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ON THE SUM PRODUCT ESTIMATES AND TWO
VARIABLES EXPANDERS

CHUN-YEN SHEN

Abstract

Let Fp be the finite field of a prime order p. Let F': Fp, x Fp, — Fp
be a function defined by F(z,y) = z(f(x) + by), where b € Fj
and f: F, — [Fp is any function. We prove that if A C F, and
|A| < p'/2 then

|A+ Al +|F(A,A)| 2 |A]72.

Taking f = 0 and b = 1, we get the well-known sum-product
theorem by Bourgain, Katz and Tao, and Bourgain, Glibichuk
and Konyagin, and also improve the previous known exponent

14 13
from 13 to 13-

1. Introduction

The sum product phenomenon has received a great deal of attention,
since Erdos and Szemerédi made their well known conjecture that for
any € > 0 one has

max(|A + Al,|AA]) > Cc| AP,
where A is a finite subset of integers,
A+A={a+b:ac A be A},
and
AA={ab:a€ A be A}.
Later, much work has been done to find the explicit exponents, and the
best result to date is due to Solymosi [11], who showed that

max(|A + A|,|AA]) Z |A]5.

In the finite field setting, the problem becomes more complicated and the
first non-trivial sum-product estimate was obtained by Bourgain, Katz
and Tao [4] with subsequent refinement by Bourgain, Glibichuk and
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Konyagin [3]. They proved that if A C F,, p prime, and |A| < p'~? for
some § > 0, then there exists € = €(d) > 0 such that max(|A+A|, |AA|) 2
|A|"". Since then there have been several generalizations and applica-
tions of this theorem (see [1], [2], [5]-[10], [12]). For example, it was
shown by Bourgain [1] that if A, B C F, and p° < |B| < |A] < p'~9 for
some d > 0, then the following bound holds:

max(|A + B|, |AB|) 2 p°|A],

for some € > 0. In addition, he also showed that the function F(z,y) =
z? + zy from F, x F, to F, possesses an expanding property in the
sense that |F(A, B)| 2 p° for some € > & whenever |A| ~ |B| ~ p°,
0<d<1. Another generalization was made by Vu [13] who characterized
the polynomials which satisfy

1/4 1/3
max(|4 + Al,|P(4, A)]) > |A| min Al P
) ) ~ k4p ) k|A| )

where k is the degree of the polynomial (see, also [6] for some improve-
ments in the case P(x,y) = xy which corresponds to the sum-product
problem). However, this result is nontrivial only when |A| > p2. In this
paper we construct a family of two variables functions of the form

F(z,y) = =(f(z) +y)
which satisfy |F(A, A)| 2 |A|}T¢, and also prove a stronger sum product
estimate in the most nontrivial range |A| < p2: namely, if A C F, with
|A| < p? then
max(|4 + AL, |[F(4, 4))) 2 4|,
where F': F, x F, — F,, be a function defined by F(z,y) = x(f(z)+ by),
where b € F and f: F) — F, is any function.

Remark 1.1. Taking f = 0 and b = 1, we get the above mentioned
sum product theorem from [3] and [4] and also improve the exponent
in [9] from % to % In addition, the exponent % appears in the work
of Bourgain and Garaev [2] in the form |4 — A| + |AA| Z |A|'3/12,
Nevertheless, our method is different from the one of [2] and applies

equally well to the more general case.

2. Preliminaries

Throughout this paper A will denote a nonempty subset in the prime
field F,. If B is a set then we will denote its cardinality by | B|. Whenever
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X and Y are quantities we will use

XY,
to mean

X <y,
where the constant C' is universal (i.e. independent of p and A). The
constant C' may vary from line to line. We will use

XY,
to mean

X < C(log|A])?Y,

and X ~Y tomean X Y and Y $ X, where C' and o may vary from
line to line but are universal.

We give some preliminary lemmas. Lemma 2.1 was proven in [8], [9],
Lemma 2.2 was proven in [9].

Lemma 2.1. Let A, C F, with 1 < |Ay| < p2. Then for any ele-
ments ay, as, by, ba so that

TR e
we have that for any A" C Ay with |A'| 2 | A1]
|(a1 — a2) A" + (ay — az) A’ + (by — bo)A'| = |AL]?.
In particular such ay, a2, by, by exist unless A=A F,. In case

A1 —A,
A1—A
i = Fp, we may find a1,a2,b1,b2 € Ay so that

(a1 — a2) A1 + (b1 — b2)Ar| 2 A1 .

Lemma 2.2. Let X, By,..., By be any subsets of F,. Then there is
X' C X with | X'| > £|X| so that

X + By|...|X + By

X'+ B B <
| X"+ Bi+--+Bg| < X

Lemma 2.3. Let C and D be sets with |D| 2, ‘—? and with |C + D| <
K|C|. Then there is a C' C C with |C'| > £|C| so that C' can be
covered by ~ K? translates of D. Similarly, there is a C" C C with
|C"| = %|C| so that C"" can be covered by ~ K? translates of —D.

Proof: To prove the first half of the statement, it suffices to show that we
can find one translate of D whose intersection with C' is at least |C|/K?2.
Once we find such a translate, we remove the intersection and then iter-
ate. We stop when the size of the remaining part of C' is less than |C|/10.
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To prove the second half of the statement we have to show there is a
translate of D whose intersection with —C is at least |C|/K?. First, by
the Cauchy-Schwartz inequality, we have that

C|?|D|?
d,d,d)YeCxDxCxD: d*’d’>|7
|(c, ,C, )6 X X X c+ c | |C |7
which implies that
C||D|?
|(c,d,c’,d’)€C><D><C><D:c+d:c'+d’|>M.

The quantity on the left hand side is equal to
> e+ D)n(C+d).
ceCd’eD
Thus we can find ¢ € C and d’ € D so that
D] S [C]
Hence, |(c—d'+D)NC| 2 |C|/K? which is just what we wanted to prove.
To prove the second half of the statement we start with the inequality

ZZKC—d)ﬂ(c_D”z |O|}?|2'

deD ceC
Proceeding as above, we find ¢ € C and d € D such that

l(c+d—-D)nC| z [C|/K?,
and the result follows. O

3. Explicit two variables expanding maps

Theorem 3.1. Let A C F,, with |A| < p'=° for some 6 > 0. Then for
any nonconstant polynomial f, we have

Hx(f(z) +y):z,y€ A} 2 |A|1+e

for some € > 0 that depends only on 6 and on the degree of the polyno-
mial f.

The key ingredient is the Szemerédi-Trotter incidence theorem in the
affine plane F? which was proven in [3], [4].

Theorem 3.2. Let P and L be the points and lines in F> and |P|,|L| <
N < p® for some 0 < a < 2. Then

|{(p7€) e PxL ' p €€}| 5 N%,.Y
for some v > 0.
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Proof: We proceed by contradiction. Suppose it is not true. Then we
have

{a(f(x) +y) o,y € A} S[AIF
for some small e. Let k be the degree of f and denote C' = {z(f(x)+v) :
x,y € A}. By the Cauchy-Schwartz inequality, we have

DY la(f(@) + A na (f(2) + A)| 2 AP
€A EA
Therefore, we can find ag € A and A; C A such that

[A1] Z A
and
(@' (f(2") + A) N (ao(f(ao) + A)| Z A7, Va' € Ar
Thus, for any x; € A, there is a subset A,, C A with |A,,| > |A|'~¢
and
z1(f(21) + Azy) C ao(f(ao) + A).
Hence, for any = € A we have

o ()4 ) pag)) e

ao
Now, given « € A, 2’ € Ay, let ¢, 4+ be the line
xx’ xx' f(a')

p="Cv s +2f(x) — 2(ao)

and L = {ly 1z € A, 2’ € A1}. Then it is easy to verify that
|A[2=1 < |L| < |A||A1] < |A]2. If we let P = A x C then |P| =
|A| x |C| < |A]*T¢. Therefore we have |¢, - N P| > |A]'7¢, and the total
number of incidences between L and P is at least |L||A|'~¢ > 1]|A[*~<.
By applying Theorem 3.2, it follows that if € is too small, it leads a
contradiction and this completes the proof. o

Remark 3.3. In Theorem 3.1 we assume that f is a nonconstant polyno-
mial. If f is a constant, then we mention the recent preprint [7], where
explicit bounds have been obtained for this case.
4. Stronger sum product estimates
Theorem 4.1. Let A C F, with |A| < pz. Then
max(|A + A|, |[F(4, A)]) Z |4] %,

where F(x,y) = x(f(x) + by), fis any function from F, to Fp, and
beF:.
P
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Proof: We start with |[A + A| < K|A| and |F(A, A)| < K|A|. By using
Pliinnecke’s inequality, we can find A’ C A with |A’| 2 |A] so that
A"+ A"+ A'| < K?|A
and
A+ A+ A+ A < KPIA]
First, by the Cauchy-Schwartz inequality, we have that

13
> lalf(a) +bA) Na/ (f(d) +bA)| 2 V;(' :

acA’ a’€A’

Therefore, following Garaev’s arguments [5], we can find A” C A" and
aop € A’ so that

A" 2 K~P|A
for some 3 > 0 and for every a € A” we have
la(f(a) +bA") Nao(f(ao) + bA")| 2 K 1A

As in the argument of Garaev, the worst case is 8 = 0, so let’s assume
that for simplicity. There are two cases. In the first case, we have
AT — A

A — A = FP'

If so, applying Lemma 2.1, we can find a1, as, b1,by € A” so that
|AN|2 ,S |(a1 — CLQ)A” =+ (b1 — b2)A”| S |CL1AN — CLQA” + blAN — b2A”|

=la1 f(a1)+a1bA"—as f(az) —azbA"+by f(b1)+b1bA"—bs f(ba) —babA”|

=la1(f(a1)+bA")—aa(f(a2)+bA")+b1(f(b1)+bA")—ba(f (b2)+bA")].

Now we apply Lemma 2.3 to find a A" whose size is at least 6/10
of A” so that each of a1(f(a1) + bA"), —az(f(az) + bA"), bi(f(b1) +
bA"), and —ba(f(b2) + bA™) can be covered by ~ K? translates of
ao(f(ao) + bA’). However, then aq(f(a1) + bA") — aza(f(az) + A" +
bi(f(b1) +bA") — ba(f(b2) +bA") can be covered by ~ K® translates of
ao(f(ao)+bAI)+ao(f(a0)+bAl)+ao(f(ao)+bAI)+ao(f(ao)+bAl). Since
|a0(f(ao) + bA/) + ao(f(ao) + bA/) + ao(f(ao) + bA/) + ao(f(ao) + bAI)| =
|A"+ A"+ A"+ A'| < K3|AJ, by the definition of A’. Thus we get

|a1A/I/ _ azA/I/ 4 blA/I/ _ b2A/I/| S K11|A|

Therefore,
AP S KA
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which implies that K Z |A|'/!* 2 |A]'/12, so that we have more than we
need in this case. Thus we are left with the case that

AV AY
A — A 5& FP'
Applying Lemma 2.1, we can find aq, as, by, by € A” such that
by — by AV AY
1 .
al—a2+ ¢ A”—A”

Then we have

|14H|2 ,S |(a1 — CLQ)A” + (a1 — CLQ)A” + (bl — b2)A”|.
Now by applying Lemma 2.2, we get
|A+ A

4]
Applying the same argument as above, we get
AP S KA

which implies that K Z |A['/12. O

|A”|2 5 |((11 — CLQ)AN + (b1 — bQ)AN|.

Theorem 4.2. Let A, B C F, with |B| ~ |A| < p? then

max(|A + B, |[F(A, B)|) g |AJ*,
where F(z,y) — x(f(x)+by), fis any function from F), to ¥, and b € Fy,.
Remark 4.3. Taking f = 0, b = 1 and A = B, it corresponds to the
result by Garaev [5] who showed that

max(|A + A|,|AA]) 2 |A|TE

Proof: The proof is completely the same as the proof in Theorem 4.1. We
start with |[A 4+ B| < K|A| and |F (A, B)| < K|A|. By using Pliinnecke’s
inequality, we have |A + A| < K?|A| and |B + B + B + B| < K*|A|.
Therefore, following the same arguments in the proof of Theorem 4.1,
we can find A" C A with |A’| £ |A] such that either we have

|A']? < (a1 — ag) A" + (by — by) A'|

or
|14/|2 5 |((11 - CLQ)A/ + (a1 — CLQ)A/ + (bl — bQ)A/|
for some elements a1, az,b1,bs € A’. The worst case is the second one,
let us just deal with this case for simplicity. Therefore, by the same
argument in the proof of Theorem 4.1, we get
AP S KA
which implies that K Z |A['/!. O
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