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Introduction. We consider the equation

dx2 dy2

over the rectangle 0<x<a, 0<y<b, with given boundary values
for z. Following the usual procedure (see for example Hyman [1]) we
approximate the solution by solving a set of mn simultaneous equations,
arising from the corresponding difference equation. If we write

p=Δy/Δx, α. u = — f(jdx, iΔy)Δy2

and Ztj=z(jdx, iΔy), the mn equations are of the form

i = l , , m, j=l, ,n .

A solution of this set of equations is given by Hyman [1]. In the
case where the boundary values are zero, the solution takes the form
Z=CωD [1, p. 340] where C and D are matrices which depend on n
and m and may be written down without any calculations, and ω is a
matrix depending on m, n, p and the values of f(x, y) at the lattice
points. The matrix ω requires somewhat elaborate calculations. To
obtain the solution with given boundary values, he adds to the matrix
CωD the value of u as a matrix obtained from the solution of the
equation Διu\Δxι-\-Δ2u\Δy2=§ with the given boundary values. He ob-
tains for u the matrix value U=Cφ [1, p. 329], where C is the matrix
mentioned above and φ is a matrix depending on n, m, p and the boundary
values and requires to be recalculated for every set of boundary values.

In this paper the solutions of equations (1) are obtained, column
by column, in the form Zj=ΣkMj>kBk, where the MJik are matrices
depending on m, n, and p and which require somewhat elaborate
calculations, and the Bk are vectors depending on m, n, p, the values
of f(x, y) at the lattice points and the boundary values and can be
written down without calculation. We may regard this solution as
giving an explicit formula for the values of z at the lattice points.

The principal work in the calculation of Zj is the calculation of the
matrices Mj]k. It will be shown that it is sufficient to calculate a
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selection of columns of Z, as the method lends itself to a stepping off
process also that all the matrices used can be written down easily
from a knowledge of their top rows. The calculation is simplest when
p=l. Further, the case when p=l or is nearly 1 is the most accurate
[1, p. 332]. It will be shown that when \pz — 1|<C1, Z may be obtained
by successive approximations with the help of the matrices calculated
for p=l. It appears to the authors that if a not very elaborate set
of tables were to be prepared for selected values of j , m and n with
p = l , the calculation of Z would be much simplified. Further, if such
a set of tables were available, it might be of assistance in the iterative
method of the solution of these simultaneous equations when the
boundary is not a rectangle.

In § 1 we develop the method of solution. In §§2 and 3 we give
methods by which the required matrices may be evaluated. Section 4
deals with the iterative process when p is nearly 1, and this is ampli-
fied in §§ 5 and 6.

1* We write the mn equations (1) in n sets each consisting of m
equations. A typical set is

2(14- pι)zld-z.u =p2(z1J+1 4- zlyj_,) 4- ai:j 4- zQϋ

-z,j + 2(1 -h pήz2j-z3J=p~(z2J+1 4- Soj-0 -f a2J

j%mJ ==P'\Zm,j + l + Zmj-ι) 4" Ctmj 4" Zm + ίj .

( 2 )

We write Zj for the vector (zlj9 z2iJ, , zmJ), A5 for the vector (o1}j,
«2j, , Umj), Z/ for the vector (zOιJ, 0, 0, , 0, zm+1J) and Mm{a) for
the mxm matrix

( 3 )

/ a, - 1 , 0,

- 1 , a, - 1 ,

0, - 1 , α,

\

The equations (2) then take the form

or

j=l, ,n,

'*MJ2 + 2ffί)Z1 - Z,

( 4 )

, + Zι') + Zo = 5 ;

+ Z./) =Bt
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These equations can be solved by iteration. See for example Todd [3].
The class of all ordered sets of m real numbers is a vector space

over the ring of polynomials in the matrix Mm(2 + 2p*). Interpreting
equations (4) in this way, we may obtain their solution from Cramer's
rule in the form

( 5 )

where is the determinant of the matrix of matrix coefficients on
the left of (4) and the ^fJik are cofactors of r/j. One may readily
prove that _ ^ 3 ^ = ^ ^ and that when j<k

( 6 ) ^j^Dj-^p-WJϊ + 2p*))Dn-k(p-*MM(2 + 2o*))

where Dn is the polynomial defined by the rath order determinant

X ,

- 1 ,

0,

- 1 ,
x ,

- 1 ,

o,
- 1 ,

x ,

and Dύ(x) = l.
One may regard (5) as expressing z in terms of the given values

for f(x,y) and the boundary values. In particular whenj=l, we have
from (5) and (6)

As was pointed out by Hyman [1, p. 331] it is unnecessary to
calculate the remaining values of z by the use of (5). It is sufficient
to use (7). Knowing Zo and Z1 we may "step off " using (4) to deter-
mine Z2 and then use it again to get Zti from Z2 and Z{ .

2 In this section we obtain some properties of the polynomial
Dn and of the matrices Dn(βMm(a)).

THEOREM 1.

( 8 )

[ / ] /ryf

(9) /)„(»)= Σ ( - l ) r ( r

(10)
Δ yd — 0)
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(ll) A(*)=2-»

(12) Dn(x)=sinh (re + ^ , x=2 cosh 0
smhφ

(13) D^x)=*
sin

(14) Dn(x)= ΐl(x-2 cos ---π ) .

Formulae (8), (13) and (14) are known ([2] and [4]). Formula (8)
follows immediately from the definition and (9) may be proved by
induction using (8). Formula (10) also follows from (8) by induction.
Formula (11) comes from (10) on writing a=x + y, b=x—y. The equa-
tion :£=2coshφ means that a=2eφ, b-=2e~φ whence (10) gives (12).
Formula (13) is proved similarly. By (13) the roots of the equation
Dn(x) = 0 are 2 cos (rπl(n + l)), (r=l, , n) giving (14).

COROLLARY. // M is a square matrix and I is the corresponding
identity matrix : —

(15)

(16)

J_ I

(17)

(18) Dn(M)= Π

THEOREM 2. // P is any polynomial, then P{Mm(a)) is an mxm
matrix which is symmetric about both diagonals.

If two matrices which commute are symmetric about both diagonals,
then so is their sum, product and any scalar multiple. This theorem
therefore proves that the matrices Dn(βMm(a)) are symmetric about
both diagonals.

THEOREM 3. Let P be any polynomial and let a^ be the elements
of P(Mm(a)). Then if we interpret aLj=0 whenever i or j is <[1 or
^>m, we have, for l < ΐ < w , l < i < m and i+j < m-4-2.

(19) αu=αi-i,j
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and for l<Li<Lj <Lm and i-fi < m - f l ,

(20) &ij==^i,-f.+j+i"J~ai,-i+1/+3~i~ * * ' "f"^i,ΐ+j-i

Theorems 2 and 3 enable us to write down all the elements of
P(Mm(a)) from a knowledge of the elements in the first row.

Proof of Theorem 3. We observe that (19) is invariant under addition
and scalar multiplication. We observe also that in the case ΐ = l , (19)
reduces to a triviality. If j=l it becomes aiΛ=auι which is true by
symmetry about the main diagonal, and if i+j=m + 2, it becomes
α ί,j=α ΐ_u_1, which is true because of symmetry about the other diagonal
(Theorem 2). Formula (19) will therefore be established if we can
show that it is true for Mζn(a), where r is a nonnegative integer, and
when 2 < ί < r a , 2 < ^ ' < m and ί+j <m + l.

By inspection it is true when r=0, 1. Let a\5 denote the i, jfth
element of M£{a). Then αίj=—αfj^ + ααΓj1—αίjii for l < i < m , 1 < ^
< m . If we assume that it is true for r —1 we have for 2 < ΐ < I m ,
2 < j < m , i+j<Lm +1, that

which completes the proof of (19).
Formula (20) follows from a repeated use of (19).

THEOREM 4. If we denote the i, jth element of Dn(βMm(a)) by a™f then

(21) a!ff=a?f9 l<j<k, n^k^m.

From (15) we have

(22) a\y= - βaγfj]1 + aβa\nfι- β<£»:»-χ

ι - a]nf~2

where aff=aff^==0 and l<Lj<Z.m. From (22) we have by induction
on n that αϊy=0 if i > ^ 4 - 2 , which means that αΐ*f+V = 0. Since we
must write a?f~ί==a1ίι!)

ι-ι=ak

1$-ϊ==0, this allows the following induction on n

πm,n Oπm,n-1 j _ ̂  Qπm,n-Ί Ωπm,n-\ πvι,n-2
al}j — — pa1j_1 -f-ocpa^j — p a h j + 1 — a 1 > j

— — p a ί j -t upuij — p a > \ j ι a j — - a j

However the theorem is true for n=l and n=2.

Formula (21) shows that the top row of the matrix Da(βMm(cc)) is
essentially the same for all useful values of n, while (22) gives a re-
cursive method of computing this top row. Theorem 3 and the remark
after Theorem 2 show how the remainder of the matrix can be filled
in from the top row. Thus the computation of the matrices Dn(βMm(a))
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for n<,m is simplified, and the matrices lend themselves to easy
tabulation.

3. In this section we give some results which are useful in the
calculation of D^Mm(a)) = [D^Mm(a))y\

Since the inverse of any matrix is a polynomial in that matrix,
we have Dή\βMm{a)) a polynomial in Dn(βMm(a)) and therefore a poly-
nomial in Mm(a). Theorems 2 and 3 therefore apply. It is thus
sufficient to compute only its first row. From the first row we may
obtain its elements altj for l<i<j<Lrn and i-h i<m-f 1 by (19) or (20)
and then the other elements can be filled in by symmetry.

THEOREM 5. If the element in the ith roiv and jth column of
M;n\ά) is a.ίj and if α==2 coshφ, then

(23) a.ja.j

sinh(/>sinh(m4-l)ς/>

For proof we have first that

(24) a^nO^ψJa)
Dm{a)

The result then follows from (12).

THEOREM 6. / /

then

(25)

From (18) we

ar

have

=a —

\βMm\

2

J

(a)

COS
Tπ

n + 1

n

r = l

Dn(βMm(a))=Π (βMm(a)-2cos r π

Λ

(26) jSΠJIfiα{cos
r=i V β n + 1

=β»UMm(ar).
r = l

The result follows immediately.
A result which may be easier from the computational point of view

is to express D~ι(βMm(a)) as a sum of matrices. This is done in the
following theorem.
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THEOREM 7. / /

ar=a — — -cos •"" ,
β l

then

α)) 2 £(27) D(/Mm(α)) £ ( l Γ s i i r
β(n + l) r-i n + 1

From (26) we have that

Dn(βMm(a))=ΠβMm(ar).
? = 1

Therefore

ct))= Σ or{βMm(ar)} -1

l

where the c/s are suitably chosen scalars.
If J(x) = Ώ%1(x-γr)f γrφγ8 when rφs, then

To obtain the values of the scalars cn we put f=Dn. From (13) we

have

•»' 2 cos ^
72 4 - 1 / o >2 sm2

TZ-f-

sin2#

This gives

rπ

and therefore

With the help of (23) we can obtain a more explicit result.

COROLLARY. If aitj is the i, jth element of Dΰι{βMm{a)) and

2 cosh φr=a— cos π

β 92

then aitj=aJyi for all i and j , and for i
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(28) α^E^ + l^Σί-lWl-cos^Λ-^^^
r=i V n + 1 / smh φr sinn (ra

In the case i=l, this reduces to

(29) α,,=&

4 In the formulae of the two previous sections, if p=Δy(Δx=l
we have α=4, β = l and there is some simplification in the resulting
calculations. It is pointed out by Hyman [1, p. 322] that the case p==
1 is the one which gives the most accurate results. Hence it is sug-
gested that in arranging the lattice points of a rectangle, one should
attempt to have p approximately one. We now give a method of find-
ing a correction, when p is approximately one, to the solution obtained
by assuming p=l. It is found that in this way we can make use of
tables prepared for the case p=l.

We write p*=l-{-d. The equations (1) then become

(30) (4 + 2δ)zitJ=(1 + δ)(zu+1 + sifJ-i) 4- (zi+1J + z-i-jj) + au .

Let

I \^i,j:==^ ^ίj *^i+i,j %i-i,j fi-ij+l *^ί,j-ί

Then (30) may be written

= ~ 8Δzitj 4- dij .

We suppress the first term on the right of (31) and find u$ so that

(32)

and uγ]=zu on the boundaries. Let Z denote the values of z.iιό at the
lattice points, with similar notation for UCr) and FCr) with r^>l . Let
Z=ϊ7 c υ 4-F α ) , then UO} is an approximation to the values of Z with
error VCΌ for which an equation is obtained by subtracting (32) from
(31). Thus

and F ( 1 ) is zero on the boundary.
We now find ί/(2) such that

and £/°° is zero on the boundary. Writing Fα)=£/ (2)4- F ( 2 ) we obtain, by
subtraction,
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Proceeding in this manner we obtain for r > 1

ΎCr^= ]/C? + l)_j_ JJCr + Ό

(33) D<;υ=

(34) α < ; 1 } =

where F ( r ) and U°'\ r>2 are zero on the boundary. A formal solution
of equations (30) is thus

(35) 7= V 77O)

We observe that equations (32) and (33) to determine UCr) are the
equations (1) where ^ = 1 and where different sets of values are suc-
cessively used in place of the aίtj. The formal solution (35) will be the
solution provided F 0 ) tends to 0 as r tends to co. This will certainly
be the case if, given any arbitrary Xω we can show that the iteration

leads to the result X(r)->0 as r-*oo. In the next two sections we
obtain the condition on d that this should be the case, and we obtain
an estimate of the error if we take Z=^fr=ίU

(r\

5 We proceed to the solution of (33) (and (34)) when r ^ 2 . The
equation may be written

(r)_w(r) \

If Z7£r) is the vector (u$, w$, , ^;2) then since all boundary values
are zero, these n equations can be written

If now ^/S is the mxm matrix of matrices defined by

/ikfn(4), - I , 0, \

0,

v* is the mxm matrix of matrices defined by

/Mn(2), 0, 0, \

0, j|fn(2),

0, 0,

0,
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and U(r) is the vector (Z7ίr), , Uζp), then since all boundary values
are zero the m equations (36) can be written

• i ) «\ // >|i 7" TO')

and so

In the case r-—l, we must take into account some boundary values.
Thus let Z'=(Zι', Z./,' , Zm') where Z/ ( ΐ = l , . . , m) is the vector
(zM, 0, , 0, zίiJ1+i). Then the solution of (33) for r=\ is

(38)

Returning to (37) we have

Hence U(r) and V(r) tend to zero as r tends to oo provided that a cir-
cle of radius l^l"1 and center the origin contains the spectrum of

The spectrum of ^/S-1^//* is found most easily by considering the
matrix ^ * ~ 1 ^ . Writing M=Mn(2), we have

0 ,

0 ,

7+2ikί-1

-M-1

0,

o,

0,

o,
\ /M+27, - I ,

- I , M+2I,

•/

0,

o, -I, M+2I,

-M-1, 0

I+2M-1, -M-ι

:

-M-1, I+2M-1

If {μr, ?'=1, , n) is the spectrum of M, we may use a theorem
of Williamson [5, Theorem 1] to find that the spectrum of ^/S*-1^//
consists of the spectra of the n mxm matrices

-1, -μ;\ 0,

;\ 1 + 2/i-1, -μ;1,

0, -μ;\ 1 + 2/χ;1,

By (14) this is the set //,:'(//,. + 2 + 2 cos Sπ

/

, w ; s = l , ,m.
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However by (14) also //r=2 + 2cos

trum of ^///-ι^/έ* is

rπ

Tπ

2 + 2 cos
n-\-l

4 4- 2 cos -iiL-+2c<>s--7Γ

1 m + 1

, r = l , , n. Thus the spec-

s i n 2

2(m

sin2 -
Tπ

8 = 1, . - . ,

This spectrum therefore lies in the open interval (0, 1).
is thus a solution of (1) if

> = ]LΓ=i UCr)

sπr

s in ' -
22(n + l)

and certainly if

6. We shall now estimate the error if we take Z= Σr=i UCr\ We
suppose that |<?[<!1, and consider first the case s ^ 2 . Since the
spectrum of ^ " U / * lies in the open interval ( —1, 1), using (37) we
have

(39) z-

Now the spectrum of the matrix is

sm'

s i r ——

r = l , , w ; s = l , , m.

If ^ > 0 this lies within a circle of radius one, while if d < 0 it lies
within a circle of radius (1 + <5)"1 = (1 — l^l)"1. Therefore we obtain from
(39)

(40) z- Σ u™
<|ai!^«l,

when

when

1 The norm | |T| | of a matrix is sup||Tcc||/||cc||, where \\x\\ is the square root of the sum

of the squares of the coordinates of the vector x. Jf T is symmetric it is known that

| |T| | —Ul where λ is the characteristic root of T of maximum modulus.
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Consider now the case ? = 1 . By (37) and (38) we have

(41)

We wish now to obtain a formula corresponding to (40). We observe
that

M~\2) , 0 , 0 ,

0, M~\2) , 0,

0, 0, M;ι(2),

\ /

and the i, jth element citj of Λf;7
1(2) is given by (24) and (8) as

i < 3
Dn(2)

B y d i r e c t m u l t i p l i c a t i o n ^/f*~ιZf i s t h u s a v e c t o r P=(Plf P,, •••, F, r t ) ,
w h e r e

Now

l a = Σ II All2

7ί\2iYl-\-

Thus

HZ0, Zn + ι) is the inner product ΣΓ-i ^.o ^ > κ + i, and |(^c, Zn + 1)\<\\Z0\\ \\Zn+1
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From (41) using the same arguments as for (40) we obtain

> when a > o f

+ ϋZ^IDl , when δ<0.
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