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Abstract: In this paper we study the topology of the hyperbolic component of
the parameter plane for the Newton’s method applied to n-degree Bring–Jerrard

polynomials given by Pn(z) = zn − cz + 1, c ∈ C. For n = 5, using the Tschirnhaus–

Bring–Jerrard nonlinear transformations, this family controls, at least theoretically,
the roots of all quintic polynomials. We also study a bifurcation cascade of the

bifurcation locus by considering c ∈ R.
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1. Introduction

The historical seed of complex dynamics goes back to Ernst Schröder
and Arthur Cayley who, at the end of the nineteenth century, investi-
gated the global dynamics of Newton’s method in C applied to poly-
nomials of degree two (previous studies did not deal with the complex
variable). They were able to see that the two neighborhoods around each
root of the quadratic polynomial where Newton’s method converges to
each root, in fact extend to two half planes and the separation straight
line between them is precisely the bisectrix. In other words, any New-
ton’s map for a quadratic polynomial with two different roots is confor-
mally conjugated to the map z → z2 in the Riemann sphere (in Mc-
Mullen language the family is trivial [15]). With the same aim, Cayley
also considered the global dynamics of Newton’s method applied to cubic
polynomials but he was not able to conclude satisfactorily.
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Since then, complex dynamics as a whole, that is the study of iterates
of holomorphic maps on the complex plane or the Riemann sphere, has
become an important issue in dynamical systems. The natural space for
iterating a rational map f is the Riemann sphere. So, for a given ratio-
nal map f , the sphere splits into two complementary domains: the Fatou
set F(f) where the family of iterates {fn(z)}n≥0 is a normal family, and
the Julia set J (f) where the family of iterates fails to be a normal fam-
ily. The Fatou set, when nonempty, is given by the union of, possibly,
infinitely many open sets in Ĉ, usually called Fatou components. On
the other hand, it is known that the Julia set is a closed, totally invari-
ant, perfect nonempty set, and coincides with the closure of the set of
repelling periodic points. For a deep and helpful review on iteration of
rational maps see [17].

The rational (transcendental meromorphic) family given by the New-
ton’s map applied to a polynomial (transcendental entire) family has be-
come a central subject in complex dynamics. The reason for this special
interest is based on the implications of this global analysis on Newton’s
map as a root finding algorithm. It is very difficult, or, possibly, not
possible, to give a short survey on Newton’s method and how a better
understanding of the whole dynamics gives a better understanding of the
Newton’s map as a root finding algorithm. But we focus on some main
observations connected to our work.

A first important observation coming from this global analysis is some-
how negative. Newton’s method applied to cubic (or higher degree) poly-
nomials Qc(z) = z(z− 1)(z− c), c ∈ C fails. That is, there are open sets
in the c-parameter plane for which there are open sets in the dynamical
plane converging to neither 0, 1 nor c. The reason for this is the exis-
tence of a free critical point that, for certain parameters does its own
dynamical behavior independently of the attracting basins associated to
the roots of Qc. A remarkable result due to C. McMullen [14] goes
deeply in this direction by showing that even though we can substitute
Newton’s map for another rational root finding algorithm for which the
previous limitation is solved, the problem is unsolvable for polynomials
of higher degree.

A second relevant consideration is, given P , how to use the Newton’s
map to find numerically all roots of P ; that is, how to choose the initial
seeds to ensure we get all roots of P . This important question, from the
numerical analysis point of view, was solved using a dynamical system
approach in the paper [13], where the authors gave a universal set of
initial conditions, with cardinality depending only on the polynomial
degree.
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A third remark is a topological question which relates the connectiv-
ity of the Julia set, or equivalently, the simple connectivity of the Fatou
components. It is well known that rational maps, in general, may have
non simply connected Fatou components given by either Herman rings
(doubly connected components), basins of attraction or parabolic basins
with (infinitely many) holes or preimages of simply connected compo-
nents which could be multiple connected. Przytycki [18] showed that
every root of a polynomial P has a simply connected immediate basin
of attraction for its corresponding Newton’s method NP (see below for
formal definitions). Later, Meier [16] proved the connectivity of the Ju-
lia set of NP when degP = 3, and later Tan [21] generalized this result
to higher degrees of P . However, the deeper result in this line is due to
Shishikura [20] who proved that the Julia set of NP is connected for any
non-constant polynomial P . In fact, he obtained this result as a corollary
of a much more general theorem for rational functions, namely, the con-
nectedness of the Julia set of rational functions with exactly one weakly
repelling fixed point, that is, a fixed point which is either repelling or
parabolic with multiplier 1.

Similarly, and in most cases strictly related to this, it is important to
study the topology of the hyperbolic components in the parameter plane
and, consequently, the structure of the bifurcation locus. A cornerstone
example of this is the paper of P. Roesch [19], where she used the Yoccoz
Puzzles to prove the simple connectivity of hyperbolic components in
the parameter as well as the dynamical plane for the family of cubic
polynomials.

The main goal of this paper is to study some topological properties
of the parameter plane of Newton’s method applied to the family

(1) Pn,c := Pc (z) = zn − cz + 1,

where n ≥ 3 (to simplify the notation we will assume, throughout the
whole paper, that n is fixed; so, we erase the dependence on n unless
we need to refer to it explicitly). The interest to consider this family
is explained in Section 2 where we show that the general quintic equa-
tion P5(z) = 0 can be transformed (through a strictly nonlinear change
of variables) to one of the form P5,c := z5− cz+ 1 = 0, c ∈ C. Letting n
as a parameter in (1) allows us to have a better understanding of the
problems we are dealing with.

Easily, the expression of the Newton’s map applied to (1) can be
written as (see Lemma 4.1):

(2) Nc (z) = z − Pc (z)

P ′c (z)
= z − zn − cz + 1

nzn−1 − c
=

(n− 1)zn − 1

nzn−1 − c
.
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So, the critical points of Nc correspond to the zeroes of Pc, which we
denote by αj , j = 0, . . . , n−1 and z = 0 which is the unique free critical
point of Nc of multiplicity n− 2. We notice that since all critical points
except z = 0 coincide with the zeroes of Pc they are superattracting fixed
points; so, their dynamics is fixed for all c ∈ C. Note that for certain
values of n and c, this rational map is not irreducible.

For each root αj(c) := αj , j = 0, . . . , n − 1 we define its basin of
attraction, Ac(αj), as the set of points in the complex plane which tend
to αj under the Newton’s map iteration. That is

Ac(αj) = {z ∈ C, Nk
c (z)→ αj as k →∞}.

In general Ac(αj) may have infinitely many connected components but
only one of them, denoted by A∗c(αj) and called immediate basin of
attraction of αj , contains the point z = αj .

To label each root of Pc we observe that, for large values of |c|, there
exists a unique root of Pc, α0, having modulus smaller than one and
there exists a unique root of Pc, αj , j = 1, . . . , n − 1, inside a disc of
radius 1, centered at

wj = |c|1/n−1 exp

(
Arg(c) + 2πj

n− 1
i

)
(see Lemma 3.1 for details). These labeling for the roots of Pc can be
extended for all values of c by analytic continuation of the roots with
respect the parameter c (as long as we do not touch the points for which
two roots collapse which are described in Lemma 4.1).

Similarly, the hyperbolic components in the c-parameter plane are the
open subsets of C in which the unique free critical point z = 0 either
eventually maps to one of the immediate basin of attraction correspond-
ing to one of the roots of Pc or it has its own hyperbolic dynamics
associated to an attracting periodic point of period greater than one. Of
course, the bifurcation locus corresponds to the union of all boundaries
of those components and possible accumulating points (see Section 4 for
more precise definitions).

If Nk
c (0) ∈ A∗c(αj), k ≥ 0 for some j = 0, . . . , n − 1 (that is the

free critical z = 0 is eventually trapped by one of the roots of Pc) we
say that c is a capture parameter. As we will see, the set of all capture
parameters has infinitely many connected components depending on the
first number k ≥ 0 and the value of j so that Nk

c (0) ∈ A∗c(αj). To
distinguish among different captured hyperbolic components we use the
following notation which takes into account the number of iterates of
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z = 0 to get into the immediate basin of attraction of one of the roots:

C0j = {c ∈ C, 0 ∈ A∗c(αj)} and

Ckj = {c ∈ C, Nk
c (0) ∈ A∗c(αj) and Nk−1

c (0) /∈ A∗c(αj), k ≥ 1}.
(3)

We prove, in Section 4, some topological results about those stable
subsets of the parameter plane.

Theorem A. The following statements hold:

(a) C00 is connected, simply connected and unbounded.

(b) C0j , 1 ≤ j ≤ n− 1 are empty.

(c) C1j , 0 ≤ j ≤ n− 1 are empty.

(d) Ckj , 0 ≤ j ≤ n− 1 and k ≥ 2 are simply connected as long as they
are nonempty.

The proofs of statements (a) and (b) follow directly from Proposi-
tion 4.3 while (c) and (d) follow from Proposition 4.5. Apart from the
captured components we also observe the presence of Generalized Man-
delbrot setsMk (the bifurcation locus of the polynomial families zk + c,
c ∈ C). As an application of a result of C. T. McMullen [15], we can
show that for a fixed n, all non-captured hyperbolic components corre-
spond to n − 1 Generalized Mandelbrot sets. Precisely, we prove the
following result in Section 4:

Corollary B. Fix n ≥ 3. The bifurcation locus B(Nn) is nonempty and
contains the quasiconformal image of ∂Mn−1 and B(Nn) has Hausdorff
dimension two. Moreover, small copies of ∂Mn−1 are dense in B(Nn).

Finally, we turn the attention to real parameters. Because of the
symmetries in the parameter plane, to have a good understanding of
real positive values of c is quite important to describe the bifurcation
locus. In Section 5 we show the existence of different sequences of c-real
values tending to 0 corresponding to centers of capture components,
preperiodic parameters and centers of the main cardioids ofMn−1 sets.

Theorem C. Fix n ≥ 3 and let c be a positive real parameter. Denote

by c∗ = n/(n− 1)
n−1
n . The following statements hold:

(a) If c > c∗ then c ∈ C00 .
(b) If c < c∗ there are two different decreasing sequences of parameters

tending to 0 for which the free critical point z = 0 is (i) a superat-
tracting periodic point (with increasing period) or (ii) a preperiodic
point (in fact pre-fix, with increasing pre-periodicity). Moreover,
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(b.1) If n is odd, there is a decreasing sequence of parameters tending
to 0 for which the free critical point z = 0 is the center of a
capture component Ckj for some j.

(b.2) If n is even, Ckj ∩ R = ∅ for any j = 0, . . . , n− 1 and k ≥ 2.

The proof of statement (a) follows from Lemma 4.4. The rest of the
statements follows from Proposition 5.1.

The paper is organized as follows. In Section 2 we briefly explain the
reduction of a general quintic equation to its Bring–Jerrard form. In
Section 3 we give some results on the dynamical plane of the Newton’s
map Nc. In Section 4 we state and prove the topological properties of
the hyperbolic components in the parameter plane. Finally, in Section 5
we study real parameters and prove Theorem C.

2. Tschirnhaus’, Bring’s, and Jerrard’s transformations

As we have already explained in the introduction we study the New-
ton’s method applied to the family of n-degree polynomials (1) defined
by

Pn,c (z) = zn − cz + 1.

Any polynomial of degree 5 can be linearly conjugated through η(z) =
η1z + η2 to one monic polynomial without 4-degree term. Using this
idea any quadratic polynomial az2 + bz + c, a, b, c ∈ C can be reduced
to a polynomial of the family z2 + λ, λ ∈ C. Of course, via a linear
transformation, we cannot expect to reduce (in the sense of getting a
conjugacy) all quintic polynomial to a one parameter family, concretely
to family (1), like in the quadratic case.

However, using nonlinear transformations, it is possible to actually
reduce all quintic polynomials (in a weaker sense only preserving cer-
tain information of the roots of the original polynomial) to family (1)
for n = 5. Consequently, the interest of applying Newton’s method to (1)
is due to Tschirnhaus’ (Bring’s and Jerrard’s) transformations applied
to 5-degree polynomials. For a good explanation of all these transforma-
tions see the translation of the original paper of Tschirnhaus [23], the
short review in [1] and references therein. For completeness we give here
a brief summary.

In his original paper [22], Tschirnhaus proposed a method for solv-
ing Pn(z) = 0, where Pn is a polynomial of degree n, by simplifying it
to a polynomial Qn(y) where Qn is a (simpler) polynomial of degree n
with less coefficients (trivially, the linear change of variables allows to
eliminate the coefficient zn−1). His idea was to introduce the new vari-
able y in the form y = Tk(z) with k < n. Tschirnhaus’ original idea was
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used later by Bring and Jerrard to move forward in the simplification
process. Although Tschirnhaus’ method works for general polynomials
of degree n, here we present n = 5.

Precisely, we want to reduce the general expression of a quintic equa-
tion

(4) z5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0 = 0, ai ∈ C

to one of the form

(5) z5 + c1z + c0 = 0,

in such a way that the roots of (4) can be recuperated from the roots
of (5). To do so, we first reduce the general quintic equation to its
principal form, that is

(6) z5 + b2z
2 + b1z + b0 = 0.

The n-th power sums of the roots xj ’s of (4) are given by

(7) Sn = Sn(xj) =

5∑
j=1

xnj , n = 1, . . .

which satisfy (Newton’s formulae [10])

Sn = −na5−n −
n−1∑
j=1

Sn−ja5−j ,

where ak = 0 if k < 0. For equation (4) we have, for instance, S1 = −a4
and S3 = −a34 + 3a3a4 − 3a2. The key idea is to assume (and prove)
that the roots xj ’s of (4) are related to the roots yj ’s of (6) through a
quadratic (Tschirnhaus) transformation

(8) yj = x2j + αxj + β, α, β ∈ C.
That is, we want to see that α and β can be expressed algebraically in
terms of the coefficients. From Newton’s formulae, the power sums for
equation (6) give

(9) S1 = S2 = 0, S3 = −3b2, S4 = −4b1, S5 = −5b0.

Hence, from S1 = S2 = 0, we obtain

a4α− 5β + 2a3 − a24 = 0,

a3α
2 − 10β2 + (3a2 − a3a4)α+ 2a1 − 2a2a4 + a23 = 0,

(10)

and from those equations we can solve for α and β, algebraically, in
terms of the coefficients ak’s (indeed the equations are quadratic in α
and β and we are free to choose either of the solutions). In turn, it is
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an exercise to see (but involve some computations) that from the three
later equations in (9), we may obtain bj , j = 0, 1, 2 as functions of ak’s,
α and β.

Once we have reduced the general equation (4) into its principal
form (6) we also want to eliminate the quadratic coefficient b2 of the
later expression to get its Bring–Jerrard form (5). A first attempt (the
one Tschirnhaus had in mind) may be to impose the cubic equation (so
getting an extra parameter)

(11) rj = y3j + αy2j + βyj + γ, α, β, γ ∈ C

for the roots of (5), denoted by rj ’s, and the roots yj ’s of (6). If we
argue as before, Newton’s formulae for the power sums for equation (5)
gives

(12) S1 = S2 = S3 = 0, S4 = −4c1, S5 = −5c0.

However to determine α, β and γ using S1 = S2 = S3 = 0 one gets a
6-degree polynomial for α, so not being solvable by radicals.

The new ingredient introduced by Bring and Jerrard was to add an
extra parameter so that equation (11) becomes

(13) rj = y4j + αy3j + βy2j + γyj + δ, α, β, γ, δ ∈ C.

Using the three first equations in (12), equation (13) and Newton’s for-
mulae applied to the principal form (6) we get three new equations from
which it is possible to write α, β, γ and δ as algebraic functions of the
bj ’s coefficients. From the first of those equation we obtain

δ =
1

5
(4b1 + 3αb2),

which we substitute in the second equation to get

− 10b0αβ − 4b1β
2 +

4

5
b21 + 8b0b2 +

46

5
b1b2α+

6

5
b22α

2

+ 6b22β − 2 (5b0 + 4b1α+ 3b2β) γ = 0.

If we choose β to cancel out the γ coefficient in the above equation, the
expression becomes quadratic in α, so algebraically solvable. Finally,
substituting δ, β and α in the third of those mentioned equations we
obtain a cubic equation for the later coefficient γ. As a final step in
this process we use the fourth and fifth equations in (12) to determine
(linearly) the coefficients c0 and c1 in terms of the bj ’s.
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All this process allows to reduce the original equation (4) to the sim-
pler equation (5). Assuming you know the five solutions of the equa-
tion (5) you should invert the process to find out the solutions of your
original equation (4). Since the transformations you have applied are
nonlinear, what happens is that you have twenty candidates for the five
zeroes of (4). As far as we know, there are no non-numerical tests to
determine which ones are the correct ones, but theoretically you could
write the solutions of (4) in terms of the solutions of (5).

On the other hand, it is easy to show that the Newton’s method
applied to the polynomial

(14) P (z) = z5 + c1z + c2, c1, c2 ∈ C

is either conjugated to the Newton’s method applied to qa(z) = z5 + az
or conjugated to one of the family

Pc(z) = z5 − cz + 1, c ∈ C.

In the first case, the conjugation is to the Newton’s method applied
either to q−(z) = z(z4 − 1) or to q+(z) = z(z4 + 1) or to q0(z) = z5.

Consequently there is a formal connection between the use of New-
ton’s method for the general quintic equation and its Bring–Jerrard form.

3. Dynamical plane: Distribution of the roots and
attracting basins

In this section we prove some estimates, that we will need in next
sections, for the relative distribution of the roots αj , j = 0, . . . , n− 1 of
the polynomials in family (1), assuming they are all different roots.

Fix c ∈ C and denote by D(z0, r) the disc centered at z = z0 of
radius r > 0. Let wj := wj(c), j = 0, . . . , n−1 be the n different solutions
of z(zn−1−c) = 0. In particular, we set w0 = 0. Next lemma shows that
if |c| is large enough we have αj ∈ D(wj , 1), j = 0, . . . , n−1. In particular
if |c| is large enough we set α0 to be the root of the corresponding
polynomial such that α0 ∈ D(0, 1) and αj , j = 1, . . . , n − 1 to be the
root of the corresponding polynomial such that αj ∈ D(wj , 1). That is
to say, the root α0 is always inside a disc of radius 1 centered at 0 and
each one of the other roots αj are inside the corresponding disc centered
at wj , j = 1, . . . , n− 1. As we see in the following, α0 behaves as 1/c for
c large enough.
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Lemma 3.1. The following statements hold:

(a) For all c in the parameter space, the roots α0, . . . , αn−1 of (1)
belong to the set

D =

n−1⋃
j=0

D(wj , 1).

(b) Let c ∈ C such that

(15) |c| > max

{
2n−1,

1

sinn−1
(

π
n−1

)}.
Then D(wj , 1)∩D(wk, 1) = ∅ when j 6= k. Moreover, each D(wj , 1)
contains one and only one of the roots of (1), j = 0, . . . , n− 1.

(c) If c is large enough, there exists M := M(n) > 0 such that

(16) |α0 −Nc(0)| < M |c|−(n+1).

Proof: Let α be any of the solutions of the equation zn − cz + 1 = 0
(that is α = αj for some j = 0, . . . , n − 1). Easily α should satisfy
|α| · |αn−1 − c| = |α| · |α − w1| · . . . · |α − wn−1| = 1. If α /∈ D we have
that |α| · |α − w1| · . . . · |α − wn−1| > 1, that is a contradiction. Thus,
statement (a) is proved.

By definition, the set D is formed by n discs of radius 1 and centered
at wj , j = 0, . . . , n − 1. Notice that the wj , j = 1, . . . , n − 1 are the
vertices of a regular polygon of n − 1 sides centered at 0 (lying on the

circle centered at the origin and radius |c|
1

n−1 ) and hence the distance

between two consecutive vertices is exactly 2|c|
1

n−1 sin(π/(n− 1)) while

the distance from each of them to the origin is |c|
1

n−1 .
In order to prove that these discs are disjoint we only need to check

that the distance between any pair of centers is bigger than 2. Taking
into account the previous discussion this happens precisely if (15) is
satisfied.

To finish the proof of statement (b) we should show that, if the discs
are disjoint, each of them contains a unique root of (1). Fix c satis-
fying (15) or in other words, so that D is formed by n disjoint discs
of radius 1 and centered at wj , j = 0, . . . , n − 1. Define h1(z) =
z(zn−1 − c) and h2(z) ≡ 1. We claim that |h2(z)| < |h1(z)| for all
z ∈ ∂D(wj , 1), j = 0, . . . , n − 1. So, Rouche’s Theorem implies that
h1(z) and h1(z) +h2(z) = zn− cz+ 1 have the same number of zeroes in
each D(wj , 1). But clearly h1(z) has one and only one zero in each disc.

To see the claim we observe that

|h1(z)| = |z(zn−1 − c)| = |z − w0| · |z − w1| · . . . · |z − wn−1|.
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If z ∈ ∂D(wj , 1) the factor |z − wj | is equal to 1 and the rest of the
factors are bigger than 1, since by assumption D is formed by n disjoint
discs. We thus obtain that |h1(z)| > 1 = |h2(z)| when z ∈ ∂D(wj , 1) for
j = 0, . . . , n− 1.

Finally, we prove statement (c). Easily we have that Nc(0) = 1/c. Fix
again c large enough so that D is formed by n disjoint discs, in particular
we have that α0 is in D(0, 1). Notice that since cα0 = 1 + αn0 we have
|cα0| = |1 + αn0 | ≤ 1 + |α0|n ≤ 2 and so |cα0|n ≤ 2n. Consequently,∣∣∣∣α0 −

1

c

∣∣∣∣ =
1

|c|
|cα0 − 1| = 1

|c|
|αn0 | =

1

|c|n+1
|cα0|n ≤ 2n

1

|c|n+1
.

In particular, for a fixed n, as c goes to infinity the smallest root (in
modulus) of (1) tends to 1/c (exponentially) faster than c approaches
infinity. As we will state in Subsection 4.1, statement (c) of Lemma 3.1 is
equivalent to say that for c outside a certain disc in the parameter plane,
the free critical point z = 0 always belongs to the same immediate basin
of attraction, the one of α0 ∼ 1/c.

The following quite general topological properties of the basins of
attraction and hyperbolic components of the Julia set are well known
(see for instance [13], where it is studied Newton’s method for a general
polynomial, and [20]).

Proposition 3.2. The following statements hold:

(a) A∗c(αj) is unbounded.

(b) The number of accesses to infinity of A∗n,c(αj) is either 1 or n− 1.

(c) J (Nc) is connected. So, any connected component of the Fatou set
is simply connected.

The classical Böttcher Theorem provides a tool related to the behavior
of holomorphic maps near a superattracting fixed point [4], which we
apply to make a detailed description of the superattracting basin of each
simple root αj for j = 0, . . . , n− 1 of Nc.

Theorem 3.3. Suppose that f is a holomorphic map, defined in some
neighborhood U of 0, having a superattracting fixed point at 0, i.e.,

f(z) = am z
m + am+1 z

m+1 + · · · where m ≥ 2 and am 6= 0.

Then, there exists a local conformal change of coordinates w = ϕ(z),
called Böttcher coordinate at 0 (or Böttcher map), such that ϕ ◦ f ◦
ϕ−1 is the map w → wm throughout some neighborhood of ϕ(0) = 0.
Furthermore, ϕ is unique up to multiplication by an (m − 1)-st root of
unity.
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Assume that αj is one of the simple roots of Nc for j = 0, . . . , n −
1. Applying Böttcher’s Theorem near αj the map Nc is conformally
conjugated to z → z2 near the origin and we notice that this Böttcher
map is unique since m = 2. As explained before, we will use a linear
change of coordinates in order to have a monic expansion of Nc near αj .
Near αj we have that

Nc(z) = αj +
N ′′c (αj)

2!
(z − αj)2 +

N ′′′c (αj)

3!
(z − αj)3 + · · ·

Using the conformal map τ(z) =
N ′′c (αj)

2
(z − αj) we obtain that the

map

(17) N̂c(z) = (τ ◦Nc ◦ τ−1)(z) = z2 +
∑
n≥3

2n−1

n!

N (n)(αj)

[N ′′(αj)]n−1
zn

is monic. For each j = 0, . . . , n − 1, we denote by ϕj its corresponding

Böttcher map (so ϕj(N̂c)(z) = ϕj(z)
2) such that ϕj(0) = 0, ϕ′j(0) = 1.

From equation (17) we deduce that

(18) (ϕj ◦ τ) ◦Nc = D2 ◦ (ϕj ◦ τ),

where D2(z) = z2. Hence ϕj ◦ τ is the Böttcher map conjugating Nc
near αj to z2 to 0.

Before going to the parameter plane we state a result we will use later
which allows us to know when a rational map is the Newton’s method of
a certain polynomial. Precisely, we will use it at the end of the surgery
construction in Proposition 4.5.

Lemma 3.4 ([12, 21]). Any rational map R of degree d having d differ-
ent superattracting fixed points is conjugated by a Möbius transformation
to NP (Newton’s method) for a polynomial P of degree d. Moreover, if
∞ is not superattracting for R and R fixes ∞, then R = NP for some
polynomial P of degree d.

4. Hyperbolic components in the parameter plane of Nc

As we stated in the introduction, the hyperbolic components in the
parameter plane correspond to open subsets of C, in which the unique
free critical point z = 0 either eventually maps to one of the immediate
basins of attraction corresponding to one of the roots of Pc, or it has its
own hyperbolic dynamics associated to an attracting periodic point of
period strictly greater than one (black components in Figure 1). These
immediate basins of attraction are denoted by Ckj in (3), where j explains
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the catcher root and k the minimum number of iterates for which z = 0
reaches A∗c(αj). We use the following notation:

H = {c ∈ C, 0 is attracted by an attracting cycle of period p ≥ 2}.

B = {c ∈ C, the Julia set J (Nc) does not move continuously

(in the Hausdorff topology) over any neighborhood of c}.

The first lemma removes from our parameter plane those values of c
for which the roots of Pc are not simple and so the Newton’s method is
not a rational map of degree n.

Lemma 4.1. Fix n ≥ 3. The Newton’s map Nc is a degree n rational
map if and only if

c 6= c∗k :=
n

(n− 1)
n−1
n

e
2kπi
n , k = 0, . . . , n− 1.

Proof: The rational map Nc has degree n as long as all the roots of Pc are
simple. Otherwise, the pair (z, c) should be a solution of the polynomial
system

Pn (z) = zn − cz + 1 = 0,

P ′n (z) = nzn−1 − c = 0.
(19)

Solving this system we have

(z∗k, c
∗
k) =

(
z∗e

2kπi
n , c∗e

2kπi
n

)
, k = 0, . . . , n− 1,

where

(20) (z∗, c∗) =

((
1

n− 1

) 1
n

,
n

(n− 1)
n−1
n

)
denote the positive real values of the corresponding roots.

In the next lemma we prove that we can focus on a sector in the
parameter plane due to some symmetries.

Lemma 4.2. Let n ≥ 3. The following symmetries in the c-parameter
plane hold:

(a) The maps Nc (z) and Nĉ (z) with ĉ = e
2πi
n c, are conjugated through

the holomorphic map h (z) = e
2πi
n z.

(b) The maps Nc (z) and Nc (z) are conjugated through the anti-holo-
morphic map h (z) = z.
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(a) The parameter plane

for n = 3.

(b) The parameter plane

for n = 4.

(c) The parameter plane

for n = 7.

(d) Zoom of (a). (e) Zoom of (b). (f) Zoom of (c).

Figure 1. Different parameter planes as n varies.
From these pictures we can easily see the symmetries
rigorously proven in Lemma 4.2.

Proof: We first prove (a). We take h (z) = e
2πi
n z. Then

(
h−1 ◦Nc ◦ h

)
(z) = h−1

(
Nc

(
e

2πi
n z
))

= h−1

e 2πi
n z −

(
e

2πi
n z
)n
− c

(
e

2πi
n z
)

+ 1

n
(
e

2πi
n z
)n−1

− c


= e

−2πi
n

(
e

2πi
n z − e

2πni
n zn − ce 2πi

n z + 1

ne
2π(n−1)i

n zn−1 − c

)
= Nĉ (z) ,

where ĉ = e
2πi
n c.
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To see (b) we take h(z) = z and argue as above,(
h−1 ◦Nc ◦ h

)
(z) = h−1

(
(n− 1)zn − 1

nzn−1 − c

)
=

(n− 1)zn − 1

nzn−1 − c

=
(n− 1)zn − 1

nzn−1 − c
= Nc (z) .

In the following subsections we describe the topology of the different
hyperbolic components. In Subsection 4.1 we study the capture compo-
nents C0j showing that only C00 is nonempty. Moreover, we show that it
is unbounded, it contains the complement of a disc of radius 4 and it is
simply connected (see Proposition 4.3). In Subsection 4.2 we investigate
the rest of the capture components showing that every connected compo-
nent is simply connected (see Proposition 4.5). Finally, in Subsection 4.3
we show that the bifurcation locus for Nc contains quasiconformal copies
of the bifurcation locus of the map zn−1 + c.

4.1. The hyperbolic components C0j for 0 ≤ j ≤ n− 1. The first
result determines that one of the roots, α0, is playing a differentiated
role, since for all c outside a certain disc around the origin, the free
critical point z = 0 lies in its immediate basin of attraction. This is
due to the fact that the free critical point is z = 0 for all n ≥ 3 and
for all c in the parameter space. As a consequence, any other capture
component should be bounded (see Figure 1), which in turn implies that
C0j , j = 1, . . . , n− 1 are empty.

Proposition 4.3. Fix n ∈ N.

(a) C00 is unbounded. In fact we have C00 ⊃ {c ∈ C, |c| > 4}.
(b) C00 is connected and simply connected.

(c) C0j = ∅ for all j ≥ 1.

Proof: We first prove that there is an unbounded connected component
of C00 . Let us denote by B = B (0, 1/2) the closed disc of radius 1/2
centered at z = 0. We claim that if |c| > 4, the map Nc maps B strictly
inside itself. Hence, the Denjoy–Wolf Theorem implies that there must
be a unique point η ∈ B such that for all z ∈ B Nn

c (z) → η as n → ∞
(in other words B belongs to the immediate basin of attraction of the
fixed point η). In particular we have that Nn

c (0) → η as n → ∞. Of
course η must be one of the roots αj of Pc. Since for c large enough we
know that α0 ∈ B, we use continuity of the roots of Pc with respect to
the parameter c to conclude η = α0 and hence c ∈ C00 .
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To see the claim we notice that if |c| > 4 the following inequalities
follow easily:

|Nc(z)| =
∣∣∣∣ (n− 1) zn − 1

nzn−1 − c

∣∣∣∣ < (n− 1) |z|n + 1∣∣∣|c| − n |z|n−1∣∣∣
<

(n− 1) 2−n + 1

|c| − n 21−n
<
n− 1 + 2n

2n+2 − 2n
<

1

2
,

for all n ≥ 3.
We secondly prove that C00 is conformally a disc. Since Nc has a

superattracting fixed point at α0, we can use the Böttcher coordinate
near the origin to define a suitable representation map in C00 . The idea is
the same as in the uniformization of the complement of the Mandelbrot
set for the quadratic family, see [7, 8] for the original construction. Using
a suitable linear change of variables we obtain a new family of maps, so
that the superattracting fixed point is now located at z = 0 and the
functions can be written as z2 + O(z3), and thus having a preferred
Böttcher coordinate in this region (see equation (17)).

It is well known that the Böttcher map cannot be analytically contin-
ued to the whole immediate basin of attraction of α0 since the critical
point 0, by assumption, belongs to it. However, as in the parametriza-
tion of the cubics maps given in [6] by Branner and Hubbard we can
use the co-critical point. Observe that Nc is a rational map of degree n,
with n critical points of degree 1 located at αj and the critical point of
degree n−2 located at 0. So, there exists a unique point, denoted by wc
and called the co-critical point, such that Nc(wc) = Nc(0). Indeed a
computation shows that wc = n/((n− 1)c) and

Nc(0) = Nc

(
n

(n− 1)c

)
=

1

c
.

Using this co-critical point we define

(21)

Φ: C00 → C \ D

c→
[
ϕ0

(
N ′′(α0)

2

(
n

(n− 1)c
− α0

))]−1
,

where ϕ0 is the Böttcher coordinate defined in the immediate basin
of attraction of z = 0 for the monic map N̂c = τ ◦ Nc ◦ τ−1 where

τ(z) =
N ′′c (αj)

2
(z − αj).

We claim that Φ is a proper analytic map from C00 onto the exterior
of the unit disc. In fact, it is a covering of degree n with a ramified point



Newton’s Method on Bring–Jerrard Polynomials 97

at ∞. To see the claim we mimic the Douady–Hubbard technique [7, 8]
for the uniformization of the exterior of the Mandelbrot set.

A brief computation shows that

N ′′c (α0) =
P ′′c (α0)

P ′c(α0)
=
n(n− 1)αn−20

nαn−10 − c
.

Using now that α0 = 1/c+O(1/|c|n+1) (see Lemma 3.1) we have that

N ′′(α0)

2

(
n

(n−1)c
−α0

)
=

n(n−1)
cn−2 +O( 1

|c|2n−2 )

2
cn−1 (n− cn) +O( 1

|c|2n−1 )

×
(

n

(n− 1)c
− 1

c
+O

( 1

|c|n+1

))

=

n
cn−1 +O( 1

|c|2n−1 )

2
cn−1 (n−cn)+O( 1

|c|2n−1 )
=

n+O( 1
|c|n )

2(n−cn)+O( 1
|c|n )

=
n

2(n−cn)

(
1+O

( 1

|c|n
))

=
n

2(n−cn)
+O

( 1

|c|2n
)
.

As mentioned before, ϕ′(0) = 1 (or, equivalently limz→0 ϕ0(z)/z = 1).
So, as c→∞ we obtain that

ϕ0

(
N ′′(α0)

2

( n

(n− 1)c
− α0

))
≈ n

2(n− cn)
+O

( 1

|c|2n
)
.

Thus, the map c→ Φ(c) is holomorphic and |Φ(c)| > 1, while |Φ(c)| →
1 as c→ ∂C00 . Therefore, Φ is a proper map ramified at∞ and the above
computations show that Φ(c) ≈ Kcn +O(|c|2n), K ∈ C.

To prove that C00 is formed by the unique unbounded connected com-
ponent (the one we just proved it exists), we argue by contradiction.
If there were another component U , by the arguments above, would be
bounded. When approaching its center, we would have α0(c) → 0, a
contradiction since this only can happen if c → ∞. In fact, the same
argument also shows that C0

j is empty for all j ≥ 1. Observe that if

there were any (bounded) component C0
j its center should satisfy that

αj(c)→ 0, but this implies j = 0 and c→∞ again. So, the proposition
is proved.

In the next lemma we show that there exist some semi-straight lines
in the parameter plane joining c = 0 (excluding this value) to infinity
for which the Newton’s map has an invariant straight line in the dy-
namical plane. Once this is proved it is easy to conclude that, for those
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parameters, z = 0 belongs to the immediate basin of attraction of α0 or
equivalently those semi-straight lines in parameter plane belong to C00 .
We also show that all real parameters c > c∗ also belong to C00 .

We denote by L+
θ = {|w|eiθ, |w| > 0} and by Lθ = L+

θ ∪L
+
θ+π ∪{0}∪

{∞}.

Lemma 4.4. Fix n ≥ 3.

(a) If c ∈ L+
π/n then c ∈ C00 . Moreover, L−π/n is a forward invariant

straight line for the map Nc with

(22) Nc(|z|e
−πi
n ) =

(n− 1)|z|n + 1

n|z|n−1 + |c|
e

−πi
n .

(b) If c ∈ L+
0 with c > c? := n(n− 1)−

n−1
n then c ∈ C00 .

Remark 1. Taking into account the symmetries described in Lemma 4.2
it is clear that the previous lemma also applies to the corresponding lines
of the parameter plane after applying the symmetry.

Proof: We first prove statement (a). When c ∈ L+
π/n we have that

c = |c|eπin . Hence (2) becomes

(23) Nc(z) =
(n− 1)zn − 1

nzn−1 − |c|eπin
.

First we assume z ∈ L+
−π/n. Hence (23) can be written as:

Nc(|z|e
−πi
n ) =

(n− 1)|z|ne−πi − 1

n|z|n−1e
−(n−1)

n πi − |c|eπin

=
−(n− 1)|z|n − 1

−n|z|n−1 − |c|
1

e
πi
n

=
(n− 1)|z|n + 1

n|z|n−1 + |c|
e

−πi
n .

So L+
−π/n⊂L−π/n is forward invariant. Secondly, we take z∈L+

[−π/n+π] =

L+
[(n−1)/n]π. Calculating as above we have

Nc(|z|e
n−1
n πi) =

(n− 1)|z|ne(n−1)πi − 1

n|z|n−1e
(n−1)2

n πi − |c|eπin

= − (n− 1)|z|nenπi + 1

n|z|n−1enπi − |c|
e

−πi
n ,
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and so

(24) Nc(|z|e
n−1
n πi) =


− (n− 1)|z|n + 1

n|z|n−1 − |c|
e

−πi
n if n is even,

−(n− 1)|z|n + 1

n|z|n−1 + |c|
e

−πi
n if n is odd.

From the formulae it is easy to see that in both cases (n even and n odd)
a point z ∈ L+

[(n−1)/n]π maps to one point in L−π/n. Hence, altogether we

conclude that L−π/n is a forward invariant straight line for the map Nc.

To see that in fact c ∈ C00 we write (22) as a map Fc from the positive
real line to itself such that

Fc(x) =
(n− 1)xn + 1

nxn−1 + |c|
and F ′c(x) =

(n− 1)nxn−2

(nxn−1 + |c|)2
(xn + |c|x− 1).

From those formulae and knowing that Fc is the restriction of a Newton’s
map on an invariant straight line, we easily get that F (0) = 1/|c|, F (x) ∼
n−1
n x as x→∞, there exists a unique positive fixed point 0 < x̂c < 1/|c|

of Fc such that F ′c(x̂c) = 0 and F ′c(x) < 0 for all x ∈ (0, x̂c). Therefore,
it is clear that [0, x̂c] belongs to the immediate basin of attraction of x̂c.
Using the continuous dependence of x̂c with respect to c (notice that
c > c∗ and so the roots of Pc may not collapse) we know that x̂c tends
to 0 as |c| tends to ∞. Going back to the map Nc, we deduce that
x̂ce
−πi/n is one of the αj-roots of Pc and that the segment joining z = 0

and z = x̂ce
−πi/n belongs to its immediate basin of attraction. Since

x̂ce
−πi/n should tend to 0 as c → ∞, we conclude that x̂ce

−πi/n = α0

and that c ∈ C00 , as desired.
Now we prove statement (b). Let c ∈ R+ and c > c∗. The restriction

of the Newton’s map in R, which is forward invariant, can be written as

Nc(x) =
(n− 1)xn − 1

nxn−1 − c
, c ∈ R+.

Easily, Nc(0) = 1/c, Nc(x) = 0 if and only if x = n
√

1/(n− 1) and Nc
has a vertical asymptote at x = n−1

√
c/n. Moreover, the map Nc is an

analytic function on the interval [0, n−1
√
c/n). We claim that if c > c∗,

then there is a unique x∗ ∈ (0, n−1
√
c/n) such that Nc(x

∗) = x∗ and
N ′c(x

∗) = 0.
To see the claim we show first that the unique positive zero of Nc

happens to be before the asymptote if and only if the condition of the
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statement is satisfied.

n
√

1/(n− 1) < n−1
√
c/n ⇐⇒ n

√( 1

n− 1

)n−1
<
c

n

⇐⇒ c >
n

n
√

(n− 1)n−1
:= c∗.

From Bolzano’s Theorem we conclude that Nc has (at least) one fixed
point (which of course satisfies the equation xn − cx + 1 = 0) on the

interval (0, n−1
√
c/n), but since Nc is the restriction of a Newton’s map

we know that it is unique. We denote it by xc0. On the other hand
differentiating we obtain

N ′c(x) =
n(n− 1)xn−2

(nxn−1 − c)2
(xn − cx+ 1).

An easy computation shows that N ′c is positive in (0, xc0) and N ′c(0) =
N ′c(x

c
0) = 0. So, Nc is increasing on the interval (0, xc0). From this we

see that the closed interval [0, xc0], and in particular x = 0, belongs to
the immediate basin of attraction of xc0.

Finally, we observe that xc0 → 0 as c → ∞ and so xc0 = α0 for
large c. The continuity of the roots of a polynomial with respect to the
parameter (again remember that for c > c∗ there are no collisions of the
roots) concludes statement (b).

This section gives a deep understanding of the main hyperbolic com-
ponent in the parameter space given by the immediate basin of attraction
of the special root α0. As a corollary we obtain that the rest of hyper-
bolic components are all bounded. In the next section we prove that if
they are nonempty then they are all simply connected.

4.2. The capture components: Ckj , for 0 ≤ j ≤ n − 1, k ≥ 1.
In the next proposition we prove the main topological properties of the
capture components Ckj for 0 ≤ j ≤ n − 1, k ≥ 1. These open sets in
the parameter plane contain all the parameters such that the critical
point z = 0 is attracted by one the roots of Pc, see equation (1), but
the critical point does not belong to the immediate basin of attraction.
Precisely, the index k counts the number of iterates that the origin needs
to arrive to the immediate basin of attraction.

Proposition 4.5. Fix n.

(a) C1j = ∅ for all j = 0, . . . , n− 1.

(b) If Ckj 6= ∅, its connected components are simply connected.
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Proof: To prove statement (a) assume otherwise. Let c ∈ C1j and con-

sider its corresponding dynamical plane. We claim that f : f−1A∗c(αj))→
A∗c(αj) has degree n + 1, a contradiction since the map has global de-
gree n. To see the claim we notice that by assumption the (simply
connected) Fatou component of z = 0 maps to A∗c(αj) with degree n−1
(the number of critical points counting multiplicity plus one) and A∗c(αj)
maps to itself with degree 2.

To prove statement (b) we use a quasiconformal surgery construction
(see [2, 5]). Let U be a connected component of Ckj , j = 2, . . . , n − 1,
k ≥ 1. We consider the following map

ΦU : U → D
c→ ψj,c

(
N◦k+1
c (0)

)
,

where ψj,c denotes the Böttcher’s map conjugating Nc near αj to z →
z2 near the origin (see equation (18)) and D is the unit disc. As in
Proposition 4.3(b), the map ΦU is a proper mapping and we will prove
that it is a local homeomorphism.

Let c0 ∈ U and z0 = ΦU (c0). The idea of this surgery construction
is the following: for any point z near z0 we can build a map Nc(z) such
that Φ(c(z)) = z, or in other words, we can build the inverse map of Φ.

We denote by Wc0 the connected component of Ac0(αj) containing
N◦kc0 (0), preimage of A∗c0(αj). Let Vc0 be a small open neighborhood

of N◦k+1
c0 (0) contained in A∗c0(αj) and let Bc0 ⊂ Wc0 be the preimage

of Vc0 containing N◦kc0 (0).
For any 0 < ε < min{|z0|, 1− |z0|} and any z ∈ D(z0, ε), we choose a

diffeomorphism δz : Bc0 → Vc0 with the following properties:

• δz0 = Nc0 ;

• δz coincides with Nc0 in a neighborhood of ∂Bc0 for any z;

• δz(N◦kc0 (0)) = ψ−1j,c0(z).

We consider, for any z ∈ D(z0, ε), the following mapping Gz : Ĉ→ Ĉ:

Gz(x) =

{
δz(x) if x ∈ Bc0 ,
Nc0(x) if x /∈ Bc0 .

We proceed to construct an invariant almost complex structure, σz,
with bounded dilatation ratio. Let σ0 be the standard complex structure
of Ĉ. We define a new almost complex structure σz in Ĉ.

σz :=


(δz)

∗σ0 on Bc0 ,

(Nn
c0)∗σ on N−nc0 (Bc0) for all n ≥ 1,

σ0 on Ĉ \
⋃
n≥1N

−n
c0 (Bc0).
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By construction σ is Gz-invariant, i.e., (Gz)
∗σ=σ, and it has bounded

distortion since δz is a diffeomorphism and Nc0 is holomorphic. If we
apply the Measurable Riemann Mapping Theorem (see Section 1.4 in [5])

we obtain a quasiconformal map φz : Ĉ→ Ĉ such that φz integrates the
complex structure σz, i.e., (φz)

∗σ = σ0, normalized so that φ(0) = 0 and
φ(∞) = ∞. Finally, we define Rz = φz ◦ Gz ◦ φ−1z , which is analytic,
hence a rational function.

We claim that this resulting mapping Rz is the Newton’s method
applied to the polynomial Pn(x) = xn−c(z)x+1. By construction Rz is
a rational map of degree n with n distinct superattracting fixed points
and fixing ∞, hence from Lemma 3.4 we can conclude that Rz is the
Newton’s method for a polynomial Q(z) of degree n. Moreover, 0 is a
critical point of Rz with multiplicity n−2 and simple computations show
that critical points of Rz are zeroes of Q and the zeroes of Q′′. Hence
we have that the only zero of Q′′ is x = 0. Obtaining, perhaps after a
conjugation with a Möbius transformation, that

Rz(x) =
(n− 1)xn − 1

nxn−1 − c(z)
.

By construction, φz0 is the identity for z = z0; then, there exists a
continuous function z ∈ D(z0, ε) 7→ c(z) ∈ U such that

c(z0) = z0 and Nc(z) = φz ◦Gz ◦ φ−1z .

Moreover, φz is holomorphic on A∗c0(αj) conjugating Nc0,m and Nc(z),m.
Hence, from the following commutative diagram

D z2−−−−→ D

ψj,c0

y yψj,c0
A∗c0(αj)

Nc0−−−−→ A∗c0(αj)

φz

x xφz
A∗c(z)(αj)

Nc(z)−−−−→ A∗c(z)(αj)

we have that ψj,c(z) = ψj,c0 ◦φ−1z is the Böttcher coordinate of A∗c(z)(αj).

Finally, we conclude that

ΦU (c(z)) = ψj,c(z)(N
◦k+1
c(z) (0)) = z

since N◦k+1
c(z) (0) = φz◦G◦k+1

z ◦φ−1z (0) = φz◦G◦k+1
z (0)=φz◦Gz(N◦kc0 (0)) =

φz ◦ ψ−1j,c0(z) = τz ◦ φ−1z ◦ ψ−1j,c(z)(z) = ψ−1j,c(z)(z).
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4.3. Other hyperbolic components and the bifurcation locus.
The theory of polynomial-like maps, developed by Douady and Hub-
bard [9], explains why pieces of the dynamical and parameter planes of
some families of rational, entire or meromorphic maps are so similar to
the dynamical and parameter plane of the family of polynomials of the
form zk+c, c ∈ C. Indeed, McMullen [15] showed that small generalized
Mandelbrot sets are dense in the bifurcation locus for any holomorphic
family of rational maps. For a fixed value of k ≥ 2 the Generalized
Mandelbrot set is defined as

Mk = {c ∈ C, J (zk + c) is connected}.
We define a holomorphic family of rational maps over the unit disc D

as a holomorphic map
f : D× Ĉ→ Ĉ.

Notice that for each (parameter) t ∈ D, the map ft : Ĉ→ Ĉ is a rational
map. We also require that deg(ft) ≥ 2. The Bifurcation locus B(f) is
defined as the set of parameters t such that the Julia set J (ft) does not
move continuously (in the Hausdorff topology) over any neighborhood of
t. It is known that B(f) is a closed and nowhere dense subset of D and
its complement is also called the J-stable set. In Figure 2 we show the
parameter plane of zk + c for k = 2, 3 and 6. The complement of Mk is
called the Cantor set locus and the bifurcation locus is ∂Mk.

(a) The parameter plane

of z2 + c.

(b) The parameter plane

of z3 + c.

(c) The parameter plane

of z6 + c.

Figure 2. Mandelbrot sets of degree 2, 3 and 6.

With rare exceptions the bifurcation locus of a holomorphic family
of rational maps is nonempty. One of this exceptions occurs when the
family is trivial, or in other words, when all the members in the family
are conformally conjugated. This is the case, for example, for the New-
ton’s method applied to polynomials of degree 2. For this case, all the



104 B. Campos, A. Garijo, X. Jarque, P. Vindel

members in the family are conformally conjugated to the map z → z2.
In our case it is easy to see that B(Nn) is nonempty, since, for example,
we have plenty of preperiodic parameters (see Section 5). The univer-
sality of the generalized Mandelbrot set is shown in [15]. The precise
statement is as follows:

Theorem 4.6 ([15]). For any holomorphic family of rational maps over
the unit disc, the bifurcation set B(f) is either empty or contains the
quasiconformal image of ∂Mk for some k and B(f) has Hausdorff di-
mension two. Moreover, small Generalized Mandelbrot sets are dense
in B(f).

Applying the above result to our family of rational maps Nc(z) =
((n− 1)zn − 1)/(nzn−1 − c) we obtain Corollary B.

Proof of Corollary B: The critical points of Nc are αj , j = 0, . . . , n −
1 (all simple) and 0 (with multiplicity n − 2) since P ′′c (z) = n(n −
1)zn−2. Thus, if U is a sufficiently small neighborhood of the origin the
degree of Nn,c : U → Nn,c(U) is n − 1. Hence, in any polynomial-like
construction involving the free critical point located at zero we always
obtain a member of the family zn−1+c. Therefore, applying Theorem 4.6
we obtain that the bifurcation locus of Nc for a certain n contains the
quasiconformal image of ∂Mn−1.

5. Real polynomials

Fix n ∈ N and c ∈ R. We notice that we can restrict to parameters c ∈
R+; if n is odd, from the symmetry properties of the parameter plane
(Lemmas 4.2 and 4.4), we have that R− \ {0} ⊂ C00 , and when n is even
Nc, with c ∈ R−, is conformally conjugated to N−c (Lemma 4.2).

Because of Lemma 4.4, we only need to deal with 0 < c < c∗ since
otherwise c ∈ C00 . Of course, again, the results that we prove for c real
also apply to complex parameters after applying the symmetry explained
in Lemma 4.2(a). In [3, 11] the authors studied this problem from the
real analysis point of view. They characterize the possible combinatorial
orbits of z = 0 using symbolic dynamics.

We introduce two parameters which will play an important role defin-
ing those bifurcations:

0 < c′ := n
√
n− 1 < c := n

√
n < c∗.
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Proposition 5.1. For every n, there exists a strictly decreasing sequence
of real c-parameters {αk}k≥1 such that αk → 0, 0 < αk < α1 := n

√
n− 1

and each of those parameters is the center of a free (non-captured) hy-
perbolic component Dk for which the free critical point x = 0 is a super
attracting periodic point of period k+ 1 (main black pseudo cardioids for
positive real parameters). Moreover,

(a) If n is odd there also exists a strictly decreasing sequence of real
c-parameters{βk}k≥1 such that βk → 0, α1 = c′ < β1 < c∗, αk <
βk < αk−1 for all k ≥ 2 and each of those parameters is the center
of a captured hyperbolic component Ckj for some fixed j.

(b) If n is even Ckj ∩ R = ∅ for any j = 0, . . . , n− 1 and k > 0.

Proof: We will only consider c ∈ (0, c∗). The qualitative graph of the
Newton’s map Nc is drawn in Figure 3. From those pictures it is easy
to deduce that c′ corresponds to the parameter for which the free criti-
cal value 1/c is equal to the positive zero 1/ n

√
n− 1 while c corresponds

to the parameter for which 1/c is equal to the positive vertical asymp-

tote n−1
√
c/n. We defineGk(c) = Nk

c (1/c), k > 0, that isGk is a function
of c giving the k-th iterate, for the corresponding Newton’s map Nc, of
the free critical value 1/c.

(a) Nc for n odd. (b) Nc for n even.

Figure 3. Qualitative graph of Nc. For all c ∈ (0, c∗)
and n ≥ 3 it has a unique (positive) zero at 1/ n

√
n− 1

and a unique (positive) vertical asymptote at n−1
√
c/n.

Moreover, x = 0 is a minimum for n odd and an inflec-
tion point for n even.

From this notation it is clear that the centers of the non-captured
hyperbolic components (intersecting the real line) are given by the solu-
tions of the equation Gk(c) = 0, k > 0 ((k + 1) determine the number
of iterates used by the critical point 0 to come back to itself). In par-
ticular, α1 = n

√
n− 1 is the center of a free hyperbolic component of
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period 2 since G1(α1) = 0 (that is 0 is back to itself after two iterates
of the map Nα1

). Moreover, it is an exercise to check that G1 is a (dif-
ferentiable) strictly decreasing function of c in the interval [0, α1] whose
range is [0,∞) (notice that, formally, G1(0) = ∞ and G1(α1) = 0).
Hence, we claim that there exists a (unique) real parameter, α2, in the
interval [0, α1] such that G2(α2) = 0. To see the claim observe that, on
the one hand, G2(c) = N2

c (1/c) = Nc(G1(c)) and, on the other hand,
Nc(1/

n
√
n− 1) = 0 and there exists a unique α2 ∈ (0, α1) such that

G1(α2) = 1/ n
√
n− 1. Clearly for the parameter α2, the critical point 0

is back to itself after three iterates of the map Nα2
.

We repeat the process once again. The map G2 is a (differentiable)
strictly decreasing function of c in the interval [0, α2] whose range is [0,∞)
(notice that, again, G2(0) = ∞ and G2(α2) = 0). Hence, as before, we
claim that there must exists a (unique) real parameter, α3, in the in-
terval [0, α2] such that G3(α2) = 0. To see the claim observe that, on
the one hand, G3(c) = N3

c (1/c) = Nc(G2(c)) and, on the other hand,
Nc(1/

n
√
n− 1) = 0 and there exists a unique α3 ∈ (0, α2) such that

G2(α3) = 1/ n
√
n− 1. Clearly, for the parameter α3, the critical point

0 is back to itself after four iterates of the map Nα3 . Similarly, we may
construct the whole sequence {αk}k>0 as desired.

We observe that by a similar argument to the one used to produce the
parameter sequence {αk}k>0, we claim there exists another (auxiliary)

sequence of parameters {δk}k≥0 such that Gk(δk) = n−1
√
δk/n, k ≥ 0.

To see the claim we observe first that δ0 is given by the solution of
1/c = n−1

√
c/n, so δ0 = n

√
n and δ0 > α1. Secondly, the map F (c) =

n−1
√
c/n is a (differentiable) strictly increasing function of c in [0, c∗] such

that F (0) = 0. So, each of the graphs of the maps Gk, k ≥ 1, on the
interval (0, αk), crosses one and only one time F (c) producing the desired
sequence of δk’s. Moreover, we have δ0 > α1 > δ1 > α2 > δ2 > · · · .

Now we turn the attention to n odd to prove statement (a). We
construct the sequence βk of centers of capture parameters using basi-
cally the same argument. Those centers, distinguished by the param-
eters c = βk, should be solutions of the equation Gk(c) = xc where
xc is the unique negative real solution of Nc(x) = x, or, equivalently,
of Pc(x) = 0.

Clearly x = n
√
n is a pole of the map N n

√
n, while G1(α1) = 0.

Hence, G1 is a (differentiable) strictly decreasing function of c in the
interval [α1, δ0] whose range is (−∞, 0) (notice that G1(α1) = 0 and, for-
mally, G1(δ0) = −∞). On the other hand, for c ∈ [α1, δ0] the value of xc
moves continuously in a compact interval [a, b] where −∞ < a < b < 0.
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So, there must be one point β1 ∈ (α1, δ0) such that G1(β1) = xβ1
. We

repeat the argument once again. The map G2 is a (differentiable) strictly
decreasing function of c in the interval [δ1, α1] whose range is (−∞, 0)
(notice that G1(δ1) = −∞ and G2(α1) = 0); so, there must be one point
β2 ∈ (δ1, α1) such that G2(β2) = xβ2 . And so on. So (a) is proved.

Now we turn the attention to n even to prove statement (b). Since
c is real, the real line is invariant by the Newton’s map. Hence proving
that Pn,c(x) := xn − cx + 1 has no real zeroes as long as n is even and
c ∈ (0, c∗) implies that Ckj ∩R = ∅ for any j = 0, . . . , n− 1 and k > 0, as
stated.

Assume otherwise. Then, Pn,c has at least two real roots. As Pn,c = 0
implies xn + 1 = cx, the zeroes must be positive. Then, we have two
positive roots and one minimum at xc = n−1

√
c/n. Thus Pn,c(xc) < 0.

But, easy computations show that for 0 < c < c∗ we get Pn,c(xc) > 0, a
contradiction.

It is worthwhile noticing that taking into account that the bifurcation
locus intersects the real line, the above result is not at all surprising
since we expect to have all kind of bifurcation parameters. However,
we also notice that it would be nice to have a better understanding of
this bifurcation cascade in the light of McMullen results in [15]. In
this paper the existence of sequences of mini-generalized Mandelbrot
sets approaching Misiurewicz parameters is proved and its size in the
parameter plane is studied. Our result reproves their existence and shows
its relative location in the real line as we approach c = 0. However, a
deeper study to have a more detailed knowledge of how those cascades
are organized is a challenging problem itself.
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