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MARCINKIEWICZ INTERPOLATION THEOREMS FOR

ORLICZ AND LORENTZ GAMMA SPACES
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Abstract: Fix the indices α and β, 1 < α < β < ∞, and suppose % is an Orlicz

gauge or Lorentz gamma norm on the real-valued functions on a set X which are

measurable with respect to a σ-finite measure µ on it. Set

M(γ,X) := {f : X → R with sup
λ>0

λµ({x ∈ X : |f(x)| > λ})
1
γ <∞},

γ = α, β. In this paper we obtain, as a special case, simple criteria to guarantee that

a linear operator T satisfies T : L%(X) → L%(X), whenever T : M(α,X) → M(α,X)
and T : M(β,X) →M(β,X).
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1. Introduction

A generalization of the Marcinkiewicz interpolation theorem to Orlicz
spaces contains the conditions

(1.1)

∫ t

b−1

A(s)

sα+1
ds ≤ A(Kt)

tα
,

∫ ∞
t

A(s)

sβ+1
ds ≤ A(Kt)

tβ
,

where 1 < α < β <∞, 0 < b ≤ ∞, A is a Young function and K > 0 is
a constant independent of t ∈ (b−1,∞); see [20, Vol. II, Chapter XII,
Theorem 4.22]. One of the consequences of a principal result of this
paper is that if LA = LA(X) is an Orlicz space defined with respect
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to a σ-finite measure µ on X, µ(X) = b, then the conditions (1.1) are
necessary and sufficient for LA to be an interpolation space between the
Marcinkiewicz spaces M(α) = M(α,X) and M(β) = M(β,X). Recall
that f ∈M(α), say, is equivalent to

%M(α,X)(f) := sup
λ>0

λµf (λ)
1
α <∞,

in which

µf (λ) := µ
(
{x ∈ X : |f(x)| > λ}

)
.

We will work in the general setting of rearrangement-invariant (r.i.)
norms, %, on the class M(X) of µ-measurable functions on X. Such a
norm determines an r.i. space

L% = L%(X) := {f ∈M(X) : %(|f |) <∞}.

See Section 2 below for details. We only mention here that the key
property of an r.i. norm is

%(f) = %(g)

whenever f and g are equimeasurable, in the sense that µf = µg.
Two families of r.i. norms will be of special interest to us, namely, the

Orlicz gauge norms and the Lorentz gamma norms. The former norms
are defined in terms of a Young function, A, by

%A(f) := inf

{
λ > 0 :

∫
X

A

(
|f(x)|
λ

)
dx ≤ 1

}
.

The latter norms are given in terms of an index p, 1 < p < ∞, and a
positive, locally integrable (weight) function, φ, on Ib = (0, b), b = µ(X),
by

%p,φ(f) :=

[∫
Ib

f∗∗(t)pφ(t) dt

] 1
p

, f ∈M(X);

here,

f∗∗(t) := t−1

∫ t

0

f∗(s) ds,

with

f∗ = µ−1
f ,

the inverse being in a generalized sense; again, see Section 2 below. We
require∫ ∞

1

φ(t)t−p dt <∞, when b=∞, and

∫
Ib

φ(t)t−p dt =∞, when b<∞;



Marcinkiewicz Theorems for Orlicz and Lorentz Gamma Spaces 5

otherwise, Γp,φ := L%p,φ would consist only of the zero function in the
first case and would be identical to the space L1 = L1(Ib) of Lebesgue-in-
tegrable functions on Ib in the second case. Such weights φ will be called
nontrivial.

We first state a result in which the boundedness of certain operators T
is asserted to follow from that of the supremum operators, Sα and Tβ ,
α, β > 1, defined at Lebesgue-measurable f on Ib and t ∈ Ib by

(Sαf)(t) := t−
1
α sup

0<s≤t
s

1
α f∗(s),

(Tβf)(t) := t−
1
β sup
t≤s<b

s
1
β f∗(s),

respectively. This result is proved in a more general setting by Dmitriev
and Krĕın [7], though the authors state that an earlier version in our
context is due to Peetre. We give here a new proof (see Section 3)
that emphasizes the role of the operators Sα and Tβ , which role is only
implicit in the work of the previous authors.

Theorem 1.1 (Dmitriev-Krĕın-Peetre). Let (X1, µ1) and (X2, µ2) be
σ-finite measure spaces for which µ1(X1) = µ2(X2) = b. Suppose the
quasilinear operator T satisfies

T : M(α,X1)→M(α,X2) and T : M(β,X1)→M(β,X2)

for indices α and β, with 1 < α < β < ∞. Define the r.i. norms, %i,
on M(Xi) in terms of given r.i. norms, %̄i, on M(Ib) by

%i(f) = %̄i(f
∗)

and suppose

M(α,Xi) ∩M(β,Xi) ⊂ L%i(Xi) ⊂M(α,Xi) +M(β,Xi), i = 1, 2.

Then,

T : L%1(X1)→ L%2(X2)

whenever

(1.2) Sα : L%̄1
(Ib)→ L%̄2

(Ib) and Tβ : L%̄1
(Ib)→ L%̄2

(Ib).

Our paper is devoted to obtaining simple criteria to guarantee (1.2)
when %1 and %2 are both Orlicz gauge norms or both Lorentz gamma
norms. These criteria, asserting that it suffices to test the boundedness
of Sα and Tβ on characteristic functions of sets, are given in Theorems A
and B, which we now state.
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Theorem A. Let (X1, µ1) and (X2, µ2) be σ-finite measure spaces with
µ1(X1) = µ2(X2) = b. Fix the indices α and β, 1 < α < β < ∞.
Suppose A1 and A2 are Young functions satisfying

M(α,Xi) ∩M(β,Xi) ⊂ LAi(Xi) ⊂M(α,Xi) +M(β,Xi), i = 1, 2.

Assume, in addition, that t−
1
α 6∈ LA2

(Ib),

A2(t) = 0, t ∈ Ib−1 ,

when b <∞, ∫ 1

0

A2(t)t−1−α dt <∞

when b =∞ and ∫ ∞
1

A2(t)t−1−β dt <∞,

for all b.
Then, given any quasilinear operator T such that

T : M(α,X1)→M(α,X2) and T : M(β,X1)→M(β,X2),

one has
T : LA1

(X1)→ LA2
(X2),

whenever

(1.3)

∫ t

b−1

A2(s)

sα+1
ds ≤ A1(Kt)

tα
,

∫ ∞
t

A2(s)

sβ+1
ds ≤ A1(Kt)

tβ
,

the constant K > 0 being independent of t ∈ (b−1,∞).
In particular, the first condition in (1.3) is necessary and sufficient

in order that
Sα : LA1(Ib)→ LA2(Ib),

while the second condition is necessary and sufficient for

Tβ : LA1
(Ib)→ LA2

(Ib).

Theorem B. Let (X1, µ1) and (X2, µ2) be σ-finite measure spaces for
which µ1(X1) = µ2(X2) = b. Fix the indices α and β, with 1 < α <
β < ∞. Suppose the index p, 1 < p < ∞, and the nontrivial weight
functions, φ1 and φ2, are such that

M(α,Xi) ∩M(β,Xi) ⊂ Γp,φi(Xi) ⊂M(α,Xi) +M(β,Xi), i = 1, 2.

Then, given any quasilinear operator T such that

T : M(α,X1)→M(α,X2) and T : M(β,X1)→M(β,X2),
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one has

T : Γp,φ1
(X1)→ Γp,φ2

(X2),

whenever

(1.4)

∫ t

0

s
p
α−1

∫ b

s

φ2(y)y−
p
α dy ds ≤ K

∫ t

0

sp−1

∫ b

s

φ1(y)y−p dy ds,

t
p
β

∫ t

0

s
p
β′−1

∫ b

s

φ2(y)y−p dy ds ≤ K
∫ t

0

sp−1

∫ b

s

φ1(y)y−p dy ds,

in which β′ = β
β−1 and the constant K > 0 is independent of t ∈ Ib.

In particular, the first condition in (1.4) is necessary and sufficient
in order that

Sα : Γp,φ1
(Ib)→ Γp,φ2

(Ib),

while the second one is necessary and sufficient for

Tβ : Γp,φ1(Ib)→ Γp,φ2(Ib).

The proofs of Theorems A and B appear in Sections 4 and 5, respec-
tively, following the proof of Theorem 1.1 in Section 3. The final section
has a number of applications and examples and, as well, a brief discus-
sion of operators on spaces between pairs of the original Lorentz spaces,
introduced in [15]. Section 2 to follow outlines the necessary background
on r.i. norms and interpolation theory. In particular, it discusses certain
r.i. norms whose Boyd and fundamental indices coincide.

2. Background

Suppose (X,µ) is a σ-finite measure space. Let M(X) = M(X,µ) be
the class of real-valued µ-measurable functions on X. Given f ∈M(X),
we define the decreasing rearrangement, f∗, of f on Ib := (0, b), b =
µ(X), by

f∗(t) := inf{λ > 0 : µf (λ) ≤ t}, t ∈ Ib,
where

µf (λ) := µ
(
{x ∈ X : |f(x)| > λ}

)
, λ ∈ R+.

It satisfies the following inequality of Hardy and Littlewood:∫
X

|f(x)g(x)| dµ(x) ≤
∫
Ib

f∗(t)g∗(t) dt, f, g ∈M(X).

The operation of rearrangement is not sublinear though it satisfies

(2.1) (f+g)∗(t1+t2) ≤ f∗(t1)+g∗(t2), f, g ∈M(X), 0 < t1+t2 < b.
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One does have, however,

(f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t), f, g ∈M(X), t ∈ Ib;
here, the Hardy average, h∗∗, of h∗, is as defined in the introduction.

Definition 2.1. A rearrangement-invariant (r.i.) Banach function norm,
%̄, on the class, M(Ib), of Lebesgue-measurable functions on Ib satisfies
the following seven axioms:

(A1) %̄(f) = %̄(|f |) ≥ 0 with %̄(f) = 0 if and only if f = 0 a.e. on Ib;

(A2) %̄(cf) = c%̄(f), c ≥ 0;

(A3) %̄(f + g) ≤ %̄(f) + %̄(g);

(A4) fn ↑ f implies %̄(fn) ↑ %̄(f);

(A5) %̄(χE) <∞ for all measurable subsets, E, of Ib with |E| <∞;

(A6)
∫
E
|f(t)| dt ≤ CE %̄(f), for all measurable subsets, E, of Ib with

|E| <∞;

(A7) %̄(f) = %̄(f∗) or, equivalently, µf = µg implies %̄(f) = %̄(g).

Using such a %̄ one can define an r.i. norm, %, on a general M(X),
with µ(X) = b, by

(2.2) %(f) = %̄(f∗), f ∈M(X).

For details on this and, indeed, all things related to r.i. spaces, we refer
to [1, Chapters 1 and 2].

A basic tool for working with r.i. norms % is the Hardy-Littlewood-
Pólya (HLP) Principle, (see [1, Chapter 2, Theorem 4.6]) which asserts
that

(2.3) f∗∗ ≤ g∗∗ implies %(f) ≤ %(g).

The Köthe dual of an r.i. norm % is another such norm, %′, with

%′(g) := sup
%(h)≤1

∫
X

|g(x)h(x)| dµ(x), g, h ∈M(X).

It obeys the Principle of Duality; that is,

%′′ := (%′)′ = %.

Further, the Hölder inequality∫
X

|f(x)g(x)| dµ(x) ≤ %(f)%′(g)

holds for every f, g ∈ M(X). We observe that if % is defined in terms
of %̄, as in (2.2), then

%′(f) = %̄′(f∗), f ∈M(X).
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Corresponding to an r.i. norm % is the set

L%(X) := {f ∈M(X) : %(f) <∞},

which becomes a Banach space with

||f ||L%(X) := %(f);

indeed, it is a so-called rearrangement-invariant Banach function space
or, for short, an r.i. space.

The Orlicz gauge norm is defined in terms of a Young function

A(t) :=

∫ t

0

a(s) ds, t ≥ 0,

in which a(s) is a strictly increasing function on R+, with a(0+) = 0
and lims→∞ a(s) =∞. We have

%A(f) := inf

{
λ > 0 :

∫
X

A

(
|f(x)|
λ

)
dµ(x) =

∫
Ib

A

(
f∗(t)

λ

)
dt ≤ 1

}
,

f ∈M(X),

and

LA(X) = L%A(X) := {f ∈M(X) : %A(f) <∞}.
The Köthe dual of %A is, essentially, the gauge norm %Ã, where

Ã(t) :=

∫ t

0

a−1(s) ds, t ∈ R+,

is called the Young function complementary to A; in fact,

%Ã(g) ≤ %′A(g) ≤ 2%Ã(g), g ∈M(X).

Given an index p, 1 < p < ∞, and a nontrivial weight φ on Ib, the
Lorentz gamma norm, %p,φ, is defined by

%p,φ(f) :=

[∫
Ib

f∗∗(t)pφ(t) dt

] 1
p

, f ∈M(X).

This norm determines the Lorentz gamma space

Γp,φ(X) = L%p,φ := {f ∈M(X) : %p,φ(f) <∞}.

As mentioned in the introduction, we require∫ ∞
1

φ(t)t−p dt <∞, when b=∞, and

∫
Ib

φ(t)t−p dt =∞, when b<∞.
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The Köthe dual of %p,φ is equivalent to the Lorentz gamma norm %p′,ψ,
with p′ = p

p−1 and

ψ(t) :=
tp
′+p−1

∫ t
0
φ(s) ds

∫ b
t
φ(s)s−p ds(∫ t

0
φ(s) ds+ tp

∫ b
t
φ(s)s−p ds

)p′+1
, t ∈ Ib,

provided ∫ 1

0

φ(t)t−p dt =

∫ ∞
1

φ(t) dt =∞, if b =∞.

See [10, Theorem 6.2].
The dilation operator, Es, s ∈ R+, given at f ∈ M(Ib), 0 < b ≤ ∞,

and t ∈ Ib, by

(Esf)(t) :=

{
f(t/s), if 0 < t < bs,

0, if bs ≤ t < b,

is bounded on any r.i. space L%̄(Ib) [1, Chapter 3, Proposition 5.11].
Denote the norm of Es on L%̄(Ib) by h%̄(s) and define the lower and
upper Boyd indices of L%̄(Ib) as

(2.4) i%̄ := lim
s→∞

log s

log h%̄(s)
and I%̄ := lim

s→0+

log s

log h%̄(s)
,

respectively. They satisfy

1 ≤ i%̄ ≤ I%̄ ≤ ∞;

also

i%̄′ =
I%̄

I%̄ − 1
and I%̄′ =

i%̄
i%̄ − 1

.

See [14, Vol. II, pp. 131–132].
If in (2.4) we replace h%̄(s) by the norm, k%̄(s) of Es on characteristic

functions of sets of finite measure, we obtain the so-called fundamental
indices.

The following result is proved in [3].

Theorem 2.2. Fix α, β and b with 1 < α < β <∞ and 0 < b ≤ ∞. Set

(Pαf)(t) := t−
1
α

∫ t
0
f(s)s

1
α−1 ds and (Qβf)(t) := t−

1
β
∫ b
t
f(s)s

1
β−1 ds for

suitable f ∈M(Ib) and t ∈ Ib. Let %̄ be an r.i. norm on M(Ib). Then,

Pα : L%̄(Ib)→ L%̄(Ib) if and only if i%̄ > α;

again,

Qβ : L%̄(Ib)→ L%̄(Ib) if and only if I%̄ < β.
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In case %̄ = %A is an Orlicz norm, one has

h%(s) ≈ lim
t→0+

A−1(1/t)

A−1(1/st)
.

This reflects the fact that the norm of Es on an Orlicz space is essentially
determined on characteristic functions of sets of finite measure and that
%A(χE) = 1

A−1(|E|−1) . The same is true for Lorentz gamma spaces. This

is the content of the following result from [8].

Theorem 2.3. Let (X,µ) be a σ-finite measure space with µ(X) = b.
Fix an index p, 1 < p <∞, and suppose φ is a nontrivial weight function
on Ib. Take %̄(f) = %p,φ(f), f ∈M(Ib). Set

h%̄ = sup
%̄ (Etf)

%̄(f)
, t ∈ R+, 0 6= f ∈M(Ib),

and define the Boyd indices i%̄ and I%̄ as in (2.4). Then, these indices
can be computed by using the formula

h%̄(s) ≈ sup
0<t<b

[∫ st
0
φ(y) dy + sptp

∫ b
st
φ(y)y−p dy∫ t

0
φ(y) dy + tp

∫ b
t
φ(y)y−p dy

] 1
p

.

We now describe certain parts of Interpolation Theory used later on.
Let (X0, X1) be a pair of Banach spaces compatible in the sense that

they are continuously imbedded in a common Hausdorff topological vec-
tor space H. Their K-functional is defined for each f in the vector
sum X0 +X1 by

K(t, f ;X0, X1) := inf
f=g+h

[
||g||X0

+ t ||h||X1

]
, t ∈ R+.

The K-functional is a nonnegative, increasing, concave function of t
on R+; see [1, Proposition 2, p. 294]. So,

K(t, f ;X0, X1) = K(0+, f ;X0, X1) +

∫ t

0

k(s, f ;X0, X1) ds, t ∈ R+,

in which the k-functional, k(t, f ;X0, X1), is a uniquely defined nonneg-
ative, right-continuous, decreasing function on R+. According to [1,
Proposition 1.15, p. 303],

K(0+, f ;X0, X1) = 0 for all f ∈ X0 +X1

if and only if X0 ∩X1 is dense in X0.
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Next, we restrict attention to r.i. spaces of functions in the context
of a σ-finite measure space (X,µ), with µ(X) = b. Such spaces are con-
tinuously imbedded in the Hausdorff topological vector space consisting
of the set M(X) together with the (metrizable) topology of convergence
on sets of finite measure.

A special case of [1, Theorem 1.19, pp. 305–306] is

Theorem 2.4. Let %0, %1, σ0 and σ1 be r.i. norms on M(X) defined in
terms of the norms %̄0, %̄1, σ̄0 and σ̄1 on M(Ib). Given the r.i. norm λ
on M(R+), g ∈M(Ib) and f ∈M(X), set

%̄(g) := λ
(
k
(
t, g;L%̄0

(Ib), L%̄1
(Ib)

))
and

σ̄(g) := λ
(
k
(
t, g;Lσ̄0

(Ib), Lσ̄1
(Ib)

))
,

also

%(f) := %̄(f∗) and σ(f) := σ̄(f∗).

Then, L% = L%(X) and Lσ = Lσ(X) are r.i. spaces of functions in M(X)
with the norms ||f ||% := %(f) and ||f ||σ := σ(f). Moreover, if T is any
linear operator on L%0

+ L%1
satisfying

T : L%0
→ Lσ0

and T : L%1
→ Lσ1

,

then, T : L% → Lσ. In particular, L% is an interpolation space be-
tween L%0

and L%1
in the sense that, for any linear operator T ,

T : L%0
→ L%0

and T : L%1
→ L%1

,

implies T : L% → L%; similarly, Lσ is an interpolation space between Lσ0

and Lσ1 .

Lastly, we recall that, for 1 < p ≤ ∞, 1 ≤ q ≤ ∞, the Lorentz
norms, %p,q, are defined at f ∈M(X), µ(X) = b, by

%pq(f) :=

(∫
Ib

[
t

1
p−

1
q f∗∗(t)

]q
dt

) 1
q

, when q <∞,

and

%p∞(f) := sup
0<t<b

t
1
p f∗∗(t);

see [11]. We will write L%pq (X) as Λ(p, q,X), using the special nota-
tion Λ(p,X) when q = 1 and M(p,X) when q =∞.



Marcinkiewicz Theorems for Orlicz and Lorentz Gamma Spaces 13

3. The proof of Theorem 1.1

Proof: Given (1.2), the fundamental result on K-functionals [1, Chap-
ter 5, Theorem 1.11, p. 301] and the Holmstedt formula [1, Chapter 5,
Theorem 2.1, pp. 307–309]

K
(
t, g;M(α,Xi),M(β,Xi)

)
≈ sup

0<s≤tγ
s

1
α g∗(s) + t sup

tγ≤s<b
s

1
β g∗(s),

where g ∈M(α,Xi) +M(β,Xi), i = 1, 2 and 1
γ = 1

α −
1
β , one has

sup
0<s≤t

s
1
α (Tf)∗(s) + t

1
γ sup
t≤s<b

s
1
β (Tf)∗(s)

≤ C sup
0<s≤Ct

s
1
α f∗(s) + Ct

1
γ sup
Ct≤s<b

s
1
β f∗(s),

with C > 1 independent of t, 0 < t < b
C . Hence, by [12, (3.19)],

sup
0<s≤t

s
1
α (Tf)∗∗(s) ≈ sup

0<s≤t
s

1
α (Tf)∗(s)

≤ C sup
0<s≤Ct

s
1
α f∗(s) + Ct

1
γ sup
Ct≤s<b

s
1
β f∗(s)

and so, for some K > C,

t
1
α (Tf)∗∗(t) ≤ K sup

0<s≤Ct
s

1
α f∗(s) +Kt

1
γ sup
Ct≤s<b

s
1
β f∗(s), 0 < t <

b

C
.

Dividing both sides by t
1
α , we arrive at

(Tf)∗∗(t) ≤ K2(Sαf +Tβf)(Ct) ≤ K2(Sαf +Tβf)∗∗(Ct), 0 < t <
b

C
.

From this, HLP, (1.2) and the continuity of the dilation operator yield

%2(Tf) = %̄2

(
(Tf)∗

)
≤ K2%̄2

(
(Sαf+Tβf)∗(Ct)

)
≤M%̄1(f∗) = M%1(f),

in whichM = K2h%̄2
(C)
[
||Sα||L%̄1 (Ib)→L%̄2 (Ib)+||Tβ ||L%̄1 (Ib)→L%̄2 (Ib)

]
.

4. The proof of Theorem A

Lemma 4.1. Fix α > 1 and b ∈ (0,∞]. Let A be a Young function

satisfying t−
1
α 6∈ LA(Ib),

(4.1) A(t) = 0, t ∈ Ib−1 ,

when b <∞, and ∫ 1

0

A(t)t−1−α dt <∞
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when b =∞. Then,

Eα(t) := αtα
∫ t

b−1

A(s)

sα+1
ds

is a strictly increasing function of t on (b−1,∞), with

%A
(
s−

1
αχ(t,b)(s)

)
=

t−
1
α

E−1
α (t−1)

for all t ∈ R+ when b =∞ and for sufficiently small t when b <∞.

Proof: This is essentially a modification of (4.44) in [5, p. 63]. We deal
only with the case b <∞, the proof being, in fact, simpler when b =∞.

Now, %A(s−
1
αχ(t,b)(s)) is, by definition, the number λ such that∫ b

t

A

(
s−

1
α

λ

)
ds = 1

or, with y = s−
1
α

λ ,

(4.2)
α

λα

∫ t−
1
α λ−1

max{b−1,b−
1
α λ−1}

A(y)

yα+1
dy = 1.

Since t−
1
α /∈ LA(Ib), one has limt→0+ %A(s−

1
αχ(t,b)(s)) =∞. Hence, for

sufficiently small t, we obtain b−
1
αλ−1 ≤ b−1, and (4.2) becomes

α

λα

∫ t−
1
α λ−1

b−1

A(y)

yα+1
dy = 1;

that is,

Eα

(
1

λt
1
α

)
= t−1.

Thus,
1

λt
1
α

= E−1
α (t−1),

or

λ =
t−

1
α

E−1
α (t−1)

.

Lemma 4.2. Fix β > 1 and let A be a Young function satisfying∫ ∞
1

A(t)t−1−β dt <∞.

Then,

Fβ(t) := βtβ
∫ ∞
t

A(s)

sβ+1
ds
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is a strictly increasing function of t on R+, with

%A(s−
1
β χ(0,t)(s)) =

t−
1
β

F−1
β (t−1)

, t ∈ R+.

Proof: Similar to that of Lemma 4.1.

Proof of Theorem A: Theorem 1.1 guarantees

T : LA1
(X1)→ LA2

(X2)

whenever

Sα : LA1(Ib)→ LA2(Ib) and Tβ : LA1(Ib)→ LA2(Ib).

We will prove the equivalence of the boundedness of Sα and the first of
the conditions in (1.3), namely,

(4.3)

∫ t

b−1

A2(s)

sα+1
ds ≤ A1(Kt)

tα
, t > b−1.

The proof that the boundedness of Tβ is equivalent to the second condi-
tion in (1.3) is similar.

To begin, assume

(4.4) Sα : LA1
(Ib)→ LA2

(Ib)

and let t ∈ Ib. A simple calculation shows(
Sαχ(0,t)

)
(s) = χ(0,t)(s) + t

1
α s−

1
αχ(t,b)(s), s ∈ Ib.

Therefore,

%A2

(
Sαχ(0,t)

)
≥ t 1

α %A2

(
s−

1
αχ(t,b)(s)

)
, t ∈ Ib,

so, with f = χ(0,t), (4.4) ensures

(4.5) t
1
α %A2

(
s−

1
αχ(t,b)(s)

)
≤ C%A1

(
χ(0,t)

)
=

C

A−1
1 (t−1)

,

C > 0 being independent of t ∈ Ib. In view of Lemma 4.1, (4.5) implies

1

E−1
α (t−1)

≤ C

A−1
1 (t−1)

for sufficiently small t, in which Eα is defined with respect to A2. Since
Eα is increasing, we conclude that there exists some t0 ≥ b−1 such that

Eα(t) ≤ α−1A1(Ct), t ≥ t0.
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Since α > 1, this yields

Eα(t) ≤ A1(Ct), t ≥ t0.

Setting

C ′ := sup
t∈[b−1,t0]

A−1
1 (Eα(t))

t

and

K := max{C,C ′},

we get (4.3).
Suppose now that (4.3) holds. Fix 0 ≤ f ∈ LA1(X1), %A1(f) = 1,

and, for t ∈ R+, define

ft(s) = min[f∗(s), t] and f t(s) = f∗(s)− ft(s), s ∈ Ib.

Then, f t and ft are nonnegative and decreasing,

(4.6) (Sαft)(s) ≤ t, s ∈ Ib,

and, since, by (2.1),

f∗(2s) = (ft + f t)(2s) ≤ ft(s) + f t(s), 0 < s < b
2 ,

we have

(4.7) (Sαf)(2s) ≤ (Sαft)(s) + (Sαf
t)(s), 0 < s < b

2 .

We observe that, by the argument of [12, Lemma 3.5], one has

(4.8) tα |{Sαg > t}| ≤ C sup
s∈R+

sα |{|g| g > s}| , g ∈M(Ib), t ∈ R+.
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Thus, with A′2 = a2,∫ b
2

0

A2

(
1
2 (Sαf)(2t)

)
dt

=

∫
R+

a2(t)
∣∣{s ∈ (0, b2 ) : (Sαf)(2s) > 2t}

∣∣ dt
≤
∫
R+

a2(t)
∣∣{s ∈ (0, b2 ) : (Sαft)(s) > t}

∣∣ dt
+

∫
R+

a2(t)
∣∣{s ∈ (0, b2 ) : (Sαf

t)(s) > t}
∣∣ dt, by (4.7),

=

∫
R+

a2(t)
∣∣{s ∈ (0, b2 ) : (Sαf

t)(s) > t}
∣∣ dt, by (4.6),

≤ C
∫
R+

a2(t)t−α sup
s∈R+

sα
∣∣{y ∈ Ib : f t(y) > s}

∣∣ dt, by (4.8),

= C

∫
R+

a2(t)t−α sup
s≥t

(s− t)α |{y ∈ Ib : f∗(y) > s}| dt

≤ C
∫ b−1

0

a2(t)t−α sup
s≥t

sα |{y ∈ Ib : f∗(y) > s}| dt

+ C

∫ ∞
b−1

a2(t)t−α sup
s≥t

sα |{y ∈ Ib : f∗(y) > s}| dt.

Now, the first term is no bigger than

C%M(α,X1)(f)

∫ b−1

0

a2(t)t−α dt,

which, in turn, using the inequality ta2(t) ≤ A2(2t), is majorized by

C%M(α,X1)(f)

∫ b−1

0

A2(2t)t−α−1dt=2αC%M(α,X1)(f)

∫ 2b−1

0

A2(t)t−α−1dt,

this being finite by assumption. We observe that, if b <∞, one has

M(α,Xi) +M(β,Xi) = M(α,Xi), i = 1, 2,

while, if b =∞, the first term is zero.
For the second term we have

C

∫ ∞
b−1

a2(t)t−α sup
s≥t

sα |{y ∈ Ib : f∗(y)>s}| dt ≤ C
∫ ∞
b−1

a2(t)
(
T 1
α
h
)
(t) dt,

where

h(t) := |{y ∈ Ib : f∗(y) > t}|
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and (
T 1
α
h
)
(t) := t−α sup

s≥t
sαh(s), t > b−1.

As a2(s) ≤ s−1A2(2s), (4.3) implies

tα
∫ t

b−1

a2(s)

sα
ds ≤ A1(2Kt), t > b−1.

A slight modification of [9, Theorem 3.2] guarantees there exists a K > 0
such that, with A′1 = a1,∫ ∞

b−1

a2(t)
(
T 1
α
h
)
(t) dt ≤

∫ ∞
b−1

a1(Kt)h(t) dt ≤
∫
Ib

A1

(
Kf(t)

)
dt,

0 ≤ f ∈M(Ib).

Altogether, then,∫ b
2

0

A2

(
1
2 (Sαf)(2t)

)
dt ≤ 2αC%M(α,X1)(f)

∫ 2b−1

0

A2(t)t−α−1 dt

+ C

∫
Ib

A1(Kf(t)) dt,

or ∫
Ib

A2

(1

2
(Sαf)(t)

)
dt ≤ 2α+1C%M(α,X1)(f)

∫ 2b−1

0

A2(t)t−α−1 dt

+ 2C

∫
Ib

A1(Kf(t)) dt,

0 ≤ f ∈M(Ib), from which (4.4) follows by a standard argument.

5. The proof of Theorem B

Proof of Theorem B: We proceed as in the proof of Theorem A. Thus,

T : Γp,φ1
(X1)→ Γp,φ2

(X2)

follows from

Sα : Γp,φ1
(Ib)→ Γp,φ2

(Ib) and Tβ : Γp,φ1
(Ib)→ Γp,φ2

(Ib).

The connection of the latter to (1.4) will be achieved by our showing

(5.1) Sα : Γp,φ1
(Ib)→ Γp,φ2

(Ib)

if and only if

(5.2)

∫ t

0

s
p
α−1

∫ b

s

φ2(y)y−
p
α dy ds≤K

∫ t

0

sp−1

∫ b

s

φ1(y)y−p dy ds, t∈Ib,
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and

(5.3) Tβ : Γp,φ1
(Ib)→ Γp,φ2

(Ib)

if and only if

(5.4) t
p
β

∫ t

0

s
p
β′−1

∫ b

s

φ2(y)y−p dy ds≤K
∫ t

0

sp−1

∫ b

s

φ1(y)y−p dy ds, t∈Ib.

We observe that for f ∈M(Ib), t ∈ Ib, one has

Sαf(t) = sup
0<y≤1

y
1
α f∗(ty),

whence Sαf is nonincreasing on Ib, that is, Sαf = (Sαf)∗. Thus,
(Sαf)(t) ≤ (Sαf)∗∗(t), t ∈ Ib. Using this and [12, Theorem 3.6], we
conclude that (5.1) is equivalent to

(5.5)

∫
Ib

(Sαf)(s)pφ2(s) ds ≤ C
∫
Ib

f∗∗(s)pφ1(s) ds, f ∈M+(Ib).

Taking f = χ(0,t), this reads∫
Ib

(Sαχ(0,t))(s)
pφ2(s) ds ≤ C

∫ t

0

χ∗∗(0,t)(s)
pφ1(s) ds, t ∈ Ib.

But,∫
Ib

(Sαχ(0,t))(s)
pφ2(s) ds =

∫ t

0

φ2(s) ds+ t
p
α

∫ b

t

φ2(s)s−
p
α ds

=
p

α

∫ t

0

s
p
α−1

∫ b

s

φ2(y)y−
p
α dy, t ∈ Ib.

Further,

χ∗∗(0,t)(s) = min
[
1, ts
]
,

so, ∫
Ib

χ∗∗(0,t)(s)
pφ1(s) ds =

∫ t

0

φ1(s) ds+ tp
∫ b

t

φ1(s)s−p ds

= p

∫ t

0

sp−1

∫ b

s

φ1(y)y−p dy ds.

Therefore, when (5.1) holds, we get (5.2) with K = Cα.
Suppose, next, that (5.2) holds. We claim

(Sαf(s))p ≤ p
αs
− p
α

∫ s

0

f∗(y)py
p
α−1 dy, f ∈M+(Ib), s ∈ Ib.
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Indeed, for each z, 0 < z ≤ s,∫ s

0

f∗(y)py
p
α−1 dy≥

∫ z

0

f∗(y)py
p
α−1 dy≥f∗(z)p

∫ z

0

y
p
α−1 dy= α

p z
p
α f∗(z)p,

and hence

p
αs
− p
α

∫ s

0

f∗(y)py
p
α−1 dy ≥ s−

p
α sup

0<z≤s
z
p
α f∗(z)p = (Sαf)(s)p.

Thus, (5.1) will follow once we show∫
Ib

s−
p
α

∫ s

0

f∗(y)py
p
α−1 dyφ2(s) ds ≤ C

∫
Ib

f∗∗(s)pφ1(s) ds, f ∈M+(Ib).

Interchanging the order of integration on the left hand side this becomes∫
Ib

f∗(y)py
p
α−1

∫ b

y

s−
p
αφ2(s) ds ≤ C

∫
Ib

f∗∗(s)pφ1(s) ds, f ∈M+(Ib).

According to [17, Theorem 3.2],∫
Ib

f∗(y)pyp−1

∫ b

y

φ1(s)s−p ds dy ≤ C
∫
Ib

f∗∗(s)pφ1(s) ds,

so (5.5) would be a consequence of∫
Ib

f∗(y)py
p
α−1

∫ b

y

φ2(s)s−
p
α ds dy ≤ C

∫
Ib

f∗(y)pyp−1

∫ b

y

φ1(s)s−p ds dy,

f ∈M+(Ib).

Finally, [18, Remark (i), p. 148] asserts that this last inequality holds if
and only if (5.2) is satisfied.

It remains to prove the equivalence of (5.3) and (5.4). To begin, (5.3)
ensures that, for every t ∈ Ib,∫

Ib

(Tβχ(0,t))
∗∗(s)pφ2(s) ds ≤ C

∫
Ib

χ∗∗(0,t)(s)
pφ1(s) ds

= Cp

∫ t

0

sp−1

∫ b

s

φ1(y)y−p dy ds.

But,

(Tβχ(0,t))(s) =

(
t

s

) 1
β

χ(0,t)(s), t ∈ Ib,
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so,

(Tβχ(0,t))
∗∗(s) = s−1

∫ s

0

(
t
s

) 1
β dyχ(0,t)(s) + s−1

∫ s

0

(
t
y

) 1
β

dyχ(t,b)(s)

= β
β−1

[(
t
s

) 1
β χ(0,t)(s) + t

sχ(t,b)(s)
]

and, therefore,∫
Ib

(Tβχ(0,t))
∗∗(s)φ2(s) ds=

(
β
β−1

)p[
t
p
β

∫ t

0

φ2(s)s−
p
β ds+tp

∫ b

t

φ2(s)s−pds

]

=
p

β′

(
β
β−1

)p
t
p
β

∫ t

0

s
p
β′−1

∫ b

s

φ2(y)y−p dy ds.

Thus, (5.3) implies (5.4).
Conversely, assume (5.4) is satisfied. By [12, Theorem 3.8], we have

(Tβf)∗∗(t) ≤ 2(Tβf
∗∗)(t), t ∈ Ib.

Therefore, in order to obtain (5.3), we need only show∫
Ib

(Tβf
∗∗)(t)pφ2(t) dt ≤ C

∫
Ib

f∗∗(s)pφ1(s) ds, f ∈M+(Ib).

In the remainder of the proof we suppose b < ∞; the argument in
case b =∞ is even simpler.

Now, an elementary calculation yields

(Tβf
∗∗)(t)p ≤

{
2
p
β t−

p
β supt≤s< b

2
s
p
β f∗∗(s)p, 0 < t < b

2 ,

2
p
β f∗∗( b2 )p, b

2 ≤ t < b.

Further, when 0 < t < b
2 , one has

sup
t≤y< b

2

y
p
β f∗∗(y)p ≤ 2p+1

∫ b

t

f∗∗(s)ps
p
β−1 ds, t ∈ I b

2
,

since, given t < y < b
2 ,∫ b

t

f∗∗(s)ps
p
β−1 ds ≥

∫ 2y

y

f∗∗(s)ps
p
β−1 ds

≥ f∗∗(2y)py
p
β log 2 ≥ (2−p log 2)y

p
β f∗∗(y).
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Thus,∫ b
2

0

(Tβf
∗∗)(t)pφ2(t) dt ≤ 2p+1

∫ b

0

t
p
β

∫ b

t

f∗∗(s)ps
p
β−1 dsφ2(t) dt

= 2p+1

∫
Ib

f∗∗(s)ps
p
β−1

∫ s

0

φ2(t)t
p
β dt ds.

We conclude∫ b
2

0

(Tβf
∗∗)(t)pφ2(t) dt ≤ C

∫
Ib

f∗∗(s)pφ1(s) ds,

provided∫
Ib

f∗∗(s)ps
p
β−1

∫ s

0

φ2(y)y
p
β dy ds ≤ 2−p−1C

∫
Ib

f∗∗(s)pφ1(s) ds,

which according to [19, Theorem 3.3] is equivalent to (5.4).
Again, taking t = b

2 in (5.4), there follows

2−p β
′

p ≤
(
b
2

) p
β

∫ b
2

0

s
p
β′−1

ds

∫ b

b
2

φ2(y)y−p dy

≤
(
b
2

) p
β

∫ b
2

0

s
p
β′−1

∫ b

s

φ2(y)y−p dy ds

≤ K
∫ b

2

0

sp−1

∫ b

s

φ1(y)y−p dy ds

≤ K

[∫ b
2

0

φ1(s) ds+

∫ b

b
2

φ1(s) ds

]
.

Altogether, then, with C = p
β′ 2

p[1+ 1
β ]K,∫ b

b
2

(Tβf
∗∗)(s)pφ2(s) ds ≤ 2

p
β

∫ b

b
2

f∗∗( b2 )pφ2(s) ds

≤ C

[∫ b
2

0

f∗∗( b2 )pφ1(s) ds+

∫ b

b
2

f∗∗( b2 )pφ1(s) ds

]

≤ 2pC

∫
Ib

f∗∗(s)φ1(s) ds.

This completes the proof.
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6. Applications and Examples

The Marcinkiewicz space, M(α,X), is the Köthe dual of the original
Lorentz space, Λ(α′, X), α′ = α

α−1 . Accordingly, one obtains

Theorem 6.1. Let (X1, µ1) and (X2, µ2) be σ-finite measure spaces for
which µ1(X1) = µ2(X2) = b. Suppose the linear operator T satisfies

T : Λ(α,X1)→ Λ(α,X2) and T : Λ(β,X1)→ Λ(β,X2),

for indices α and β, with 1 < α < β < ∞. Define the r.i. norms, %i,
on M(Xi) in terms of the r.i. norms %̄i on M(Ib) by

%i(f) := %̄i(f
∗)

and suppose

Λ(α,Xi) ∩ Λ(β,Xi) ⊂ L%i(Xi) ⊂ Λ(α,Xi) + Λ(β,Xi), i = 1, 2.

Then,

T : L%1
(X1)→ L%2

(X2),

whenever

(6.1) Sα′ : L%̄′2(Ib)→ L%̄′1(Ib) and Tβ′ : L%̄′2(Ib)→ L%̄′1(Ib),

where α′ = α
α−1 , β′ = β

β−1 .

Theorem A’. Let (X1, µ1) and (X2, µ2) be σ-finite measure spaces with
µ1(X1) = µ2(X2) = b. Fix the indices α and β, 1 < α < β < ∞.
Suppose A1 and A2 are Young functions satisfying

Λ(α,Xi) ∩ Λ(β,Xi) ⊂ LAi(Xi) ⊂ Λ(α,Xi) + Λ(β,Xi), i = 1, 2.

Then, given any linear operator T such that

T : Λ(α,X1)→ Λ(α,X2) and T : Λ(β,X1)→ Λ(β,X2),

one has

T : LA1
(X1)→ LA2

(X2),

whenever

(6.2)

∫ t

b−1

Ã1(s)

sα′+1
ds ≤ Ã2(Kt)

tα′
,

∫ ∞
t

Ã1(s)

sβ′+1
ds ≤ Ã2(Kt)

tβ′
,

in which Ãi is the Young function complementary to Ai, i = 1, 2, α′ =
α
α−1 , β′ = β

β−1 and the constant K > 0 is independent of t > b−1.
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In particular, the first condition in (6.2) is necessary and sufficient
in order that

Sα′ : LÃ2
(Ib)→ LÃ1

(Ib),

while the second condition is necessary and sufficient for

Tβ′ : LÃ2
(Ib)→ LÃ1

(Ib).

Theorem B’. Let (X1, µ1) and (X2, µ2) be σ-finite measure spaces, with
µ1(X1) = µ2(X2) = b. Fix the indices α and β satisfying 1 < α < β <
∞. Suppose the index p, 1 < p <∞, and the nontrivial weight functions,
φ1 and φ2, are such that

Λ(α,Xi) ∩ Λ(β,Xi) ⊂ Γp,φi(Xi) ⊂ Λ(α,Xi) + Λ(β,Xi), i = 1, 2.

Assume, in addition,∫ 1

0

φi(t)t
−p dt =

∫ ∞
1

φi(t) dt =∞, i = 1, 2,

if b =∞. Then, given any linear operator T for which

T : Λ(α,X1)→ Λ(α,X2) and T : Λ(β,X1)→ Λ(β,X2),

one has
T : Γp,φ1

(X1)→ Γp,φ2
(X2),

whenever

(6.3)

∫ t

0

ψ1(s) ds+t
p′
α′

∫ b

t

ψ1(s)s−
p′
α′ ds≤K

∫ t

0

sp
′−1

∫ b

s

ψ2(y)y−p
′
dy ds,

t
p′
β′

∫ t

0

ψ1(s)s
− p
′
β′ ds+tp

′
∫ b

t

ψ1(y)y−p
′
dy≤K

∫ t

0

sp
′−1

∫ b

s

ψ2(y)y−p
′
dy ds

in which

ψi(t) :=
tp
′+p−1

∫ t
0
φi(s) ds+

∫ b
t
φi(s)s

−p ds(∫ t
0
φi(s) ds+ tp

∫ b
t
φi(s)s−p ds

)p′+1
, i = 1, 2,

p′ = p
p−1 , α′ = α

α−1 , β′ = β
β−1 and the constant K > 0 is independent

of t ∈ Ib.
In particular, the first condition in (6.3) is necessary and sufficient

in order that
Sα : Γp′,ψ2(Ib)→ Γp′,ψ1(Ib),

while the second one is necessary and sufficient for

Tβ : Γp′,ψ2(Ib)→ Γp′,ψ1(Ib).

We next consider what happens when X1 = X2 = X, µ1 = µ2 = µ
and %1 = %2 = % in our theorems.
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Theorem 6.2. Let (X,µ) be a σ-finite measure space, with µ(X) = b.
Define the r.i. norm % on M(X) in terms of the r.i. norm %̄ on M(Ib)
by

%(f) := %̄(f∗).

Fix indices α and β satisfying 1 < α < β <∞. Then, the conditions

(6.4) Sα : L%̄(Ib)→ L%̄(Ib) and Tβ : L%̄(Ib)→ L%̄(Ib)

are equivalent to L%(X) being an interpolation space between M(α,X)
and M(β,X). Again, the conditions

Sα′ : L%̄′(Ib)→ L%̄′(Ib) and Tβ′ : L%̄′(Ib)→ L%̄′(Ib)

are equivalent to L%(X) being an interpolation space between Λ(α,X)

and Λ(β,X); as usual, α′ = α
α−1 and β′ = β

β−1 .

Proof: Taking X1 = X2 = X, µ1 = µ2 = µ and %1 = %2 = % in
the Dmitriev-Krĕın-Peetre Theorem, it is seen that (6.4) implies L%(X)
is an interpolation space between M(α,X) and M(β,X). As for the
converse, we observe that, according to [13, Theorem 2.3], the condi-
tions (6.4) are equivalent to L%′(X) being an interpolation space for
both

(
L1(X),Λ(α′, X)

)
and

(
Λ(β′, X), L∞(X)

)
which, in turn, amounts

to L%(X) being an interpolation space for
(
L1(X),M(β,X)

)
and(

M(α,X), L∞(X)
)
. But, M(α,X) andM(β,X) are interpolation spaces

for the couples
(
L1(X),M(β,X)

)
and

(
M(α,X), L∞(X)

)
, respectively.

This means that whenever L%(X) is an interpolation space for
(
M(α,X),

M(β,X)
)

it is also an interpolation space for
(
L1(X),M(β,X)

)
and(

M(α,X), L∞(X)
)

and hence the conditions (6.4) hold.
The second assertion follows by an argument similar to the one above.

Theorem 6.3. Fix indices α and β satisfying 1 < α < β < ∞. Let %
be an Orlicz norm or a Lorentz gamma norm on M(Ib) having Boyd
indices i%̄ and I%̄. Then, the following are equivalent:

(i) Sα : L%̄(Ib)→ L%̄(Ib);

(ii) t
1
α %̄(s−

1
αχ(t,b)(s)) ≤ C%̄(χ(0,t)), with C > 0 independent of t ∈ Ib;

(iii) α < i%̄.

Again, the following are equivalent:

(iv) Tβ : L%̄(Ib)→ L%̄(Ib);

(v) t
1
β %̄(s−

1
β χ(0,t)(s)) ≤ C%̄(χ(0,t)), with C > 0 independent of t ∈ Ib;

(vi) I%̄ < β.
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Proof: The equivalence of (i) and (ii) and of (iv) and (v) has been es-
tablished in Theorems A and B. Again, the estimate

(Sαf)(t) = t−
1
α sup

0<s≤t
s

1
α f∗(s)

≤ t− 1
α sup

0<s≤t
s

1
α−1

∫ s

0

f∗(y) dy

≤ t− 1
α sup

0<s≤t

∫ s

0

f∗(y)y
1
α−1 dy

= (Pαf
∗)(t),

together with Theorem 2.2, give (i) from (iii). A similar argument shows
(vi) entails (iv).

Now, in [16, Theorem 11.8, pp. 90–91], the assertions (i) implies (iii)
and (iv) implies (vi) are proved in the case % is an Orlicz norm. The
argument used is quite general and, indeed, works for Lorentz gamma
norms as well, in view of Theorem 2.2.

Remark 6.4. When the norm % in Theorem 6.3 is an Orlicz norm, %A,
(ii) and (v), together, are equivalent to the conditions (1.1) from the
interpolation theorem of Zygmund. In view of (iii) and (vi), and [3,
Theorem 1], the weak-type assumptions of that theorem can be replaced
by the less demanding restricted weak-type requirements

T : Λ(α,X)→M(α,X) and T : Λ(β,X)→M(β,X).

The next example shows the conditions (1.2) and (6.1) in Theo-
rems 1.1 and 6.1, respectively, are not necessary to guarantee the con-
clusions of those theorems.

Example 6.5. Fix β, 1 < β <∞. One readily verifies that

Tβ : Λ(α, q, I)→ Λ(α, q, I), I = (0, 1),

if and only if 1 < α < β and 1 ≤ q ≤ ∞ or α = β and q =∞, in which
case Λ(β, q, I) = M(β, I). Again,

Sβ′ : Λ(α′, q, I)→ Λ(α′, q, I)

if and only if 1 < α < β and 1 ≤ q ≤ ∞ or α = β and q = ∞, when
Λ(β′, q, I) = M(β′, I).
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However, for the linear operator T given by

f → t−
1
β
(
log 1

t

)− 1
γ

∫ 1

0

f(s) ds, 1 < γ <∞,

with associate operator T ′ sending

g →
∫ 1

0

g(t)t−
1
β
(
log 1

t

)− 1
γ dt,

one has

T : Λ(β, q, I)→ Λ(β, q, I)

if and only if γ < q ≤ ∞, and

T ′ : Λ(β′, q, I)→ Λ(β′, q, I)

if and only if 1 ≤ q < γ′.

Our goal now is to use results already obtained to study operators, T ,
satisfying more general conditions than those considered so far, namely,

T : M(α1, X1)→M(α2, X2) and T : M(β1, X1)→M(β2, X2)

where 1 < αi < βi < ∞, i = 1, 2. In particular, we seek an explicit
connection between norms %1 and %2 in an inequality of the form

%2(Tf) ≤ C%1(f).

This connection is supplied by Theorem 2.4.

Theorem 6.6. Let (X1, µ1) and (X2, µ2) be σ-finite measure spaces
with µ1(X) = µ2(X) = b. For i = 1, 2, fix indices αi and βi satisfying
1 < αi < βi < ∞. Given an r.i. norm, %̄, on M(Ib) define the r.i.
functionals

%1(g) := %̄
(
t−1 sup

0<s≤tγ1

s
1
α1 g∗(s) + sup

tγ1<s<b
s

1
β1 g∗(s)

)
,

g ∈M(X1),
1

γ1
=

1

α1
− 1

β1
,

and

%2(h) := %̄
(
t−1 sup

0<s≤tγ2

s
1
α2 h∗(s) + sup

tγ2<s<b
s

1
β2 h∗(s)

)
,

h ∈M(X2),
1

γ2
=

1

α2
− 1

β2
.
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Then, %1 and %2 are equivalent to r.i. norms on M(X1) and M(X2),
respectively. Moreover, if the linear operator T satisfies

T : M(αi, Xi)→M(βi, Xi), i = 1, 2,

and if i%̄ > 1, one has

(6.5) %2(Tf) ≤ C%1(f),

where C > 0 is independent of f ∈M(X1), %1(f) <∞.

Proof: Theorem 2.4 ensures the inequality

(6.6) %̄
(
k
(
t, (Tf)∗;M(α2, X2),M(β2, X2)

))
≤ C%̄

(
k
(
t, f∗;M(α1, X1),M(β1, X1)

))
in which C > 0 is independent of f ∈M(X1). Again, i%̄ > 1 means

%̄(Pg∗) ≈ %̄(g∗), g ∈M(I),

so, (6.6) implies (6.5).
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