If ξ = {Ci} is a decomposition of X such
that Ci is µ-measurable, let

p(α, ξ) := max
A∈α

#{C ∈ ξ, A ∩ C 6= ∅}.

Lemma 3.15. Let f ∈ F , and let µ be an f-invariant measure. Then, for
any µ-measurable cover α of X with a finite subcover, and any µ-measurable
decomposition ξ of X, hµ(f, ξ) ≤ h(f, α) + log p(α, ξ).

Proof. Let

H(ξ) = −
∑
Ci∈ξ

µ(Ci) log µ(Ci) and ξn =
n−1∨
i=0

f−i(ξ).

It is easy to see that

pi > 0,
m∑

i=1

pi = 1 =⇒ −
m∑

i=1

pi log pi ≤ log m. (3.8)

Since ξn is a decomposition of X, (3.8) implies the first inequality in

H(ξn) ≤ log N(ξn) ≤ log (p(α, ξ) N(αn)),

while the second one follows easily from the definition of p(α, ξ). To finish the
argument let n →∞.

Lemma 3.16. Let f ∈ F , and let µ be an f-invariant probability Borel mea-
sure on X. Then, for every µ-measurable decomposition ξ of X there is a
decomposition ξ and an open cover α such that (i) hµ(f, ξ) ≥ hµ(f, ξ)− 1, (ii)

p(α, ξ) ≤ 2.

Proof. Let ξ = {C1, C2, . . . , Cs} be a decomposition of X. It is well-known
that any probability Borel measure on a metric space has the property, that
any measurable set is µ-approximable by open subsets. Take compact sets
Ki ⊂ Ci with µ(Ci \ Ki) small enough such that the decomposition ξ =
{K1,K2, . . . ,Ks, X \

⋃s
i=1 Ki} has the property (i). Put Us+1 = X \

⋃s
i=1 Ki

and Ui = Ki ∪ Us+1. Then α = {U1, U2, . . . , Us, Us+1} is an open cover, and
p(α, ξ) ≤ 2.

Theorem 3.17. Let f ∈ F and let µ be an f-invariant probability Borel
measure on X. Then hµ(f) ≤ h(f).
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Proof. Let ξ be a decomposition. Then, by Lemmas 3.15, 3.16 and Theorem
3.14,

hµ(fn, ξ) ≤ hµ(fn, ξ) + 1 ≤ h(fn, α) + log p(α, ξ) + 1 ≤ h(fn) + log 2 + 1

and
hµ(fn) ≤ h(fn) + log 2 + 1.

By Proposition 3.6, since hµ(fn) = nhµ(f), nhµ(f) ≤ nh(f) + log 2 + 1. Let
n →∞ to get hµ(f) ≤ h(f).

Theorem 3.18. Let f ∈ F . Then h(f) = supµ hµ(f), where the sup is taken
over all probability f-invariant Borel measures µ on X.

Proof. For an invariant measure µ we put Sk
µ(A) = µ(f−k(A)). Let ε > 0

be given and let En, for n = 1, 2, . . ., be an (n, ε)-separated set of cardinality
sn(ε). Let σn be the atomic measure on the points of En; i.e.,

σn({x}) =
1

sn(ε)
, where x ∈ En.

Define µn by µn = 1
n

∑n−1
k=0 Sk

σn
. Since X is compact and the measures µn are

probability measures, there is a subsequence {nj} of positive integers such that
µnj → µ. Clearly, µ is an f -invariant probability measure on X. Moreover, µ
is a Borel measure. This follows by the fact, that the support of every µnj is
a (finite) compact set Bj , and hence the support B of µ is compact as well.
By Definition 3.3, we may assume that limj→∞

1
n log snj

(ε) = s(ε). We show
that hµ(f) ≥ s(ε). To do this we first define a µ-measurable partition α of
X consisting of sets with diameter less than ε such that the µ measure of the
boundary Fr(A) of any set A ∈ αn is zero, for any n. So let E = {x1, . . . , xm}
be an 1

4ε span. For 1
4ε < r < 1

2ε, let Ai(r) = {y ∈ X; ρ(xi, y) ≤ r}. Since µ is
finite, for any i there are only countably many r such that the µ-measure of
the boundary of Ai(r) is positive. Hence there is an r0 such that the boundary
of Ai(r0) is a set zero measure, for any i.

Let α = {A1, . . . , Am}, where

A1 = {y : ρ(x1, y) ≤ r0},
A2 = {y : ρ(x2, y) ≤ r0} \A1,

· · ·

Am = {y : ρ(xm, y) ≤ r0} \
m−1⋃
i=0

Ai.
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Then α is the partition. It is easy to see that, for every set Ai, diam(Ai) ≤
2r0 < ε and µ(Fr(Ai)) = 0, for every 1 ≤ i ≤ m (and so, µ(

⋃m
i=0 Fr(Ai)) =

0, µ(
⋃

A∈αn Fr(A)) = 0). Fix positive integers n, q with n ≥ 2q. Define s(j),
for 0 ≤ j < q, by s(j) = [(n− j)/q]−1, where [b] denotes integer part of b > 0,
and put αn =

∨n−1
i=0 f−i(α). Then

αn =
s(j)∨
k=0

f−kq−j(αq) ∨
∨

k∈M

f−k(α),

where M = {0, 1, . . . , j − 1} ∪ {qs(j) + j + q, . . . , n − 1} ⊂ {0, 1, . . . , q − 1} ∪
{n− q, . . . , n− 1}. Is clear that M has cardinality at most 2q. Let

Hν(ξ) = −
m∑

i=1

ν(ξi) log ν(ξi),

for some partition ξ = {ξ}m
i=1 and some measure ν. (We define ν(ξi) log ν(ξi) =

0 for ν(ξi) = 0.) It is easy to see that

Hσn(ξ ∨ η) ≤ Hσn(ξ) + Hσn(η). (3.9)

By (3.8) and (3.9),

Hσn
(αn) = Hσn

(
s(j)∨
k=0

f−kq−j(αq) ∨
∨

k∈M

f−k(α))

≤
s(j)∑
k=0

Hσn
(f−kq−j(αq)) +

∑
k∈M

Hσn
(α)

=
s(j)∑
k=0

Hσn
(f−kq−j(αq)) + #M · log #α

≤
s(j)∑
k=0

Hσn
(f−kq−j(αq)) + 2q log m.

For each 0 ≤ j ≤ q−1, s(j)q+j = [((n−j)/q)−1]q+j ≤ n−q. The numbers
{j + kq| 0 ≤ j ≤ q − 1, 0 ≤ k ≤ s(j)} are mutually distinct and not greater
than n− q. Hence

qHσn(αn) ≤
q−1∑
j=0

s(j)∑
k=0

Hσn(f−kq−j(αq)) + 2q2 log m,
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and hence,

qHσn
(αn) ≤

n∑
k=0

Hσn
(f−k(αq)) + 2q2 log m. (3.10)

Choose an (n, ε)-separated set En so no member of αn can contain more than
one member of En. Since σn({x}) = 1/sn(ε), for x ∈ En,

Hσn
(αn) = −

∑
x∈En

1
sn(ε)

log
1

sn(ε)
= log sn(ε).

Next, Hσn(f−k(αq)) = HSk
σn

(αq) and by (3.10) we get

q log sn(ε) ≤
n∑

k=0

HSk
σn

(αq) + 2q2 log m,

or equivalently,

q
1

n + 1
log sn(ε) ≤ 1

n + 1

n∑
k=0

HSk
σn

(αq) +
2q2

n + 1
log m. (3.11)

Since 1/(n + 1) > 0 and
∑n

k=0 1/(n + 1) = 1, we have

H 1
n+1

Pn
k=0 Sk

σn
(αq) ≥

n∑
k=0

1
n + 1

HSk
σn

(αq),

which, applied to (3.11), yields

q
1

n + 1
log sn(ε) ≤ H 1

n+1

Pn
k=0 Sk

σn
(αq) +

2q2

n + 1
log m

= Hµn+1(α
q) +

2q2

n + 1
log m.

(3.12)

The members of αq have boundaries of µ-measure zero, so limj→∞Hµnj
(αq) =

Hµ(αq). Therefore replacing n by nj in (3.12) and letting j → ∞ we have
qs(ε) ≤ Hµ(αq). We can divide by q and let q →∞ to get

s(ε) ≤ lim
q→∞

1
q
Hµ(αq) = hµ(f, α) ≤ hµ(f).

Since µ = µ(ε),

h(f) = sup
ε>0

s(ε) ≤ sup
ε>0

hµ(ε)(f) ≤ sup
µ

hµ(f).

By Theorems 3.14 and 3.17, hµ(f) ≤ h(f) and hence supµ hµ(f) ≤ h(f).
Consequently, h(f) = supµ hµ(f).
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4 Proof of the Main Result.

Lemma 4.1. Suppose for some n ∈ N, any periodic point of an f ∈ J have
period 2i, 0 ≤ i ≤ n. Then h(f) = 0.

Proof. Put g = f2m

. Then, by Proposition 3.6, Theorem 3.8 and Lemma
2.11,

h(f) =
1

2m
h(g) =

1
2m

h(g|Rec(g)) =
1

2m
h(g|Fix(g)) = 0.

Proposition 4.2. If f ∈ J is turbulent, then h(f) is positive.

Proof. Since f is turbulent, there are closed intervals J,K for which J∪K ⊆
f(J) ∩ f(K). Let J = [a, b] and K = [c, d], a < b ≤ c < d. If b 6= c (f
is strictly turbulent), we take ε = c − b and an arbitrary n ∈ N. For every
x = x0x1x2 . . . xn−1 ∈ {0, 1}n there is yx ∈ J ∪ K such that f i(yx) ∈ J if
xi = 0 and f i(yx) ∈ K if xi = 1. The set M = {yx, x ∈ {0, 1}n} containing
2n elements is (n, ε)-separated. Thus sn(ε) ≥ 2n and h(f) ≥ log 2 > 0.

If b = c, then there is a compact interval J0 ⊂ J such that f(J0) = J or
f(J0) = K, and b /∈ J0. By the choice of J0,

J0 ∪K ⊂ J ∪K ⊆ f2(J0) ∩ f2(K),

and hence, f2 is strictly turbulent. By the first part, h(f2) > 0, and by
Proposition 3.6, h(f) > 0.

Lemma 4.3. If f ∈ J has periodic point of period 2kq, where q > 1 is odd
and k ≥ 0, then f2k+2

is turbulent.

Proof. If f has a point of period 2kq, then, by Theorem 1.4, f has a point
of period 3 · 2k+1. Thus f2k+1

has a cycle of period 3. Put g = f2k+1
. There

are points a < b < c such that either

g(a) = b, g(b) = c, g(c) = a (4.1)

or
g(a) = c, g(b) = a, g(c) = b.

Without loss of generality assume (4.1). Let J = [a, b] and K = [b, c]. Then
obviously J ∪K ⊆ g2(J) ∩ g2(K) and hence, g2 = f2k+2

is turbulent.

The following result is crucial in proving that a map of type 2∞ in J has
zero topological entropy. For continuous maps of the interval the result was
proved in [S], but the argument is not transferable to J . However we are able
to provide a new, self-contained argument.
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Lemma 4.4. Let f ∈ J have only periodic points of periods 2n, for positive
integers n, and let α be a periodic orbit of f with period 2k, k > 1. Let α0

and α1 be the left and right half of α, each possessing 2k−1 points. Let p be a
fixed point of f separating α0 and α1, and finally, let Ji be the convex hull of
αi, i = 0, 1. Since α is a simple orbit (cf. [BC] and [Szu]),

f(αi) = α1−i, and f2(αi) = αi, for i = 0, 1. (4.2)

Put

U0 =
∞⋃

n=0

f2n(J0), U1 =
∞⋃

n=0

f2n(J1), (4.3)

V0 = U0, V1 = U1. Then V0 and V1 are compact periodic intervals forming a
periodic orbit of f ; i.e., f(Vi) = V1−i, i = 0, 1 such that V0 ∩ V1 ⊂ {p}.

Proof. By (4.2), f2(Ji) ⊃ Ji, which yields f2(Ui) = Ui. Similarly, by (4.2),
f(Ji) ⊃ J1−i and hence, f(Ui) = U1−i since f2 ∈ D. Now, p /∈ U0 ∪ U1. To
show this assume, e.g., that p ∈ U0. If J0 = [a, b], let V = [b, p]. Obviously,
b < p since b ∈ α has period > 1. By (4.3) there is an n such that p ∈ f2n(J0).
Hence

f2n(J0) ⊃ J0 ∪ V. (4.4)

Since b is a periodic point in the orbit α0 of f2, there is an m ≤ 2k−1 such
that f2m(b) = a, and consequently,

f2m(V ) ⊃ [a, p] = J0 ∪ V. (4.5)

By (4.4) and (4.5), f2mn is turbulent and hence f has a periodic point of
period 6= 2i, i ∈ N. This is a contradiction. To finish the argument note
that, for any Darboux function f , the closure of an f -invariant interval is
f -invariant.

Lemma 4.5. Let f ∈ J , and let U, V ⊂ I be maximal compact intervals with
the property, that, for some k > 0,

fk(U) = U, fk(V ) = V, but f j(U) 6= U, f j(V ) 6= V, for 0 ≤ j < k.

Then either U = V , or U ∩ V contains at most one point.

Proof. The argument is easy and follows from the fact that if U and V have
non-empty intersection, then U ∪V is a periodic interval of period k, or k/2 if
the intervals belong to the same periodic orbit, k is even, and fk/2(U) = V .

Lemma 4.6. Let f ∈ J be a function. If there is ε > 0 and m ∈ N such
that for every k ≥ m there is a compact interval Ik ⊂ I with the following
properties:
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(i) ε < diam(Ik) ≤ 2ε,

(ii) Ik ⊃ Ik+1 ,

(iii) f2k

(Ik) = Ik and fn(Ik) 6= Ik for every 0 < n < 2k,

(iv) f2k

(Ik+1) = Jk+1 ⊂ Ik,

where Ik+1 and Jk+1 are nonoverlapping intervals, and S(n, ε) ⊂ Im is the
maximal (n, ε)-separated set with respect to the function g = f2m

. Then

lim sup
n→∞

1
n

log sn(ε) = 0,

where sn(ε) is cardinality of S(n, ε).

Proof. We show by mathematical induction that sn(ε) ≤ n + 1 for every
n ∈ N. Evidently if n = 1, the maximal (1, ε)-separated set S(1, ε) ⊂ Im

contains 2 points. Suppose that sn(ε) ≤ n+1 and show that sn+1(ε) ≤ n+2.
Let J =

⋂∞
k=m Ik, and S(n, ε) = {x0, x1, . . . , xp}, where p ≤ n. Let g = f2m

.
Assume that there are u, v ∈ S(n + 1, ε) such that u, v /∈ S(n, ε). Thus there
exist xi, xj ∈ S(n, ε) such that

ρ (gn(u), gn(xi)) > ε ∧ ρ
(
gl(u), gl(xi)

)
≤ ε, (4.6)

ρ (gn(v), gn(xj)) > ε ∧ ρ
(
gl(v), gl(xj)

)
≤ ε, (4.7)

for every l < n. Thus a pair of points gn(u) or gn(xi) and gn(v) or gn(xj) lie
in J . (If not, some of them are not separable.)

CASE A. If gn(xi) ∈ J and gn(xj) ∈ J , then xi, xj ∈ Jk for some k and
there is no s < n such that ρ (gs(xi), gs(xj)) > ε. This is a contradiction.

CASE B. If gn(u), gn(xj) ∈ J , then xj , u ∈ Jk for some k and

ρ (gs(u), gs(xj)) ≤ ε, for every 0 ≤ s < n.

By (4.6) we get

ρ (gs(xi), gs(xj)) ≤ ε, for every 0 ≤ s < n,

and this is a contradiction. Similarly if gn(v), gn(xi) ∈ J .
CASE C. If gn(u), gn(v) ∈ J , then u, v ∈ Jk for some k. By (4.7) and by

the fact, that ρ(gn(u), gn(v)) has to be greater than ε, we have

ρ (gs(u), gs(xj)) ≤ ε, for every 0 ≤ s ≤ n,
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which is a contradiction.
Since for all n ∈ N, S(n, ε) can contain at most n + 1 points, we get

lim sup
n→∞

1
n

log sn(ε) ≤ lim sup
n→∞

1
n

log(n + 1) = 0.

Theorem 4.7. Let f ∈ J . If the period of any periodic point of f is a power
of 2, then h(f) = 0.

Proof. By Lemma 4.1 we may assume that, for any n ∈ N, f has a periodic
orbit of period 2n. Let M1 be the system of maximal compact intervals U ⊂ I
such that f2(U) = U , but f(U) 6= U . By Lemmas 4.4 and 4.5, M1 6= ∅, and
consists of nonoverlapping intervals. Letting M1 =

⋃
M1 we can see, by

Lemmas 4.4 and 2.11, that Rec(f) \M1 ⊂ Fix(f). Consequently, by Theorem
3.8, h(f |I\M1) = 0. By Proposition 3.5, h(f) = h(f |M1). Thus, it suffices to
show that

h(f |M1) = 0. (4.8)

To do this, fix an ε > 0. If every interval in M1 has length less than ε,
then (4.8) is true. (Actually, we have h(f2|M1) = 0.) If not, let Mk be the
system of maximal compact intervals which are fixed by f2k

but not by f i,
0 < i < 2k. Let Mk =

⋃
Mk. Then arguing similarly as before, we can see

that (4.8) is satisfied if h(f2k |Mk
) = 0. Now if, for some k the intervals in

Mk have diameters less than ε, we are done. Otherwise, there is an m > 0
such that in every Mk, for k ≥ k0, there is the finite system Jk

1 , Jk
2 , . . . Jk

m of
intervals with diameter greater than ε. Moreover, for any i, 1 ≤ i ≤ m, the
intervals {Jk

i }∞k=k0
form a nested system. By Proposition 3.5, to prove (4.8)

it suffices to show that

h(f2k

|
J

k0
i

) = 0, 1 ≤ i ≤ m.

But this follows by Lemma 4.6.

Theorem 4.8. If f ∈ J has a periodic point of period 2kq, where q > 1 is
odd and k ≥ 1, then h(f) > 0.

Proof. By Lemma 4.3, f2k+2
is turbulent, by Propositions 4.2 and 3.6,

h
(
f2k+2

)
> 0, and hence, h(f) > 0.
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