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SOME EXAMPLES OF BANDS WITH TWO

COMPONENTS
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Abstract

A band is a semigroup whose elements are idempotents. The
paper is motivated by some open problems concerning linear rep-
resentations of bands. A counterexample to a conjecture stated
in [1] is given. On the other hand, it is proved that there ex-
ist linear bands with two components such that the associated
commutative K-algebra constructed in [1] cannot be embedded
into any Noetherian ring, even in the case where this algebra is
reduced.

1. Introduction

Recall that a band is a semigroup S whose elements are idempotents,
that is, e2 = e for all e ∈ S. The problem of embeddability of a band
into the multiplicative semigroup of matrices over a field was first raised
in [4], and some advances in its study can be found in recent papers ([1],
[2], [3]).

Recall that a rectangular band is a band E such that xyz = xz for
all x, y, z ∈ E. Equivalently, E ∼= M({1}, X, Y ;P ), a completely simple
semigroup over the trivial group and with a sandwich matrix P = (pyx)
where pyx = 1 for all x ∈ X , y ∈ Y . It is known that for any band S there
exists a semilattice (a commutative band) Γ such that S =

⋃

γ∈Γ Sγ ,
where Sγ are disjoint rectangular subbands of S such that SγSδ ⊆ Sγδ,
for all γ, δ ∈ Γ. Here Sγ are called the components of S. For more
details we refer to [6].

It is well-known that every linear band has finitely many components
and it is triangularizable, see [5, §4.4] or [7]. It is also known that for
any field K and any rectangular band F , the semigroup algebra K[F ]
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embeds into M3(L), for some field extension L of K, see [1] or [4].
However, there are examples of non linear bands with two components
(see [1], [2] and [4]).

Let S be a semigroup. We denote by S1 the monoid S ∪ {1}, where
1 is the identity element (if S is a monoid then we assume that S = S1).
Let s, t ∈ S1. The right annihilator r. annS(s− t) = {x ∈ S | sx = tx} is
a right ideal of S, and similarly l. annS(s− t), the left annihilator in S,
is a left ideal of S. The right annihilator r. annS(s) = {(x, y) ∈ S × S |
sx = sy} is a right congruence on S, and the left annihilator l. annS(s)
is a left congruence on S. In [1] it is conjectured that if S is a band with
finitely many components such that every chain of one-sided ideals of
the form r. annS(s− t), l. annS(s− t), s, t ∈ S1, is of bounded length and
every chain of one-sided congruences of the form r. annS(s), l. annS(s),
s ∈ S, has bounded length, then S embeds into the ring of matrices of
some size over a field L. In Section 2, we give a counterexample to this
conjecture and propose a new one (Conjecture 2.3) by strengthening the
conditions on annihilators and congruences. These new conditions are
necessary for the band to be linear, but it is unknown whether they are
sufficient or not.

In [1], it is also proven that, for any field K and any band S with
finitely many components, the semigroup algebra K[S] embeds into
Tn(A) for a commutative K-algebra A, where Tn(A) denotes the al-
gebra of upper triangular matrices m = (mij) over A with mii ∈ K for
every i = 1, . . . , n. In the particular case of bands with two components,
a commutative K-algebra R̄ is constructed, together with an explicit
embedding of K[S] into T7(R̄).

In [2], it is proven that, if the band S with components E and F
satisfies the condition EFE = F , then the associated K-algebra R̄ is
reduced. By Goldie’s Theorem, the latter property is a necessary con-
dition for R̄ to embed into a finite product of fields, in which case we
could embed T7(R̄), and therefore S, into matrices over some field. In
this case a sufficient condition for S to be linear would be that R̄ satis-
fies ascending chain condition on annihilators. Thus, a natural question
is whether S satisfying ascending chain condition on annihilators and
congruences implies R̄ to satisfy ascending chain condition on annihila-
tors. One could expect that the linearity of S could be equivalent to the
linearity of R̄. But this is not the case; in Section 3, we give an example
of a linear band with two components E and F satisfying EFE = F
such that its associated commutative K-algebra R̄ has an infinite chain
of annihilator ideals.
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2. Counterexample

Let S be a band with two components E and F such that EF,FE ⊆
F . We may assume without loss of generality that there exist non-empty
sets I, J , A, B such that E = {ea,b | a ∈ A, b ∈ B} and F = {fi,j | i ∈
I, j ∈ J}, and maps α : A×B× I → I and β : J ×A×B → J such that
the product in S is given by the rules:

• ea,bec,d = ea,d for all a, c ∈ A and for all b, d ∈ B,

• fi,jfk,l = fi,l for all i, k ∈ I and for all j, l ∈ J ,

• ea,bfi,j = fα(a,b,i),j for all a ∈ A, b ∈ B, i ∈ I and j ∈ J ,

• fi,jea,b = fi,β(j,a,b) for all a ∈ A, b ∈ B, i ∈ I and j ∈ J

and, for all a, c ∈ A, b, d ∈ B, i ∈ I and j ∈ J , α(a, b, α(c, d, i)) =
α(a, d, i) and β(β(j, a, b), c, d) = β(j, a, d).

A band S is said to be linear if there exists a monomorphism from S
to the multiplicative semigroup Mn(K) for some positive integer n and
some field K. We want to know when a band with two components is lin-
ear. Linearity of a band implies certain finiteness conditions on its anni-
hilators. Let L be a field. If S ⊆Mn(L) is a linear semigroup then every
chain of annihilator (one-sided) ideals of the algebra linL(S) ⊆ Mn(L)
has length bounded by n. This motivated the following conjecture ap-
peared in [1].

Conjecture 2.1. Let S be a band with finitely many components.
Assume that every chain of one-sided ideals of the form r. annS(s −
t), l. annS(s− t), with s, t ∈ S1, is of bounded length and every chain of
one-sided congruences of the form r. annS(s), l. annS(s), with s ∈ S, has
bounded length. Then, S (or maybe also K[S] for any field K) embeds
into matrices over some field.

Theorem 2.2. There exists a counterexample to Conjecture 2.1.

Proof: Let E = {en | n ∈ N}, F = {f(m,k) | m ∈ N, k ∈ {0, 1}} and
S = E ∪ F . Define in S the following product:

• e · e′ = e for all e, e′ ∈ E,

• f · s = f for all f ∈ F and for all s ∈ S,

• en · f(m,k) = f(m,δm,n), where δm,n denotes the Kronecker’s delta,
for all n,m ∈ N and for all k ∈ {0, 1}.

Then, we will see that S is a non-linear band with components E and F
that satisfies the chain conditions stated in Conjecture 2.1.
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First of all, we need to see that S is a band. If we define

α : N × (N × {0, 1}) → (N × {0, 1})

by α(n, (m, k)) = (m, δn,m), then, in order to check the associativ-
ity of the product in S, it is enough to see that α(n, α(n′, (m, k))) =
α(n, (m, k)) for all n, n′,m ∈ N and for all k ∈ {0, 1}.

Let n, n′,m ∈ N and k ∈ {0, 1}. Then

α(n, α(n′, (m, k))) = α(n, (m, δn′,m)) = (m, δn,m) = α(n, (m, k)).

Now, it is clear that S is a band with components E and F .
Suppose that S is linear. Thus, there exist a positive integer n, a

field K and an embedding ϕ : S → Mn(K). Let linK(S) denote the
subalgebra of Mn(K) generated by ϕ(S). Consider the following left
annihilators in linK(S):

Jp = {x ∈ linK(S) | xϕ(f(m,0)) = 0 for all m ≤ p},

for p ∈ N. Clearly, J1 ⊇ J2 ⊇ · · · ⊇ Jp ⊇ · · · .
Since linK(S) is a subalgebra of Mn(K), it satisfies the descending

chain condition on annihilators. Hence, there exists p ∈ N such that
Jq = Jp for all q ≥ p. Note that, for all m ≤ p,

(ϕ(ep+1) − ϕ(ep+2))ϕ(f(m,0)) = ϕ(ep+1)ϕ(f(m,0)) − ϕ(ep+2)ϕ(f(m,0))

= ϕ(ep+1f(m,0)) − ϕ(ep+2f(m,0))

= ϕ(f(m,0)) − ϕ(f(m,0))

= 0,

and

(ϕ(ep+1)−ϕ(ep+2))ϕ(f(p+1,0)) = ϕ(ep+1)ϕ(f(p+1,0))−ϕ(ep+2)ϕ(f(p+1,0))

= ϕ(ep+1f(p+1,0)) − ϕ(ep+2f(p+1,0))

= ϕ(f(p+1,1)) − ϕ(f(p+1,0))

6= 0,

since ϕ is inyective. Hence ϕ(ep+1)−ϕ(ep+2) ∈ Jp\Jp+1, a contradiction.
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Therefore, S is not linear.
We now calculate all the different annihilators of the forms r. annS(s),

l. annS(s), r. annS(s− r) and l. annS(s− r).

l. annS(en) = {(s, s) | s ∈ S},

r. annS(en) = {(f(m,k1), f(m,k2)) | m ∈ N, k1, k2 ∈ {0, 1}} ∪ E × E,

l. annS(f(m,k)) = {(s, s) | s ∈ S} ∪ {(en, en′) | n 6= m and n′ 6= m}
∪ {(en, f(m,0)), (f(m,0), en) | n 6= m}
∪ {(em, f(m,1)), (f(m,1), em)},

r. annS(f(m,k)) = S × S,

l. annS(1 − en) = S,

r. annS(1 − en) = {en} ∪ {f(m,0) | n 6= m} ∪ {f(n,1)},

l. annS(1 − f(m,k)) = F,

r. annS(1 − f(m,k)) = {f(m,k)},

l. annS(f(m,k) − f(m′,k′)) =

{

F if m 6= m′,

S if m = m′,

r. annS(f(m,k) − f(m′,k′)) =

{

∅ if (m, k) 6= (m′, k′),

S if (m, k) = (m′, k′),

l. annS(en − f(m,k)) = F,

r. annS(en − f(m,k)) =



















{f(m,0), f(m,1)} if n 6= m and k = 0,

∅ if n = m and k = 0,

∅ if n 6= m and k = 1,

{f(m,0), f(m,1)} if n = m and k = 1,

l. annS(en − en′) = S,

r. annS(en − en′) =

{

{f(m,k) | k∈{0, 1}, n 6=m and n′ 6=m} if n 6= n′,

S if n = n′.

Clearly the length of any chain of such annihilators is bounded by 5,
so S satisfies the chain conditions stated in Conjecture 2.1.

Therefore S is a counterexample to Conjecture 2.1.

Now we know that an existence of a bound on the lengths of chains of
annihilators of elements is not sufficient for linearity of a band. However,
in view of the above example one might propose a new conjecture.



510 F. Cedó, E. Rodŕıguez-Jorge

Conjecture 2.3. Let S be a band with finitely many components.
Assume that every chain of one-sided ideals of the form r. annS(s1 −
t1, . . . , sn− tn), l. annS(s1− t1, . . . , sn− tn), with si, ti ∈ S1 for all n ∈ N

and for all 1 ≤ i ≤ n, is of bounded length and every chain of one-
sided congruences of the form r. annS(s1, . . . , sn), l. annS(s1, . . . , sn),
with si ∈ S for all n ∈ N and for all 1 ≤ i ≤ n, has bounded length.
Then, S (or maybe also K[S] for any field K) embeds into matrices over
some field.

This new conjecture remains unsolved, even in the simplest (non-
trivial) case, namely, the case of bands with two components. Since
if S ⊆ Mn(L) then every chain of annihilator (one-sided) ideals of the
algebra linL(S) ⊆ Mn(L) has length bounded by n, it is clear that the
conditions of Conjecture 2.3 are necessary for S to be linear.

3. The commutative K-algebra associated to bands with
two components

Let S be a band with two components, E and F , such that F is an
ideal of S. We will use the same notation as in Section 2. Then, we may
assume that E = {ea,b | a ∈ A, b ∈ B}, F = {fi,j | i ∈ I, j ∈ J} and
that the product in S is given by:

• ea,bec,d = ea,d for all a, c ∈ A and for all b, d ∈ B,

• fi,jfk,l = fi,l for all i, k ∈ I and for all j, l ∈ J ,

• ea,bfi,j = fα(a,b,i),j for all a ∈ A, b ∈ B, i ∈ I and j ∈ J ,

• fi,jea,b = fi,β(j,a,b) for all a ∈ A, b ∈ B, i ∈ I and j ∈ J ,

for some maps α : A×B × I → I and β : J ×A×B → J satisfying

α(a, b, α(c, d, i)) = α(a, d, i),

β(β(j, a, b), c, d) = β(j, a, d),

for all a, c ∈ A, b, d ∈ B, i ∈ I and j ∈ J .
Let K be a field. Recall the construction in [1] of a commutative

K-algebra R̄ associated to a band S with two components such that
S embeds into T7(R̄).

Let X = {xi | i ∈ I}, Y = {yj | j ∈ J}, Z = {za | a ∈ A}, Z ′ = {z′a |
a ∈ A}, T = {tb | b ∈ B} and T ′ = {t′b | b ∈ B} be pairwise disjoint sets
of commuting indeterminates over K. Let R = K[X∪Y ∪Z∪Z ′∪T ∪T ′]
be the polynomial ring on these indeterminates with coefficients in K.
Let M be the ideal of R generated by
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(a) tbxi − tdxk for all i, k ∈ I and all b, d ∈ B such that there exists
a ∈ A satisfying α(a, b, i) = α(a, d, k),

(b) zatbxi − zctdxk for all i, k ∈ I, all a, c ∈ A and all b, d ∈ B such that
α(a, b, i) = α(c, d, k),

(c) yjz
′

a − ylz
′

c for all j, l ∈ J and all a, c ∈ A such that there exists
b ∈ B satisfying β(j, a, b) = β(l, c, b),

(d) yjz
′

at
′

b − ylz
′

ct
′

d for all j, l ∈ J , all a, c ∈ A and all b, d ∈ B such that
β(j, a, b) = β(l, c, d).

Then R̄ = R/M . We call R̄ the commutative K-algebra associated to S.
Due to an intimate relation between the definition of R̄ and the struc-

ture of S, one could expect that the linearity of S implies the linearity
of R̄. In [2] we began this investigation and we proved that if the com-
ponents E and F of S satisfy EFE = F , then R̄ is reduced. Note that,
by Goldie’s Theorem, a commutative reduced ring embeds into a finite
product of fields if and only if it satisfies the ascending chain condition
on annihilators. Thus, one might expect that the chain conditions on
annihilators in S could imply the chain condition on annihilators in R̄.
Note that this would give a way to prove Conjecture 2.3 in the case of
bands of two components E and F such that EFE = F . However, in
Theorem 3.1 we will prove that there exists a linear band with two com-
ponents E and F satisfying EFE = F such that R̄ cannot be embedded
into any Noetherian ring.

Theorem 3.1. For any field K there exists a linear band with two com-

ponents E and F satisfying EFE = F such that the commutative K-al-

gebra R̄ associated to it cannot be embedded into any Noetherian ring.

Proof: Let I = N × N and A = N ∪ {∞}. Let E = {ea | a ∈ A} and
F = {fi | i ∈ I}. We define the following product on S = E ∪ F :

• ee′ = e for all e ∈ E,

• fs = f for all f ∈ F , s ∈ S,

• eafi = fα(a,i), where α : A × I → I is defined by α(a, (i1, i2)) =
(αi2 (a), i2) for all a ∈ N ∪ {∞}, with

αi2(a) =











a if a /∈ {i2 + 1,∞}

i2 if a = i2 + 1

i2 + 1 if a = ∞

.

Clearly, with this product, every element in S is idempotent. We check
that the product is associative. Note that, for a, c ∈ A, i = (i1, i2) ∈ I,
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we have that α(a, α(c, i)) = α(a, (αi2 (c), i2)) = (αi2 (a), i2) = α(a, i). It
is now easy to see that

• e(fs) = ef = (ef)s for all e ∈ E, f ∈ F and s ∈ S,

• f(s1s2) = f = (fs1)s2 for all f ∈ F , s1, s2 ∈ S,

• e1(e2e3) = e1 = (e1e2)e3 for all e1, e2, e3 ∈ E,

• ea(ecfi) = fα(a,α(c,i)) = fα(a,i) = (eaec)fi for all a, c ∈ A, i ∈ I.

Therefore, S is a band, and by definition, it is clear that E and F are the
only two components of S. Note that EFE = F , since, for all f(i1,i2) ∈
F , if i1 6= i2 + 1, there exists ei1 ∈ E such that ei1f(i1,i2)ei1 = f(i1,i2)

and e∞f(i2+1,i2)e∞ = f(i2+1,i2).
Let us define an equivalence relation in I by i ∼ k if and only if

α(a, i) = α(a, k) for all a ∈ A. Equivalently, i ∼ k if and only if there
exists a ∈ A such that α(a, i) = α(a, k).

Claim. For a, c ∈ A and i, k ∈ I, α(a, i) = α(c, k) if and only if i ∼ k
and α(a, i) = α(c, i).

In order to prove the claim, assume that α(a, i) = α(c, k). Then,
α(a, k) = α(a, α(c, k)) = α(a, α(a, i)) = α(a, i), so i ∼ k. Moreover,
since i ∼ k, α(c, k) = α(c, i), and we have that α(a, i) = α(c, i). The
converse is trivial, and the claim follows.

Let K be a field. The commutative K-algebra R̄ associated to S,
constructed in [1], looks in this case as follows. Let X = {xi | i ∈ I},
Z = {za | a ∈ A}, Z ′ = {z′a | a ∈ A}, Y = {y}, T = {t}, T ′ = {t′} and
R = K[X,Y, Z, T, Z ′, T ′]. Let M be the ideal of R generated by:

• t(xi − xk) for all i, k ∈ I such that i ∼ k,

• t(zaxi − zcxk) for all i, k ∈ I and all a, c ∈ A such that α(a, i) =
α(c, k),

• y(z′a − z′c) for all a, c ∈ A.

Then R̄ = R/M .
Let M ′ be the ideal of R generated by

• t(xi − xk) for all i, k ∈ I such that i ∼ k,

• txi(za − zc) for all i ∈ I and for all a, c ∈ A such that α(a, i) =
α(c, i),

• y(z′a − z′c) for all a, c ∈ A.
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It is clear that M ′ ⊆ M . Let a, c ∈ A and i, k ∈ I be such that
α(a, i) = α(c, k). Then,

t(xiza − xkzc) = t(xi − xk)zc + txi(za − zc) ∈M ′

since i ∼ k and α(a, i) = α(c, i). Therefore M = M ′.
It is easy to check that α(a, (i1, i2)) = α(c, (i1, i2)) if and only if a = c

or {a, c} = {i2, i2 +1}. Moreover, it is clear that (i1, i2) ∼ (k1, k2) if and
only if i2 = k2. Therefore, M is the ideal of R generated by:

• t(x(i1,i2) − x(k1,i2)) for all i1, k1, i2 ∈ N,

• tx(i1,i2)(zi2 − zi2+1) for all i1, i2 ∈ N,

• y(z′a − z′c) for all a, c ∈ A.

Let M ′′ be the ideal of R generated by

• t(x(i1,i2) − x(0,i2)) for all i1, i2 ∈ N,

• tx(0,i2)(zi2 − zi2+1) for all i2 ∈ N,

• y(z′a − z′c) for all a, c ∈ A.

It is clear that M ′′ ⊆M . Moreover,

t(x(i1,i2) − x(k1,i2)) = t(x(i1,i2) − x(0,i2)) − t(x(k1,i2) − x(0,i2)) ∈M ′′

and

tx(i1,i2)(zi2 − zi2+1) = t(x(i1,i2) − x(0,i2))zi2 − t(x(i1,i2) − x(0,i2))zi2+1

+ tx(0,i2)(zi2 − zi2+1) ∈M ′′.

Therefore, M = M ′′.
We will see that S is a linear band and that there exists an infinite

chain of annihilators in R̄ = R/M . We denote by r̄ the image of r under
the natural map R → R/M . Let Jk = annR̄(tx(0,0)x(0,1) · · ·x(0,k)) for
all k ∈ N.

Clearly J0 ⊆ J1 ⊆ · · · and (zk − zk+1) ∈ Jk (since tx(0,k)(zk−zk+1) ∈

M). Let us check now that (zk − zk+1) 6∈ Jk−1 for all k ≥ 1.

Suppose that (zk − zk+1) ∈ Jk−1 for some k ≥ 1, that is,

γ = (zk − zk+1)tx(0,0) · · ·x(0,k−1) ∈M.

Then, there exist p1, p2, q1, q2, q3 ∈ N, µr, µl,n,m, µ
′

s ∈ K\{0}, monomials
w′

s, wr , wl,n,m ∈ R and ir, jm, ln ∈ N, k1,s, k2,s ∈ N∪{∞} for all 1 ≤ r ≤
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p1, 1 ≤ s ≤ p2, 1 ≤ l ≤ q1, 1 ≤ n ≤ q2, 1 ≤ m ≤ q3, such that

γ =

p1
∑

r=1

µrwrtx(0,ir)(zir
− zir+1)

+

q1
∑

l=1

q2
∑

n=1

q3
∑

m=1

µl,n,mwl,n,mt(x(jm ,ln) − x(0,ln))

+

p2
∑

s=1

µ′

sw
′

sy(z
′

k1,s
− z′k2,s

).

Let ψ : R → R be the morphism of K-algebras such that ψ(x(s1,s2)) =
x(0,s2) for all s1, s2 ∈ N, ψ(z′a) = z′

∞
for all a ∈ A and ψ(w) = w for all

w ∈ Y ∪ Z ∪ T ∪ T ′. Then,

ψ(γ) = γ = ψ

(

p1
∑

r=1

µrwrtx(0,ir)(zir
− zir+1)

)

.

Therefore, we may assume that

γ =

p1
∑

r=1

µrwrtx(0,ir)(zir
− zir+1).

Let U = {1 ≤ r ≤ p1 | twrx(0,ir) = tx(0,0) · . . . · x(0,k−1)}. It is clear that

γ =
∑

r∈U

µrwrtx(1,ir)(zir
− zir+1).

Note that, for r ∈ U , 1 ≤ ir ≤ k − 1. Therefore, the degree in zk+1 of
∑

r∈U

µrwrtx(1,ir)(zir
− zir+1)

is zero, which is a contradiction since

γ = (zk − zk+1)tx(1,1) · · ·x(1,k−1).

Thus, (zk − zk+1) 6∈ Jk−1 and J0 ( J1 ( J2 ( J3 ( · · · is an infi-
nite chain of annihilators in R̄. Then, R̄ cannot be embedded into any
Noetherian ring.

Finally, we shall see that S is linear, that is, there exist a field Q, a
positive integer n and a monomorphism ϕ : S →֒Mn(Q).

Let L be an arbitrary field and D = L[{xm | m ∈ N}]. Since D is an
integral domain, there exists its field of quotients Q. Now, we can define
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a function ϕ : S →M4(Q) by

ϕ(e∞) =









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, ϕ(ea) =









0 xa+1 xa 0
0 1 0 0
0 0 1 0
0 0 0 1









for all a ∈ N,

ϕ(f(m+1,m)) =









0 0 0 0
0 0 0 xm − xm+1

0 0 0 xm+2 − xm+1

0 0 0 1









for all m ∈ N and

ϕ(f(n,m)) =









0 0 0 xn+1(xm − xm+1) + xn(xm+2 − xm+1)
0 0 0 xm − xm+1

0 0 0 xm+2 − xm+1

0 0 0 1









for all n,m ∈ N with n 6= m+ 1.
We need to see that ϕ is a monomorphism. First we shall see that

ϕ is injective. Clearly, if ϕ(s) = ϕ(s′), we have that s and s′ are in the
same component. Let ea, ec ∈ E, f(i1,i2), f(k1,k2) ∈ F with i1 6= i2 + 1
and k1 6= k2 + 1.

If ϕ(ea) = ϕ(ec), then, clearly, ea = ec.
If ϕ(f(i1,i2)) = ϕ(f(k1,k2)), then k2 = i2 and

xi1+1(xi2 − xi2+1) + xi1(xi2+2 − xi2+1)

= xk1+1(xi2 − xi2+1) + xk1
(xi2+2 − xi2+1).

Since i1 6= i2 + 1, we have that

xi1+1xi2 ∈ {xk1+1xi2 , xk1+1xi2+1, xk1
xi2+1}.

Therefore i1 ∈ {k1, i2}. Similarly, we can see that k1 ∈ {i1, i2}. Hence
i1 = k1 and f(i1,i2) = f(k1,k2).

If ϕ(f(i2+1,i2)) = ϕ(f(k2+1,k2)), then k2 = i2 so f(i2+1,i2) = f(k2+1,k2).
Therefore, ϕ is injective.
Finally, we shall see that ϕ(s1s2) = ϕ(s1)ϕ(s2) for all s1, s2 ∈ S. If

e, e′ ∈ E, f ∈ F and s ∈ S, it is clear that ϕ(ee′) = ϕ(e)ϕ(e′) and
ϕ(fs) = ϕ(f)ϕ(s). Let a, n,m ∈ N.
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If a 6= m+ 1, then eaf(n,m) = f(a,m) and

ϕ(eaf(n,m)) =









0 0 0 xa+1(xm − xm+1) + xa(xm+2 − xm+1)
0 0 0 xm − xm+1

0 0 0 xm+2 − xm+1

0 0 0 1









= ϕ(ea)ϕ(f(n,m)).

Since em+1f(n,m) = f(m,m), we have

ϕ(em+1f(n,m)) =









0 0 0 xmxm+2 − x2
m+1

0 0 0 xm − xm+1

0 0 0 xm+2 − xm+1

0 0 0 1









= ϕ(em+1)ϕ(f(n,m)),

and, since e∞f(n,m) = f(m+1,m),

ϕ(e∞f(n,m)) =









0 0 0 0
0 0 0 xm − xm+1

0 0 0 xm+2 − xm+1

0 0 0 1









= ϕ(e∞)ϕ(f(n,m)).

Therefore, ϕ is an injective homomorphism and S is a linear band.
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