THE SLOW STEADY MOTION OF LIQUID
PAST A SEMI-ELLIPTICAL BOSS

G. PowER AND D. L. ScorT-HUTTON

1. Introduction. In this problem of two-dimensional viscous flow,
liquid is supposed to have a rigid boundary represented by ABCDE in
Figure 1 and, apart from the disturbance caused by the presence of the
elliptical boss BCD, is assumed to be in uniform shearing motion. The
stream function is thus a biharmonic function vanishing together with
its normal derivative at all points of the boundary, and proportional to
y* at a great distance from the boss. A series of functions is found,
each of which satisfies all the boundary conditions save one. A linear
combination of these functions will also satisfy the boundary conditions
with this one exception, and by a particular choice of the arbitrary
constants which it contains, the remaining condition can be satisfied at
as many points as desired. Special cases are discussed, and a process of
approximation is outlined which yields the most accurate results at C,
and also gives a convenient function for determining at any point of the
boundary the magnitude of the error in the unsatisfied boundary condi-
tion. A special case of this problem has previously been considered [1].
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Figure 1.

2. The stream function. We take the equation of the boundary
BCD to be a*/a*+y*/b*=1, and note that the region occupied by the
fluid, for which y is never negative, is transformed into the interior of
the semi-circle of unit radius shown in Figure 2 by

(1) —22=(a—b)w+ (a+d)/w .

The stream function ¢ is biharmonie, that is to say it must satisfy
r+p=0, and a satisfactory solution to the problem is

(2) ¢g=y"+U+yV,
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provided U and V are harmonic functions which are chosen so that
U+yV does not tends to infinity as z tends to infinity.

The boundary conditions to be satisfied are ¢=0 and 9¢/0v=0 along
the boundary, where Jv denotes an element of normal to the boundary.
From (2), we see that four conditions are required, namely

(a) U=0 along AB and DE, that is when y=0,
(3) (b) V+oU/ay=0 along AB and DE, that is when y==0,
(c) w+U+yV=0 along BCD, that is when «*/a*+y*/b*=1,

(d) @/ov)y*+U+yV)=0 along BCD, that is when &*/a’+y*/b*=1.

Writing w=re®=u+1iv, and using the tranformation (1), we see that
the boundary conditions (8) become, after a little reduction,

(a) U=0, when v=0,
(b) (b——a)V’ + 2%%:_ . aU:O , when v=0 ,
(4) (c+u*) ow
(c) U+bsinV'=0, when r=1,
@ ba+b)ysino=1 Ui 32V' v when r—1,
sin 6 or or

where V/=V+brsinf, and c=(b+a)/(b—a).

"We will proceed to find pairs of harmonic functions U,,_,, V.-,
such that each pair will satisfy exactly the first three of the above
boundary conditions. Any linear combination of these functions will
also satisfy exactly these three conditions, and by giving special values
to the arbitrary constants in this linear combination we can satisfy
approximately the fourth equation. Physically, this means that in the
fluid motion represented by our solution there will be a small velocity
of slip along the boss BCD, which can be calculated from the error
involved in the last boundary condition.
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If we take
Q
(5) U= nz_la‘_'n—len—L ’
where
A’ D, B~, — V97~ C‘Y - 2 _‘]
6 Um_ =/4{ n—1 zn+1+ m=1 gpin-1 Mol gpy2n=3 ,
(6) ‘ 2n+1 2n—1 T on—3 J

then U is harmonie, and 4 (a) is satisfied. Moreover, the consideration
of symmetry shows that even powers of w are not required. Now we
have

( 7 ) (aVUzn—I) z(uz +C)<Azn_1uzn-—z +7(;;’>7£:1 u‘ln-;) ,
v v=0 ¢
provided ¢A.n_,—Byu-1+ Coni[c=0,
and
(8) (Usn-1)r-1=sin 0( 2;:14_"11 cos 2nf — Zg‘“ ?: cos (2n—2) 0)
pI'OVided, AZWT,‘ ,_]_,Bz’n—l S+ Cz'n, 1 =0 .

2n+1  2n—1 2n—3

From (7), (8), we see that we can take

Au 1—72%"7“) @n—1b+a}p, ,
(9) By = 4E§f )12) {6+ (2n—1)ab+a*} p,
G 22N=3)040) (o
| (b a)z )

where the unknown p, has yet to be determined. By setting

Vi —W. .+ 2C,,_, 7" % cos (2n—2)0 _ 2A,,_,r*" cos 2nl
2n—-1 " 2n-1 -

(2n—3)b @n+1)b
we see that 4 (¢) yields
(10) Won-1=0 when r=1.
If further we take
(1) Pu= oo —a)’

4(2nb+a){2(n—1)b+ a}
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then condition 4 (b) gives
(12) W,,_,=u*~*—u*" when v=0.

Equations (9), (11) now give

(2nb+a){2(n—1)b+a}

[ A, —@n+1)bb—a)
{ " 2(2nb+ a)
(13) 4 B, — @n—=Db{b*+ @n—Dab+a’}

_ (2rn—3)b(b+a)
[‘ T 20m—1)b+a}

To find the function W.,,_, satisfying (10), (12), we consider
D yn= T {¥ou(W)}, Where

X’ln(ﬂ)):_u]—zn_{_ ? {w27l+ 1
T W

2%{( et 1 ) 1( 23 1 ) 1 ( 1)?
— + o )+ o (w e © (w+ )b
(14) - \Y wn-1)7 3 T s toon_1 w)l

Lo (w)=—1+ 2 {log (w+1)—log (w—1)} .

T

} {log (w+1)—log (w—1)}

It is easy to verify that .2 {y.,.(w)} =0 when =1, and that
B {Yan(w)} =u*™ when v=0, since from Figure 2

log (w—1)—log (w+1)=log A +14(0,—0,) .
/rl

The function W,,_, is thus given by

(15) Wm—1:¢2n—z_¢2n .

Finally, we see that the required stream function ¢ is given by
equation (2), where

e a A . B, _ o C,,_ _,)]
\ U=_7 - j =l gl M=l gpin-l g M1 g3 ,
; ngla‘ h 12n+1w 2n—1 2n—3
J . a 2C,, - onee  2A.,_ ,
16) | V=J//‘Z){ bw+ D Gy [ 201 ypones el
(16) ‘ bt 2 1] g 3 2n+1)b

=+ Xon- _.(’LU) - in(’w)} }‘ y

the constants A,,_;, B...i;, C.._; being determined from (13), y..(w)
from (14). It is quite easy to verify that ¢—y* as z->oo, that is as
w—0, since the most significant terms in U and yV are respectively
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2a,C\y/(a+b) and a,y(—2C,/b+1), the sum of these being clearly zero
from (13).

3. The fourth boundary condition. It is now necessary to consider
the boundary condition as yet unsatisfied, given by equation 4 (d), in
the form

(17) b(a+b) sin 0= 3 sy Ao (0) when r=1,

n=1

where

1 oU..- 1% ]
Aom— = —_ =1 f OVem-1_ 4 I
2 1( ) Sin 0 87‘ + aqa aVi,_1

Theoretically, the constants a,,., must be chosen so that (17) is satisfied
for all values of ¢ lying between 0 and =, and this would require an
infinite number of terms. Clearly, therefore, some form of approxima-
tion must be applied. Suppose that the constants a.,., are chosen so
that

S g1 hon 1 —b(a +b) sin 0+ F(0) ,

then sin0F(6) is the error involved in the boundary derivative
(o¢/ar),.,, and the actual velocity of slip on the boundary BCD in the

z-plane is
{( a¢>l dw } _  sm0F©O)
or /V de et (b cos® §+a® sin® 6)'*

This becomes infinite at 6=z/2 in the degenerate case a=0, unless
F(x/2) happens to be zero. Therefore we must consider a method of
approximation which gives no error at all when #/=x/2. The coefficients
®yn-, Will be chosen so that the expressions on each side of (17) have
the same values and the same differential coefficients with regard to ¢
when 0=r/2, the number of differential coefficients that can be equated
depending on the value of the integer ¢. From (16), we see that when
r=1,

(18) Zyn_+(0) = }?{Amqsm@n+D0+qusm@n~D0+CM4ﬁn@n—$ﬂ
Sin

2(n—1)h—a
+2{ @n—3)b

+b(f2n—‘l(0) "fzn(ﬁ)) ’

an—a

}C.m_l cos (2%—2)0~2{ @ni )b

}A.m_l cos 2nb

where
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Falt)=(E22) | — o H)}

8

=w~n—{sin(2n—1)(}+71~sin(2n—3)0+---+ 1
Fid 3 2

~sin 0}
1

+2n cos 2n0 + dn sin 2nd log tan g _. 2 esed,
T T

Fof)=—2 cscd .
T

It is to be noted, that although f,,(0) is infinite at /=0, =, the expression
San-2(0)— fn(0), which occurs in 2,,_,(f) is finite at these points. Equation
(17) is satisfied exactly when 6=0, =, and putting 6==/2, we have

(19) b(a+b)= i}azn—lzin—l(ﬂ/z) ,

and by differentiation we are led to

—W@+D)= 3 G Kar(7/2)
(19/) n=1

q
b(a+0)= >, @ B (7[2) ,
n=1

and so forth.
It is from this set of equations that the constants a.,., are to be
calculated.

4. Special cases. The two special cases of the semi-circular boss
and projection will now be discussed.

() semi-circular boss.

Setting a=b=1, equation (16) yields

U— Z"“ Qap 1 {,rm Ysin (2n—1)0—1*"~gin (2n—3)0} ,

= —7rsin 0+n§,1am—l(d)zn—z‘¢zn)‘_ Z ;zzi{ "% cos (2n—2)0 ,

and from (18), we get when r=1

hoe @)= {2 sin@n=1)0 4 fan)= £2.0).

sin ¢

As an example, let us take ¢g=3, so that from (19) we are required to
solve the equations
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2=a,2,(7/2) + as2y(7/2) + a,2:(/2) ,
—2=a,2{ (7]2) + a2 (z/2) + ;25 (7]2) ,
2=, 4" (7]2) + 5" (m]2) + ;28 (2/2) .

By substitution and straightforward calculation we obtain the follow-
ing table :-

n=1 i n=2 n=3
Aep—1(r)2) | +1.45352 1 —0.72488 4-0.38385
Aoy —1(712) —0.36056 +5.18309 —9.65706
Y 2y —1.10423 ~22.24210 +-191.53800

which leads directly to a,= +1.21058, a;=—0.34379, a,= —0.02299.

A more accurate result can be obtained by taking more terms in
the linear expression for ¢, and it is found that the coefficients a.,_;
decrease rapidly in magnitude, but the numerical work involved soon
becomes exceedingly heavy.

This choice of approximation method is seen to advantage if cal-
culating the error function

F(()): Z? a:l'ﬂ~l2',”ll—\(ﬂ)'—2 sin 0
n=1

at any point by means of the Taylor expansion about f=r=/2, several of
the significant differential coefficients being zero by definition. The
following table gives the value of F'(f) for various values of 0, and
Figure 3 shows the graph of F(0) plotted against values of ¢ lying be-
tween 0 and 7/2. The graph for =/2<<0< z will, of course, be similar,
since F(0) is symmetrical about 0=x/2.

o | 0 /45 /15 i =8 w4 38 =2

| !
\
I

Fo) 0 | 0.05918  0.08225 | 0.05838 o.oo915§ 0.00041 0

It will be noticed that the results are most accurate in the vicinity
of 0=n/2, as might be expected from the method of approximation.
Although the value of F(¢) becomes greater than 0.08 for a certain
(small) values of @, the velocity of slip, given by sin 0-F(6), is really
very small at these points.

(8) degenerate boss.

If a=0, the semi-elliptical boss degenerates to a projection into
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F(6)

0.06 Figure 3.

0.02

x4 /2 0
the moving liquid, and the formulae (13) become

Azn_1:(2n+1)b , BM_IZ(Zn——l)b

__(2n—3)
4n )

’ C27L—1*“
4n(n—1) 4(n—1)

These values will hold except for n=1. For this case we will follow
W. R. Dean [1], and will find a pair of solutions U,, V,’ which satisfy
equations 4 (a), (b), (¢). The procedure outlined in § 2 is again followed,
and omitting details we are led to the two pairs of solutions

U=.7bw, Vy=-— %{ ‘Zw } ’
T+w
and
F Z {w*+ 3w}, UIZZZJJFW ! VI,:%;{—l— ;w2+x()(w)—xz(w)} ’

The final solution is thus

— 7 arll?r 3 9 b(w‘l’ﬂ+1+ 21 _ wm—;«;)
v=7 {a°bw+ g BT by dn(n—1) 4(n—1) }

(20) V=7 i’ibw”*(‘l‘%w% Z“(szz_l) +Z§: )

q
b0 8 (an00) = L)}
t+w =1
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Again we note that ¢—y* as z—oo.

5. The pressure equation. The pressure p is determined from the
equations of motion in the form

op 0 op 0 s
or__ e, L—y %y,
ow # oY y Y a ox ’

where g is the coefficient of viscosity. Now ¢=y*+U+yV, where U
and V are harmonic, so that /*¢=242(2V/3y), and hence

Ignoring an arbitrary constant, we have therefore

oV mé%wwww zg?ﬁf dwm}

=2
p ”a dw

where V=27 {V(w)}. From equation (16) we see that

2C w2 24, w™"
V(w)=1ibw + n2= (/. 1{——(2n—_—8—)g— Cni Db + Yon—2(W) — Xm(%U)} ,

and so

1) p=2n {[ (b+a) f—%f;—a)wzj[ib+ ;;1 (o Jli(n(zlzc g)éw

_ 4nAm_],wzn—1+‘dx‘mr_g(w)r _ Ay on(w) 1:|l .
@2n+1)db dw dw

Equation (21) gives the pressure distribution, and on the plane boundary,
where v=0, this becomes

® ol B

I L e

+2(n—1Du* =2 ?c‘—’"“l} .
@ninp TAeTD Sl

In particular the pressure at B exceeds that at D by

8p & j 2m—1)Cypey | 2nA,,
23 - m-13 + - 1
(23) Pairr b n}:l Qs { (2n—3)b @n+1)b + }

For the special case a=b=1 discussed in §4 («a), this expression is

8y s (4n—=3)as .
Iungll 2n—1
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and with the values for a,, a;, a; substituted we obtain a difference of
4.78 p.

For the degenerate case a=0, b=1, Dean [1] obtains a difference of
approximately 5.80p between the pressures at B and D.
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Added in Proof: The equations governing the slow steady flow of a viscous in-
compressible fluid are the same as those characterizing an equilibrium state of an incom-
pressible elastic solid, if one simply replaces velocity and coefficient of viscosity by
displacement and shear modulus. Thus the results here obtained can be used as the
solution for the tension of a semi-infinite plane whose edge is indented and traction free.





