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1. Introduction

There are compact sets in the plane, which have zero Lebesgue mea-
sure, yet contain a line segment in every direction. Such a set was first
constructed by A. S. Besicovitch in 1919, and this existence result is now
one of the most widely known theorems in geometric measure theory, not
least due to its profound consequences for Euclidean harmonic analysis.
For a historical account of the problem and (some of) its connections,
see [Fa, §7]. In the present paper, we ask: what if a compact set con-
tains many lines in every direction – or even many directions? If the
word ‘many’ is interpreted as in Theorems 1.1 and 1.2, the conclusion
is that the set has to have positive Lebesgue measure. In other words,
there exist no ‘multi-line’ Besicovitch sets. Our proof uses methods in
harmonic analysis. More precisely, we extend Córdoba’s proof [Co] for
the ‘almost boundedness’ of the Kakeya maximal operator from 1977.

Given a direction e ∈ S1 and a number s ∈ [0, 1], a family of line-
segments L perpendicular to e is called s-dimensional, if the union L =
∪L ⊂ R2 satisfies

Hs(ρe(L)) > 0,

where ρe stands for the orthogonal projection ρe(x) = x ·e, and Hs is the
s-dimensional Hausdorff measure, see [Ma, Chapter 4]. In case s > 0, the
collection L is positive-dimensional. The definition imposes no conditions
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of measurability on L or ρe(L), even though we will actually need to know
that the projections ρe(L) are regular enough for Frostman’s lemma to
be applied. Fortunately, this is automatically satisfied, see Lemma 4.4.
Our main result is:

Theorem 1.1. Let K ⊂ R2 be a compact set containing the unions
of positive-dimensional families of line-segments in H1-positively many
directions. Then L2(K) > 0.

It is not assumed that the set with ‘H1-positively many directions’ is
measurable. Theorem 1.1 is a corollary of the following slightly sharper
result:

Theorem 1.2. Let 0 < s ≤ 1, and let K ⊂ R2 be a compact set con-
taining the unions of s-dimensional families of line-segments in a set of
directions E0 ⊂ S1 with dimE0 > 1− s. Then L2(K) > 0.

Again, we require no regularity from E. A word on notation before
we begin: we write A . B, if there exists a finite constant C > 0 such
that A ≤ CB. If C is allowed to depend on a parameter, say, p, we may
write A .p B. The sequence A . B . A is abbreviated to A � B.

Added in proof: After the paper was accepted, the author was informed
that I.  Laba and T. Tao have previously obtained a result similar to
Theorem 1.1, see [LT, Corollary 1.3].
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3. The multi-line maximal operator

Adopting Córdoba’s approach in proving that ordinary Kakeya sets
have dimension two, we first need to introduce a maximal operator suit-
able for our purposes. Our operator, defined on S1 rather than R2, is
similar to the modification of Córdoba’s operator introduced by J. Bour-
gain in [Bo]. If e ∈ S1 and δ > 0, we denote by T δe the collection of
disjoint δ-tubes perpendicular to the line spanned by e. More precisely,
if ρe : R2 → R is the orthogonal projection ρe(x) = x · e, we set

T δe := {ρ−1e [jδ, (j + 1)δ) : j ∈ Z}.
Next, we introduce the family of (δ, e)-rectangles, denoted by Rδe. A
rectangle R ⊂ R2 is a member of Rδe, if R is a δ×1-rectangle, and R ⊂ T
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for some T ∈ T δe . A set B ⊂ R2 is called a (δ, e)-set, if B ∩ T ∈ Rδe for
every tube T ∈ T δe . Given 0 < s ≤ 1, a measure µ on R2 is called a
(δ, e, s)-measure, if µ is actually a function with the following properties:

(i) there exists a (δ, e)-set B ⊂ R2 such that

µ =
∑
T∈T δe

aT · χB∩T ,

(ii) the L1-norm of µ is bounded by one,

δ
∑
T∈T δe

aT = ‖µ‖L1(R2) ≤ 1,

(iii) the projection µe := ρe]µ satisfies the growth condition

µe(I) ≤ `(I)s

for every interval I ⊂ R.

The parameter s > 0 will be thought as fixed, and the collection of all
(δ, e, s)-measures is simply denoted by Mδ

e.

Definition 3.1 (Multi-line maximal operator). If f : R2 → R is a bound-
ed Borel function, we set

Mδf(e) := sup

{∫
f dµ : µ ∈Mδ

e

}
.

Remark 3.2. For a fixed bounded Borel function f : R2 → R, the map-
ping e 7→ Mδf(e) is lower semicontinuous. Indeed, if µe ∈ Mδ

e, we
may rotate µe to obtain measures µξ ∈ Mδ

ξ, for ξ 6= e. As ξ → e, the,

difference
∫
f dµe−

∫
f dµξ tends to zero. As a consequence of the semi-

continuity, the function M δf can be discretized by choosing a finite col-
lection of vectors {e1, . . . , eq} ⊂ S1, corresponding measures µej ∈ Mδ

ej

and some numbers δj < δ in such a manner that S1 is covered by the
balls B(ej , δj), and

Mδf(e) �
q∑
j=1

[∫
f dµejχB(ej ,δj)(e)

]
.

In the following proofs, all measurability issues can be resolved by re-
placing Mδf with the discretized version.
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4. A restricted weak-type (2,2) bound for Mδ

Fix s ∈ (0, 1) for the rest of the paper. The central component in the
proof of Theorem 1.2 is the following estimate:

Proposition 4.1. Let σ be a Borel measure on S1 satisfying the bound
σ(B(e, r)) ≤ r1−t, e ∈ S1, r > 0, for some t < s. Then, the maximal
operator M δ satisfies the weak-type (2, 2)-estimate

(4.2) σ({e ∈ S1 : M δχB(e) ≥ λ})1/2 .t
L2(B)1/2

λ
, λ > 0,

for compact sets B ⊂ R2, where the implicit constants are independent
of δ > 0.

Proof: Fix λ > 0 and write E := {e ∈ S1 : Mδ
sχB(e) ≥ λ}. For

each e ∈ E, choose a measure µe ∈ Mδ
e with

∫
B
dµe & λ. Then, since

the measures µe are functions, we may estimate as follows:

λσ(E) .
∫
E

∫
B

dµe dσ(e) =

∫
B

∫
E

µe(x) dσ(e) dx

≤ L2(B)1/2

(∫ (∫
E

µe(x) dσ(e)

)2

dx

)1/2

= L2(B)1/2
(∫∫

E×E

[∫
µe(x)µξ(x) dx

]
dσ(e) dσ(ξ)

)1/2

.

(4.3)

So, it remains to bound the correlation∫
µe(x)µξ(x) dx.

We first write ∫
µe(x)µξ(x) dx =

∑
j∈Z

aξj

∫
Rξj

µe(x) dx,

where Rξj ∈ Rδξ is some (δ, ξ)-rectangle, on which µξ takes the constant

value aξj , see Figure 1.
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T ξ
j

Figure 1. The tube T ξj ⊃R
ξ
j intersecting the rectangles Rei .

Similarly expanding µe as a sum µe =
∑
aeiχRei , we have∫

Rξj

µe(x) dx ≤
∑

i:Rei∩R
ξ
j 6=∅

aei · L2(Rei ∩R
ξ
j), j ∈ Z.

The diameter of the intersection Rei ∩R
ξ
j is bounded by

diam(Rei ∩R
ξ
j) .

δ

|e− ξ|+ δ
,

so L2(Rei ∩ R
ξ
j) . δ2/(|e − ξ| + δ). Finally, we have to estimate the

sum of the numbers aei over the indices {i : Rei ∩ R
ξ
j 6= ∅}. Using basic

trigonometry, the projection of the rectangle Rξj onto the line spanned
by e is an interval Ie,ξ of length

`(Ie,ξ) . |e− ξ|+ δ.

In particular, the rectangles Rei with Rei ∩ R
ξ
j 6= ∅ are all contained in

the pre-image ρ−1e (2Ie,ξ). Combining this with assumption (iii),∑
i:Rei∩R

ξ
j

aei =δ−1
∑

i:Rei∩R
ξ
j 6=∅

∫
Rei

µe(x) dx≤δ−1(µe)e(2Ie,ξ) .
(|e− ξ|+ δ)s

δ
.
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Putting everything together and using assumption (ii) yields∫
µe(x)µξ(x) dx .

∑
j∈Z

(
aξj ·

δ2

|e− ξ|+ δ
· (|e− ξ|+ δ)s

δ

)

≤ |e− ξ|s−1
∑
j∈Z

δ · aξj ≤ |e− ξ|
s−1.

Inserting this back into (4.3) leads to

λσ(E).L2(B)1/2
(∫

E

[∫
S1

|e− ξ|s−1 σ(ξ)

]
dσ(e)

)1/2
.L2(B)1/2σ(E)1/2.

This concludes the proof of (4.2). The growth bound assumed from σ
was used above to obtain∫

S1

|e− ξ|s−1 dσ(e) .t 1.

The proof of this is standard issue, see for example [Ma, p. 109].

The following lemma addresses the measurability issues related to the
projections ρe(L), mentioned at the beginning of the introduction.

Lemma 4.4. Let K ⊂ R2 be a compact set, let e ∈ S1 and let c > 0.
Let L be the collection of all line-segments contained in K, which are
perpendicular to e and have length at least c. Then L := ∪L is compact;
in particular, ρe(L) is compact.

Proof: Of course, we only need to verify that L is closed. Fix x ∈ L.
We first pick a sequence of points (xi)i∈N in L with xi → x, and note
that each point xi is contained in some line-segment `i ∈ L. We then
use the Blaschke selection theorem [Fa, Theorem 3.16] to produce a
subsequence (`ij )j∈N, convergent in the Hausdorff metric to a compact
set ` ⊂ K. It is clear from the definition of convergence in the Hausdorff
metric that x ∈ `, and ` is a subset of the line ρ−1e {t}, where t := ρe(x).
Moreover, ` is connected according to [Fa, Theorem 3.18]. Thus, ` is
either a line-segment or a point contained in K ∩ ρ−1e {t}. Finally, we
observe that ` has length at least c, since the δ-neighborhoods of ` contain
some line-segments `i for any δ > 0. We conclude that ` ∈ L, and so
x ∈ ` ⊂ L.

Now we are equipped to prove Theorem 1.2

Proof of Theorem 1.2: Let K ⊂ R2 be as in Theorem 1.2. Let Lec be the
collection of all line-segments contained in K, perpendicular to e and
with length at least c > 0. Write Le := ∪Lec. Choosing c > 0 and α > 0
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small enough, the set E = {e ∈ S1 : Hs(ρe(L
e)) ≥ α} has dimension

dimE > s − 1, where Hs stands for s-dimensional Hausdorff content.
Without loss of generality, we may assume that c = 1. Thus, Le := Le1
consists of line-segments of length at least one, and ρe(L

e) is a compact
set according to Lemma 4.4. We can now apply Frostman’s lemma to
the sets ρe(L

e): it follows from the standard proof of this lemma, see
[Ma, Theorem 8.8], that for every e ∈ E we can locate a measure ν̃e,
supported on ρe(Le), such that ν̃e(I) ≤ `(I)s for every interval I ⊂ R,
and 1 . ν̃e(R) ≤ 1, where the implicit constants only depend on α and s.
To produce from ν̃e a measure in Mδ

e, we first discretize ν̃e by defining

νe =
1

10

∑
j∈Z

ν̃e[jδ, (j + 1)δ)

δ
χ[jδ,(j+1)δ).

Then νe is a measure with total mass νe(R) = ν̃e(R)/10 & 1. The
factor 1/10 is there only to ensure that νe satisfies the growth condition
νe(I) ≤ `(I)s. Whenever νe[jδ, (j + 1)δ) = ν̃e[jδ, (j + 1)δ) > 0, we
know that the intersection spt ν̃e ∩ [jδ, (j + 1)δ] is non-empty. Recalling
the definition of ν̃e, this means that the intersection ρ−1e [jδ, (j + 1)δ] ∩
K contains an entire unit line-segment. It follows that we may find a
rectangle Rj ∈ Rδe contained in the intersection ρ−1e [jδ, (j+ 1)δ)∩K(δ).
For each j, we choose one – and only one – such rectangle Rj and define

µe =
∑
j∈Z

νe[jδ, (j + 1)δ)

δ
χRj .

Then the projection (µe)e coincides with νe and, consequently, satisfies
the growth condition in assumption (iii); the assumptions (i) and (ii) are
clearly satisfied as well. We conclude that µe ∈Mδ

e, whence

MδχK(δ)(e) ≥
∫
K(δ)

dµe = µe(R2) & 1.

This holds for every direction e ∈ E, so there exists a constant m > 0
such that the sets

Eδ := {e ∈ S1 : MδχK(δ)(e) > m}

contain E, for every δ > 0. In particular, we may find t < s such
that the numbers H1−t(Eδ) have a uniform lower bound β > 0. The
sets Eδ are open, so another application of (the proof of) Frostman’s
lemma yields measures σδ, δ > 0, supported on Eδ and satisfying the
bounds σδ(Eδ) & 1 and σδ(B(e, r)) ≤ r1−t, where the implicit constants
are again independent of δ > 0. It remains to apply the weak-type
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estimate (4.2) as follows:

1 . σδ(Eδ) = σδ({e ∈ S1 : MδχK(δ)(e) > m}) . [L2(K(δ))]2

c2
.

Letting δ → 0 shows that L2(K) > 0 and completes the proof of Theo-
rem 1.2.
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