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ON THE PRODUCT OF TWO π-DECOMPOSABLE

SOLUBLE GROUPS

L. S. Kazarin, A. Mart́ınez-Pastor, and M. D. Pérez-Ramos

Abstract
Let the group G = AB be a product of two π-decomposable sub-
groups A = Oπ(A) × O

π
′(A) and B = Oπ(B) × O

π
′(B) where

π is a set of primes. The authors conjecture that Oπ(A)Oπ(B) =
Oπ(B)Oπ(A) if π is a set of odd primes. In this paper it is proved
that the conjecture is true if A and B are soluble. A similar result
with certain additional restrictions holds in the case 2 ∈ π. More-
over, it is shown that the conjecture holds if O

π
′ (A) and O

π
′ (B)

have coprime orders.

1. Notation and Preliminaries

All groups considered are finite.
The aim of this paper is to study groups G = AB which are factor-

ized as the product of π-decomposable subgroups A and B, for a set of
primes π. A group X is said to be π-decomposable if X = Xπ × Xπ′ is
the direct product of a π-subgroup and a π′-subgroup, where π′ stands
for the complementary of π in the set of all prime numbers. Moreover,
we always use Xπ to denote a Hall π-subgroup of any group X .

More precisely we take further the study that was started in [12]. The
main result in that paper states the following:

Theorem 1. Let π be a set of odd primes. Let the group G = AB be
the product of a π-decomposable subgroup A and a π-subgroup B. Then
Aπ = Oπ(A) ≤ Oπ(G).

It is worth recalling the following result, which is Lemma 1 in [12]
and provides an equivalent statement to this theorem.
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Lemma 1. Let the group G = AB be the product of a π-decomposable
subgroup A = Aπ × Aπ′ and a π-subgroup B. Then the following state-
ments are equivalent:

(i) Aπ ≤ Oπ(G);

(ii) G contains Hall π-subgroups and AπB = BAπ is a Hall π-subgroup
of G.

The starting point for our work is the theorem of Kegel and Wielandt
which states the solubility of a group which is the product of two nilpo-
tent subgroups.

For the proof of this theorem Kegel found a very useful criterion for the
non-simplicity of a finite group in terms of some suitable permutability
conditions on subgroups ([13, Satz 3]). It was improved by Wielandt
in [15, Satz 1]. (See also [1, Lemmas 2.4.1, 2.5.1].) We state here a
reformulation of these results which is convenient for our purposes.

Lemma 2. Let the group G = AB be the product of the subgroups A
and B and let A0 and B0 be normal subgroups of A and B, respectively.
If A0B0 = B0A0, then Ag

0B0 = B0A
g
0 for all g ∈ G.

Assume in addition that A0 and B0 are π-groups for a set of primes π.
If Oπ(G) = 1, then [AG

0 , BG
0 ] = 1.

(We note that this result is applicable in particular if A = Aπ × Aπ′

and B = Bπ × Bπ′ are π-decomposable and considering A0 = Aπ and
B0 = Bπ.)

Proof: Let g ∈ G and consider g = ab with a ∈ A and b ∈ B. Since
A0 and B0 are normal subgroups of A and B, respectively, and they
permute, we have:

Ag
0B0 = Aab

0 B0 = (A0B0)
b = (B0A0)

b = B0A
ab
0 = B0A

g
0.

Now the final assertion follows from [1, Lemma 2.5.1].

If G = AB is the product of nilpotent subgroups A and B, then
the hypotheses of this result for A0 = Ap and B0 = Bp, the Sylow
p-subgroups of A and B, respectively, and for any prime p, hold. This
fact is in the core of the solubility of the group G.

Our aim is to find a more general structure involving π-decomposable
groups for which these hypotheses also hold. Then, together with Lem-
ma 2, our results also provide non-simplicity criteria for a group G.

Precisely we conjecture the following:

Conjecture. Let π be a set of odd primes. Let the group G = AB be
the product of two π-decomposable subgroups A = Aπ × Aπ′ and B =
Bπ × Bπ′ . Then AπBπ = BπAπ and this is a Hall π-subgroup of G.
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Theorem 1 provides already a first approach to this conjecture. We
state next another case for which the conjecture holds and that follows
from Theorem 1. For notation, we set π(G) for the set of prime divisors
of |G|, the order of the group G.

Proposition 1. Let π be a set of odd primes. Let the group G = AB be
the product of two π-decomposable subgroups A=Aπ×Aπ′ and B=Bπ×
Bπ′ . Assume in addition that (|Aπ′ |, |Bπ′ |) = 1. Then AπBπ = BπAπ.

Proof: Since 2 ∈ π′ and (|Aπ′ |, |Bπ′ |) = 1 we may assume w.l.o.g. that
2 6∈ π(B). Now we consider the set of odd primes σ := π(B) ∪ π(Aπ).
Then G is the product of the σ-decomposable subgroup A and the σ-sub-
group B. From Theorem 1 it follows that B and Aσ = Aπ permutes.
Considering now the group BAπ, we can deduce that Bπ permutes
with Aπ as desired.

It is worthwhile emphasizing that the conjectured result holds in the
significant case when (|A|, |B|) = 1. In particular, our results extend
previous ones of Berkovič [4], Arad and Chillag [3], Rowley [14] and
Kazarin [9], where products of a 2-decomposable group and a group of
odd order, with coprime orders, were considered.

In this paper we will study as a first step the structure of a minimal
counterexample to our conjecture. Afterwards we will prove it under the
additional hypotheses that A and B are soluble groups. In the case of
soluble factors, we will consider also the analogous problem when π is a
set of primes containing the prime 2. As a consequence of these results
we deduce in Corollary 1 a criterion of π-separability for a group which
is the product of π-decomposable soluble factors, for an arbitrary set of
primes π.

First we state some more notation. If n is an integer and p a prime
number, we denote by np the largest power of p dividing n. A group G
satisfies the Cπ-property if G possesses a unique conjugacy class of Hall
π-subgroups. Moreover G satisfies the Dπ-property if it satisfies the
Cπ-property and every π-subgroup of G is contained in some Hall π-sub-
group of G. We recall that a π-separable group satisfies the Dπ-property.

We need specifically the following result (see [1, Corollary 1.3.3]).

Lemma 3. Let the group G = AB be the product of the subgroups A
and B. Then for each prime p there exist Sylow p-subgroups Ap of A
and Bp of B such that ApBp is a Sylow p-subgroup of G.

For products of soluble subgroups the following lemma will be also
used.
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Lemma 4. Let G = AB = AN = BN be a group with A and B soluble
subgroups of G and with a unique minimal normal subgroup N , which
is non-abelian. Let N = N1 × · · · × Nr with N1

∼= Ni be a non-abelian
simple group, i = 1, . . . , r. Then:

(i) A and B act transitively by conjugacy on the set Ω = {N1, . . . , Nr}
of direct factors of N . Moreover, N ∩ A = ×r

i=1(Ni ∩ A) and
N ∩ B = ×r

i=1(Ni ∩ B).

(ii) |N1| divides |Out(N1)||N1 ∩ A||N1 ∩ B|.

Proof: See Lemmas 2.3 and 2.5 of [10].

2. The minimal counterexample

Proposition 2. Let π be a set of odd primes. Assume that the group G =
AB is the product of two π-decomposable subgroups A = Aπ × Aπ′ and
B = Bπ × Bπ′ , and G is a counterexample of minimal order to the
assertion AπBπ = BπAπ.

Then G has a unique minimal normal subgroup N = N1 × · · · ×
Nr, which is a direct product of isomorphic non-abelian simple groups
N1, . . . , Nr. Moreover G = AN = BN = AB, (|Aπ′ |, |Bπ′ |) 6= 1 and
Aπ′ ∩ Bπ′ = 1.

Proof: First note that Aπ 6= 1 and Bπ 6= 1. Moreover, |π(G) ∩ π| > 1,
because of Lemma 3, and also (|Aπ′ |, |Bπ′ |) 6= 1 by Proposition 1; in
particular, Aπ′ 6= 1 and Bπ′ 6= 1. We split the proof into the following
steps:

Step 1. The group G has a unique minimal normal subgroup N , which
is neither a π-group nor a π′-group. In particular, N is not soluble.
Consequently, N = N1 × · · · × Nr with N1

∼= Ni a non-abelian simple
group, i = 1, . . . , r.

Let N be a minimal normal subgroup of G and assume that there
exists M 6= N another minimal normal subgroup of G. The choice
of G implies that AπBπN/N is a subgroup of G/N and AπBπM/M is a
subgroup of G/M . Then

Oπ(〈Aπ , Bπ〉) ≤ N ∩ M = 1.

This implies that 〈Aπ , Bπ〉 is a π-group and, consequently, 〈Aπ, Bπ〉 =
AπBπ, a contradiction.

If N is a π-group, then 〈Aπ , Bπ〉 ≤ AπBπN is a π-group which implies
the contradiction 〈Aπ, Bπ〉 = AπBπ, as |AπBπ| = |G|π is the largest
π-number dividing |G|.
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Assume now that N is a π′-group. Note that

|Aπ(BπN)| =
|Aπ ||Bπ||N |

|Aπ ∩ BπN |

and so |AπBπN/N | is a π-number. Consequently, X := AπBπN is a
π-separable group and, in particular, it satisfies the Dπ-property. We
deduce now that there exists a Hall π-subgroup Xπ of X and an ele-
ment x ∈ X such that AπBx

π ⊆ 〈Aπ , Bx
π〉 ≤ Xπ. But |AπBx

π | = |G|π
which implies in particular that AπBx

π = Xπ is a subgroup of G. Since
G = AB and Aπ and Bπ are normal subgroups of A and B respectively,
it follows that AπBπ is a subgroup of G.

Put now H = 〈Aπ , Bπ〉. Then the following properties hold:

Step 2. N ≤ H E G.
From [1, Lemma 1.2.2] we have that NG(H) = NA(H)NB(H). If

NG(H) is a proper subgroup of G, then AπBπ is a subgroup of G by the
choice of G, which is a contradiction. Hence H is a normal subgroup
of G and so N ≤ H .

Step 3. G = AH = BH = AB.
Observe that AH = A(AH ∩ B). If AH is a proper subgroup of G,

then the choice of G implies again the contradiction AπBπ = BπAπ.
Therefore G = AH and, analogously, G = BH .

Step 4. H = AπBπN .
This is clear since AπBπN is a subgroup of G and N ≤ H ≤ AπBπN ≤

H .

Step 5. Aπ′N = Bπ′N = Aπ′Bπ′N .
Since G = AH = ABπN , we deduce that

B = Bπ(B ∩ AN) = Bπ((Bπ ∩ AN) × (Bπ′ ∩ AN))

= Bπ(Bπ′ ∩ AN) = BπBπ′ .

Then Bπ′ =Bπ′∩AN , that is, Bπ′ ≤AN and, consequently, Bπ′ ≤ Aπ′N .
Analogously the equality G=BH =BAπN implies that Aπ′ ≤ Bπ′N .
Therefore Aπ′N = Bπ′N = Aπ′Bπ′N .

Step 6. G/N = Oπ′(G/N) × Oπ(G/N).
Note first that H/N = AπBπN/N ∈ Hallπ(G/N) and H/N E G/N .

On the other hand, we deduce from Step 5 that Aπ′N/N = Bπ′N/N is
a Hall π′-subgroup of G/N normalized by AN/N and by BN/N , that
is, it is normal in G/N , and the assertion follows.
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Step 7. Aπ′ ∩ Bπ′ = 1.
If L=Aπ′ ∩Bπ′ , then N ≤〈Aπ , Bπ〉 ≤ CG(L), and so L ≤ CG(N) = 1.

Step 8. Assume that 1 6= M E G and K := AM 6= G. Then Oπ(K) = 1,

AπB̃π ∈ Hallπ(K) and [AK
π , B̃K

π ] = 1, where B̃π := Bπ ∩ AM = Bπ ∩

AπM . Moreover, B̃π 6= 1 and Bπ ∩ M = B̃π ∩ M = 1.
First observe that [Oπ(K), N ] ≤ Oπ(K) ∩ N = 1, which implies

Oπ(K) ≤ CG(N) = 1. Moreover, since K = AM = A(AM ∩ B) < G,

the choice of G implies that T := AπB̃π = B̃πAπ ∈ Hallπ(K). Hence,

from Lemma 2, it follows that [AK
π , B̃K

π ] = 1.

Suppose now that B̃π = 1. Then T = Aπ ∈ Hallπ(K) and Aπ ∩ M ∈
Hallπ(M). Note that Aπ ∩ M 6= 1 because otherwise M would be a
π′-group, which contradicts Step 1. Since π is a set of odd primes, then
M satisfies the Cπ-property by [8, Theorem A] and so, by the Frattini
argument, we conclude that G = MNG(Aπ ∩ M). Hence

|G : NG(Aπ ∩ M)| = |M : NM (Aπ ∩ M)|

is a π′-number, since Aπ ∩ M ∈ Hallπ(NM (Aπ ∩ M)), and so |G|π =
|NG(Aπ ∩M)|π. Note also that NG(Aπ ∩M) 6= G, by Step 1. Then, by
the choice of G, NG(Aπ ∩M) = A(Bπ ∩NG(Aπ ∩M))× (Bπ′ ∩NG(Aπ ∩
M)) satisfies the theorem, that is,

Aπ(Bπ ∩ NG(Aπ ∩ M)) ∈ Hallπ(NG(Aπ ∩ M)).

But |Aπ(Bπ ∩NG(Aπ ∩M))| = |NG(Aπ ∩M)|π = |G|π = |AπBπ| implies
that Bπ∩NG(Aπ∩M) = Bπ and so AπBπ is a subgroup, a contradiction.

This proves that B̃π 6= 1.
Finally note that Bπ∩M = B̃π∩M is normalized by both Bπ and Aπ

because [Aπ, B̃π] = 1. Hence N ≤ 〈Aπ , Bπ〉 normalizes Bπ ∩ M and
so [Bπ ∩ M, N ] ≤ Bπ ∩ M ∩ N = Bπ ∩ N = 1, since this is a π-group
normalized by N . Therefore Bπ∩M ≤ CG(N) = 1 and the last assertion
follows.

Step 9. A acts transitively on the set Ω = {N1, . . . , Nr}.
Assume that this is not true and take R := ∩r

i=1NG(Ni) E G. Then
AR < G and we can apply Step 8 with M = R. In particular, from the
facts that B̃π = Bπ ∩AR 6= 1 and Bπ ∩R = B̃π ∩R = 1 we deduce that
B̃π 6≤ R. Then there exists 1 6= b ∈ B̃π \ R. Without loss of generality
we may assume that b 6∈ NG(N1), and so |Ω〈b〉(N1)| ≥ 2, where Ω〈b〉(N1)
denotes the orbit of N1 under the action of b on Ω = {N1, . . . , Nr}. On

the other hand, since B̃π ≤ RAπ, then b = ca for some c ∈ R and
a ∈ Aπ . Since R normalizes each Ni, we have Ω〈b〉(N1) = Ω〈a〉(N1).
Now note that [N1, 〈b〉] = Ni1 × · · · × Nik

, where Ω〈b〉(N1) = {N1 =
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Ni1 , . . . , Nik
} ⊆ Ω. Analogously, [N1, 〈a〉] = Ni1 × · · · × Nik

= [N1, 〈b〉].

Therefore [N1, 〈a〉] = [N1, 〈b〉] ≤ [N1, B̃π] ∩ [N1, Aπ]. Now from Step 8
we have that

[[N1, B̃π], [N1, Aπ]] ≤ [AK
π , B̃K

π ] = 1

and so N1, Ni2 , . . . , Nik
are abelian, which is a contradiction. The asser-

tion is now proved.

Step 10. G = AN = BN = AB.
Assume that this is not true and, for instance, AN < G. Then we

can apply Step 8 with M = N . In particular, [AK
π , B̃K

π ] = 1, where

K = AN , B̃π = Bπ ∩ AN = Bπ ∩ AπN and B̃π 6= 1. Since CG(N) = 1

we may assume that there exists 1 6= b ∈ B̃π such that [N1, 〈b〉] 6= 1.
But this means that N1 ≤ [N1, 〈b〉] and Aπ centralizes this subgroup.
Since A acts transitively on Ω = {N1, . . . , Nr} and Aπ E A, it follows
that Aπ centralizes each Ni, for i = 1, . . . , r, and so Aπ ≤ CG(N) = 1, a
contradiction which proves that AN = G.

By the symmetry between A and B we can also prove G = BN and
we are done.

3. The soluble case with π a set of odd primes

Theorem 2. Let π be a set of odd primes. Let the group G = AB be
the product of two π-decomposable soluble subgroups A = Aπ × Aπ′ and
B = Bπ ×Bπ′ . Then AπBπ = BπAπ and this is a Hall π-subgroup of G.

Proof: Assume the result is not true and let G be a counterexample of
minimal order. We know by Proposition 2 that G has a unique min-
imal normal subgroup N = N1 × · · · × Nr, which is a direct prod-
uct of isomorphic non-abelian simple groups N1, . . . , Nr. Moreover,
G = AB = AN = BN and so, by Lemma 4, A and B act transitively on
the set Ω = {N1, . . . , Nr} and |N1| divides |Out(N1)||N1 ∩ A||N1 ∩ B|.
Clearly Aπ 6= 1, Bπ 6= 1, and, moreover, Aπ′ 6= 1, Bπ′ 6= 1. Recall also
that Aπ′ ∩ Bπ′ = 1.

From [10] we know that Ni should be isomorphic to one of the groups
in the set:

M = {L2(q), q > 3; L3(q), q < 9; L4(2), M11, PSp4(3), U3(8)}.

We claim first that N = N1 is a simple group.
We note that either N1 ∩ A 6= 1 or N1 ∩ B 6= 1 because |N1| does

not divide |Out(N1)|. We set {σ, σ′} = {π, π′}. We may assume that
N1 ∩ Aσ 6= 1. Then Aσ′ normalizes N1. This holds also for Bσ′ because
Aσ′N = Bσ′N since G = AN = BN . If in addition N1 ∩ Aσ′ 6= 1 we
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have also that Aσ normalizes N1 and consequently N = N1 is simple,
since G = AN , and the claim is proved. We get analogously to the
same conclusion if N1 ∩ Bσ′ 6= 1. Let us assume now that N1 ∩ Aσ′ =
1 = N1 ∩ Bσ′ . In particular, N1 ∩ A and N1 ∩ B are σ-groups. On
the other hand, we recall that N is not a σ-group. Hence 1 6= |N1|σ′

divides |Out(N1)|. We discard next this case by checking the different
possibilities for N1:

• N1 ∈ M, N1 6∼= M11, N1 6∼= L2(q), q = pn. If r is a prime dividing
|Out(N1)|, then r ∈ {2, 3}. But in all the considered cases |N1|r >
|Out(N1)|r and so these are not possible cases for N1.

• N1
∼= M11. This case cannot occur since Out(M11) = 1.

• N1
∼= L2(q), q = pn. From Lemma 4 we have that N ∩A = ×r

i=1(Ni ∩
A), and so N∩Aσ′ = ×r

i=1(Ni∩Aσ′ ) = 1. Moreover, since Aσ′ normalizes
N1, it normalizes Ni for any i = 1, . . . , r, because A acts transitively on
the set Ω = {N1, . . . , Nr}. Therefore Aσ′

∼= Aσ′N/N is a subgroup
of Out(N1) × · · · × Out(Nr). Analogously Bσ′

∼= Bσ′N/N . Moreover
Aσ′N/N = Bσ′N/N . By the structure of Out(L2(q)) we deduce that
there exists a prime r ∈ σ′ such that A and B have normal Sylow r-
subgroups. From Lemmas 3 and 2 we deduce that N is abelian, which
is a contradiction.

Therefore our claim follows and N is a simple group.
We recall that G = AN = BN = AB and so we deduce that |N ||A ∩

B| = |N ∩ A||N ∩ B||G/N |. In particular, if X , Y are maximal soluble
subgroups of N such that N ∩A ≤ X and N ∩B ≤ Y , then |N | divides
|X ||Y ||Out(N)|. Then we will use the fact that the orders of X and Y
are known from the proof of [2, Lemma 2.5].

We recall also that Aπ 6= 1, Bπ 6= 1, Aπ′ 6= 1, Bπ′ 6= 1. Moreover,
we have that |π(G) ∩ π| > 1 and |π(G) ∩ π′| > 1 because of Lemmas 3
and 2, as N is non-abelian.

We check next that each of the possibilities for the group N leads to
a contradiction.

• N ∼= L3(3) and N ∼= PSp4(3). In both cases |G| would be divided only
by three distinct primes which is a contradiction.

• N ∼= M11. In this case Out(N) = 1 and so G = N is simple. Since
all subgroups of the group M11 are known, it is easily deduced that this
case cannot occur.
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• N ∼= L3(4) or N ∼= L3(7). These cases can be excluded since, as proved
in [2, Lemma 2.5], for these groups it is not possible that |N | divides
|X ||Y ||Out(N)|, for soluble subgroups X and Y of N .

• N ∼= L3(5). In this case |N | = 25 · 3 · 53 · 31 and |Out(N)| = 2. By [2,
Lemma 2.5] we may suppose w.l.o.g. that |N∩A| divides 31·3 and |N∩B|
divides 24 · 53. Hence the case G = N cannot occur by order arguments.
So |G/N | = 2 and G ∼= Aut(N). This means that |N ∩ A| = 31 · 3
and |N ∩ B| = 24 · 53. Since B is neither a π-group nor a π′-group and
2 ∈ π′ it should be 5 ∈ π. This fact forces the primes 3 and 31 to be in
different sets of primes. But this also leads to a contradiction, since a
Sylow 31-subgroup of N is self-centralizing.

• N ∼= L3(8). In this case |N | = 29 · 32 · 72 · 73 and by [2, Lemma 2.5]
we may assume that |N ∩ A| divides 73 · 3 and |N ∩ B| divides 29 · 72.
Since |Out(N)| = 2 · 3 and |N | divides |G/N ||N ∩ A||N ∩ B|, the cases
G = N and |G/N | = 2 are not possible by order arguments.

If either |G/N | = 3 or |G/N | = 2 · 3, it follows that |N ∩ A| = 73 · 3.
Since a Sylow 73-subgroup of N is self-centralizing in Aut(N), we can
deduce that A is either a π-group or a π′-group, a contradiction.

• N ∼= L4(2) ∼= A8. In this case, there is no factorization G = AB with
A, B soluble subgroups.

• N ∼= U3(8). Then |N | = 29 · 34 · 7 · 19 and |Out(N)| = 2 · 32. By
[2, Lemma 2.5], we may assume that |N ∩ A| divides 3 · 19 and |N ∩ B|
divides 29 · 7 · 3. Hence by order arguments it follows that |G| ≥ |N | · 32.
Note also that since Out(N) is not a direct product of a 2-group and a
3-group, G/N should be a π-group or a π′-group. By [2, Lemma 2.5],
we may assume that |N ∩A| divides 3 · 19 and |N ∩ B| divides 29 · 7 · 3.

If |G/N | = 32, then |N ∩ A| = 3 · 19 and |N ∩ B| = 29 · 7 · 3. Now
the fact that a Sylow 19-subgroup of N is self-centralizing in N forces 3
and 19 to belong to the same set of primes, that is, π ∩ π(G) = {3, 19}
and π′∩π(G) = {2, 7}. But then A would be a π-group, a contradiction.

Now assume that |G/N | = 2·32, that is, G ∼= Aut(N). Then |N∩A| =
3 · 19, |N ∩ B| = 28 · 7 · 3 and 2, 3 are in the same set of primes, that is,
π′ ∩ π(G) = {2, 3} and π ∩ π(G) = {7, 19}. But this cannot occur again
because a Sylow 19-subgroup of N is self-centralizing.

• N ∼= L2(q), q = pn.
Recall that, in this case, |N | = ǫq(q2 − 1), ǫ = (p − 1, 2)−1, and

Out(N) is a cyclic group of order ǫ−1n. From [2, Lemma 2.5] it follows
that, apart from some exceptional cases with q ∈ {5, 7, 11, 23} that we
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will study later, the maximal soluble subgroups X and Y of N satis-
fies the condition {X, Y } = {NN (Np), Dν(q+1)}, with Np ∈ Sylp(N),
|NN(Np)| = ǫq(q − 1) and Dν(q+1) a dihedral group of order ν(q + 1)
with ν = (2, p).

We claim that p does not divide (|N ∩ A|, |N ∩ B|). Assume first
that p ∈ π. If p would divide (|N ∩ A|, |N ∩ B|), then Aπ′ ∩ N = 1 =
Bπ′ ∩N , since the centralizer of any element of order p in N is a p-group.
Therefore Aπ′

∼= Aπ′N/N is a subgroup of Out(N) and, analogously,
Bπ′

∼= Bπ′N/N . Moreover, Aπ′N/N = Bπ′N/N . By the structure of
Out(N) we deduce that there exists a prime r ∈ π′ such that A and B
have normal Sylow r-subgroups. Again from Lemmas 3 and 2 we get the
contradiction that N is abelian. Note that the same conclusion follows
if p ∈ π′.

Assume, therefore, w.l.o.g. that p does not divide |N ∩ A|. Hence we
can deduce that |N ∩ B| divides |NN (Np)| = q(q − 1)/(2, q − 1) and
|N ∩A| divides |Dν(q+1)| = ν(q +1). In particular, it follows that N ∩B
is either a π-group or a π′-group, since the centralizer of any element of
order p in N is a p-group.

We claim now that p divides |G/N | and, in particular, n > 1. Since
|N | divides |G/N ||N ∩ A||N ∩ B|, if p does not divide |G/N |, it follows
that |N |p = |N ∩ B|p. Then a Sylow p-subgroup of N ∩ B is a Sylow
p-subgroup of N contained in B. Hence B must be a π-group or a π′-
group, because the centralizer in Aut(N) of any Sylow p-subgroup of N
is a p-group by [11, 1.17], which is a contradiction.

We have that G/N = BN/N and also that |N |p divides
|G/N |p|N ∩ B|p. Since Bπ 6= 1, Bπ′ 6= 1 and n > 1, it is clear that
there exists some outer automorphism φ centralizing a Sylow p-sub-
group of N ∩ B. Then it follows that |CN (φ)|p ≥ |N ∩ B|p ≥ q/n. But

|CN (φ)|p ≤ q1/2 (see, for instance, [5, Chapter 12]). Hence q ≤ q1/2n,
that is, q = pn ≤ n2. This leads to a contradiction, except for the cases
p = 2 and n ≤ 4.

The case (p, n)=(2, 3) can be easily excluded, since the group L2(2
3)=

L2(8) has order divisible only by three distinct primes. Finally, the case
(p, n) = (2, 4) is also excluded, because in this case B would be a π′-
group, which is not possible.

For q ∈ {5, 7, 11, 23} there exists another possibility for the maximal
soluble subgroups X and Y (see [2, Lemma 2.5]). But note that in
all these cases G = N and one of the subgroups A = N ∩ A or B =
N ∩ B is contained in NN(Np) for some Np ∈ Sylp(N). Then A or
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B should be either a π-group or a π′-group, which provides the final
contradiction.

4. The soluble case with 2 ∈ π

Theorem 3. Let π be a set of primes with 2 ∈ π. Let the group G = AB
be the product of two soluble π-decomposable subgroups A = Aπ × Aπ′

and B = Bπ × Bπ′ . Assume that the following simple groups are not
involved in G:

(i) L2(2
n), n ≥ 2, except if either n = 3 or q = 2n +1 > 5 is a Fermat

prime,

(ii) L2(q), q > 3 odd, except if q is a Mersenne prime.

Then AπBπ = BπAπ and this is a Hall π-subgroup of G.

Proof: Assume the result is not true and let G be a couterexample of
minimal order. Obviously Aπ 6= 1 and Bπ 6= 1. Moreover |π(G)∩π| > 1
because of Lemma 3.

We can argue as in Step 1 of Proposition 2 to deduce that G has a
unique minimal normal subgroup N , which is neither a π-group nor a
π′-group. We note that N = N1×· · ·×Nr, where Ni are isomorphic non-
abelian simple groups for i = 1, . . . , r, CG(N) = 1 and N EG ≤ Aut(N).

On the other hand, we have by Theorem 2 that Aπ′Bπ′ is a Hall
π′-subgroup of G. Consequently, if Aπ′ 6= 1 and Bπ′ 6= 1, it would follow
from Lemma 2 the contradiction [N, N ] ≤ [AG

π′ , BG
π′ ] = 1. Therefore,

w.l.o.g. we may assume that Bπ′ = 1, i.e., B = Bπ, and Aπ′ 6= 1. We
recall that now Lemma 1 implies that the conditions AπBπ = BπAπ and
Aπ ≤ Oπ(G) are equivalent.

We claim first that G = AπN and N is a simple group.
The choice of G implies that AπN/N ≤ T/N := Oπ(G/N)(BN/N).

In particular, N ≤ T = Aπ(T∩Aπ′)B. If T were a proper subgroup of G,
then Aπ ≤ Oπ(T ) ≤ CG(N) = 1, which is a contradiction. Consequently
G/N is a π-group and, in particular, Aπ′ ≤ N . Then X := AπN =
A(B∩X). If X were a proper subgroup of G, we would argue as above to
conclude the contradiction Aπ ≤ Oπ(X) = 1. Therefore X = AπN = G.

We can deduce now that Aπ′ = (N1 ∩ Aπ′) × · · · × (Nr ∩ Aπ′) is a
Hall π′-subgroup of N and Aπ acts transitively by conjugacy on the
components N1, . . . , Nr of N . This implies r = 1, that is, N is a simple
group and the claim is proved.

We prove next that G = BN .
Assume that NB < G. We claim that N = BAπ′ , N ∩ Aπ = 1 and

|Aπ| = t for some prime t.
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Let us consider M := NB = B(NB ∩ A) = BAπ′(NB ∩ Aπ). If we
denote R = NB∩Aπ , we deduce by the choice of G that R ≤ Oπ(M) = 1
and, in particular, N ∩ Aπ = 1. Since G = NAπ = (NB)Aπ , we deduce
that |N | = |NB| and so B ≤ N = BAπ′ .

Now let C be a subgroup of Aπ of order t, for some prime t, and
assume that X := NC = BAπ′C is a proper subgroup of G. Again we
deduce that C ≤ Oπ(X) = 1, a contradiction. Therefore, |Aπ | = t for
some prime t.

Since N is a non-abelian simple group factorized as the product of
two soluble subgroups of coprime orders, we have from [10] and [7,
Theorem 1.1] that N should be isomorphic to one of the following: M11,
L3(3), L2(q) with q > 3 odd and q ≡ −1(4), L2(8) and L2(2

n) with 2n +
1 > 5 a Fermat prime. (Recall that the remainder cases for L2(2

n), n ≥
2, are excluded by hypothesis.) We discard next all these possibilities
for the group N which will show that G = NB.

• N ∼= M11.
We have that Aπ 6=1 is a isomorphic to a subgroup of Out(M11)=1,

a contradiction.

• N ∼= L3(3).
In this case π ∩ π(G) = {2, 3} and π′ ∩ π(G) = {13}. Moreover

the outer automorphism of order 2 of N should centralize a Sylow 13-
subgroup of N but this is not true.

• N ∼= L2(q), q > 3 a Mersenne prime.
In this case |Out(N)| = 2, so Aπ has order 2.
The possible factorizations for N can be found in [7]. So we have that

{B, Aπ′} should be a pair of subgroups of N among pairs of subgroups
of N of type {NN(Nq), Dq+1}, with Nq ∈ Sylq(N) and Dq+1 a dihedral
group of order q +1. Moreover the subgroups in these pairs are maximal
subgroups of N . Since 2 ∈ π and 2 divides q + 1 we have B = Dq+1 and
Aπ′ = NN (Nq); in particular q ∈ π′. But then it is not possible that Aπ

centralizes Aπ′ = NN(Nq), since CAut(N)(Nq) is a q-group by [11, 1.17].

• N ∼= L2(2
n), for either n = 3 or 2n + 1 > 5 is a Fermat prime.

The only factorizations of L2(q), q = 2n, as product of soluble sub-
groups of coprime orders should be among pairs of subgroups of N
of type {NN(N2), Cq+1}, with Cq+1 a cyclic group of order q + 1 and
N2 ∈ Syl2(N) (see for instance [7]). Since 2 ∈ π we have B = NN(N2)
and Aπ′ = Cq+1. But then there exists an outer automorphism of order
t in Aπ centralizing the subgroup Aπ′ = Cq+1 which is not the case.
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Now we have proved that G = AN = BN = AB and so |N ||A∩B| =
|N∩A||N∩B||G/N |. From now on X and Y will denote maximal soluble
subgroups of N such that N ∩A ≤ X and N ∩B ≤ Y , respectively, and
we will use [2, Lemma 2.5]. We check next that each of the possibilities
for the group N leads to a contradiction which will conclude the proof.
Recall that we have excluded the cases L2(2

n), n ≥ 2, except if either n =
3 or r = 2n +1 > 5 is a Fermat prime, and the cases L2(q), q odd, except
if q is a Mersenne prime.

• N ∼= L3(3). In this case |N | = 33 · 24 · 13 and |Out(N)| = 2. Moreover,
X and Y should satisfy {|X |, |Y |} = {13 ·3, 33 ·24}. By order arguments
23 ·33 divides either |N ∩A| or |N ∩B|. Then, since a Sylow 3-subgroup
of N is self-centralizing, we have π∩π(G) = {2, 3} and π′∩π(G) = {13}.
Moreover, since a Sylow 13-subgroup of N is also self-centralizing, the
case |N ∩ A| = 13 · 3 is not possible and so |N ∩ A| = 13. Hence the
case G = N cannot occur and it follows G ∼= Aut(G). But in this case,
there would exist an automorphism of N of order 2 centralizing a Sylow
13-subgroup of N , which is not possible (see [6]).

• N ∼= PSp4(3). In this case |N | = 26 · 34 · 5 and |Out(N)| = 2. From
[2, Lemma 2.5] it follows that {|X |, |Y |} = {25 · 5, 34 · 24}. By order
arguments we have that 2 and 5 divides either |N ∩ A| or |N ∩ B| and
34 divides the other. Then 5 ∈ π, because there are no 2-elements in
N centralizing a Sylow 5-subgroup of N . Also 3 ∈ π, since a Sylow
3-subgroup of N is self-centralizing in Aut(N). Consequently, G is a
π-group, which is a contradiction.

• N ∼= M11. In this case G = N is simple and {|A|, |B|} = {55, 24 · 32},
which gives a contradiction with the fact that Aπ 6= 1 and Aπ′ 6= 1.

• N ∼= L3(4) or N ∼= L3(7). These cases can be excluded as said in the
proof of Theorem 2.

• N ∼= L3(5). By [2, Lemma 2.5], one of the numbers |N ∩ A| and
|N ∩B| divides 31 ·3 and the other divides 24 ·53. Hence the case G = N
cannot occur by order arguments. So we may deduce that G ∼= Aut(N)
and |G/N | = 2. Since a Sylow 5-subgroup of N is self-centralizing in
Aut(N), this forces the primes 2 and 5 to be in the same set of primes.
Recall also that 2 ∈ π and B is a π-group, so we have |N ∩ B| = 24 · 53

and |N ∩A| = 31 · 3. Since a Sylow 31-subgroup of N is self-centralizing
in Aut(N) (see [6]), we deduce that A should be a π-group, which is a
contradiction.
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• N ∼= L3(8). Now |N | = 29 · 32 · 72 · 73, |Out(N)| = 2 · 3 and from [2,
Lemma 2.5] it follows that one of the numbers |N∩A| and |N∩B| divides
73 · 3, and the other divides 29 · 72. The cases G = N and |G/N | = 2
cannot occur by order arguments. Moreover, since G/N is a π-group, we
have {2, 3} ⊆ π. The fact that B is a π-group and a Sylow 73-subgroup
of N is self-centralizing forces that π = {2, 3, 73} and π′ = {7}. The case
|G/N | = 3 and |N ∩A| = 29 · 72 cannot occur since a Sylow 2-subgroup
of N is self-centralizing. So, |G/N | = 2 · 3 and |N ∩ A| = 28 · 72. But in
this case N ∩ A would be a normal subgroup of a Borel subgroup of N
containing a central subgroup of order 72 which is a contradiction.

• N ∼= L4(2) ∼= A8. This case is not possible because there is no factor-
ization of G with soluble factors.

• N ∼= U3(8). Recall that |N | = 29 · 34 · 7 · 19, |Out(N)| = 2 · 32 and by
[2, Lemma 2.5], it should be |G| ≥ |N | · 32. Moreover, G/N is a π-group
and {2, 3} ⊆ π.

If |G/N | = 32, then {|N ∩ A|, |N ∩ B|} = {3 · 19, 29 · 7 · 3}, and
so the fact that a Sylow 19-subgroup is self-centralizing in N leads to
π∩π(G) = {2, 3, 19}. But if π′∩π(G) = {7}, there would be an element
of order 7 in N centralizing a Sylow 2-subgroup of N , a contradiction.

Now assume that |G/N | = 2 ·32 and so {|N∩A|, |N∩B|} = {3 ·19, 28 ·
7·3} or {|N∩A|, |N∩B|} = {3·19, 29·7·3}. In any case it follows 19 ∈ π,
since a Sylow 19-subgroup of N is self-centralizing. But π′ ∩π(G) = {7}
cannot occur again because this would mean in both cases that a Borel
subgroup of N would have a subgroup of order 7 centralizing a subgroup
of order 28, which is not possible.

• N ∼= L2(q), q > 3 a Mersenne prime.
In this case, we know from [2, Lemma 2.5] that |Out(N)| = 2 and

{X, Y } = {NN(Nq), Dq+1}, with Nq ∈ Sylq(N) and Dq+1 a dihedral

group of order q + 1 = 2n, for some n ≥ 2. (For q = 23 − 1 = 7 there
exist another factorization which will be considered later.)

Since Dq+1 is a 2-group, it follows that N ∩ A ⊆ NN (Nq). Now by
order arguments q divides |N ∩ A|. Since a Sylow q-subgroup of N is
self-centralizing in Aut(N), we deduce that A is either a π-group or a
π′-group which is a contradiction.

If q = 7, it might be also possible that {X, Y } = {NN(Nq), S4} with
Nq ∈ Sylq(N) and S4 the symmetric group of degree 4. Since Nq is self-
centralizing in Aut(N), we deduce that N∩B ⊆ NN (Nq) and N∩A ⊆ S4.
Then the factorization A = Aπ × Aπ′ with Aπ′ 6= 1 and Aπ 6= 1 is not
possible.
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• N ∼= L2(2
n), for either n = 3 or 2n + 1 > 5 a Fermat prime.

Set q = 2n. Recall that, in this case, |N | = q(q2 − 1), and Out(N)
is a cyclic group of order n. From [2, Lemma 2.5] it follows that
{X, Y } = {NN (N2), D2(q+1)}, with N2 ∈ Syl2(N), |NN(N2)| = q(q − 1)
and D2(q+1) a dihedral group of order 2(q + 1). Since the subgroups
of prime order q + 1 in N are self-centralizing in Aut(N) and q + 1
does not divide |Out(N)|, we deduce that N ∩ A 6≤ D2(q+1). Hence
N ∩ A ≤ NN (N2). But again the fact that a Sylow 2-subgroup of N is
self-centralizing in Aut(N) provides the final contradiction.

Remark. In [12, Final examples, 3] it has been shown that the conclusion
of Theorem 3 is not true for the groups L2(2

n), n ≥ 2, except if either n =
3 or 2n + 1 is a Fermat prime.

Next we show that Theorem 3 is also false for groups involving L2(q),
q > 3 odd, except if q is a Mersenne prime. (We note that L2(4) ∼=
L2(5).) To see this we consider the group G = PGL2(q), q odd. Note
that |G : L2(q)| = 2. Thus |G| = q(q2 − 1) and it is known that this
group has cyclic subgroups of orders (q − 1) and (q + 1). Then G = AB
where A ∼= Cq+1 is a cyclic group of order q + 1 and B = NG(Gp),
Gp ∈ Sylp(G), is a subgroup of order q(q−1). Clearly π(A)∩π(B) = {2}.
Set π = π(NG(Gp))) and note that 2 ∈ π. Then A = Oπ(A) × Oπ′(A)
is a π-decomposable group and B is a π-group, but Oπ(A)B is not a
subgroup, except if q + 1 is a power of 2, that is, q is a Mersenne prime,
in which case G is a π-group.

As a consequence of Theorems 2 and 3 we deduce the following result
for an arbitrary set of primes π.

Corollary 1. Let π be a set of primes. Let the group G = AB be
the product of two soluble π-decomposable subgroups A = Aπ × Aπ′ and
B = Bπ ×Bπ′ . Assume that the following simple groups are not involved
in G:

(i) L2(2
n), n ≥ 2, except if either n = 3 or q = 2n +1 > 5 is a Fermat

prime,

(ii) L2(q), q odd, except if q is a Mersenne prime.

Then the composition factors of G belong to one of the following types:

(1) π-groups,

(2) π′-groups,

(3) the following groups in the list of Fisman [7, Theorem 1.1]:
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(i) L2(2
n), n ≥ 2, with either n = 3 or q = 2n +1 > 5 is a Fermat

prime,

(ii) L2(q) with q > 3 and q is a Mersenne prime,

(iii) L3(3),

(iv) M11.

In particular, let the group G = AB be the product of the two soluble
π-decomposable subgroups A = Aπ ×Aπ′ and B = Bπ ×Bπ′ and assume
that the simple groups L2(q), q > 3, L3(3) and M11 are not involved
in G. Then the group G is π-separable.

Proof: The last statement of the corollary follows directly from the first
part. Assume that this one is not true and let G be a counterexample
of minimal order. Since G/M satisfies the corresponding hypotheses for
each normal subgroup M , we may assume that G has a unique minimal
normal subgroup, say N . We can also deduce that Oπ′(G) = Oπ(G) = 1,
and so N is non-abelian. Assume, for instance, that 2 ∈ π′. From
Theorem 2 we have that AπBπ = BπAπ and, by Lemma 2, we deduce
that [AG

π , BG
π ] = 1, which is a contradiction to the fact that N is non-

abelian, unless either Aπ = 1 or Bπ = 1. Now applying Theorem 3 in a
similar way we deduce that either Aπ′ = 1 or Bπ′ = 1. Then, in any of
the cases, G would be the product of a π-group and a π′-group and the
conclusion follows from [7, Theorem 1.1].
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Departamento de Matemática Aplicada e IMPA-UPV
Universidad Politécnica de Valencia
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