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l Grunwald [1] and Marcinkiewicz [2] have shown by examples
the existence of continuous functions for which the sequence of Lagrange
interpolating polynomials taken at the Tchebysheff abcissas diverges at
each point of [ — 1, 1], Marcinkiewicz constructed a function which
actually proved an equivalent proposition, the existence of continuous
functions for which the sequence of trigonometric interpolating poly-
nomials taken at an even number of equidistant points centered at the
origin diverges everywhere.

A similar result is known if for the nth polynomial the interpolat-
ing points are of the form 2ml(2n + l), i=0, ± 1 , ••• the sequence of
interpolating polynomials corresponding to a certain continuous func-
tion, f(x), diverges for every aφO (mod 2π). The point x=0 must be
excluded because it is of the form 2πίl(2n+l) for each n, and hence
the nth polynomial must equal fix) there, (cf. Zygmund [3, p. 75]).
We shall consider more generally the following sets of points

(1) aΛ- •—--*, i -0 , ±1, ± 2 , . .
2w+l

where a is any real number which is held fixed as n varies. The
points (1) are called the fundamental points of interpolation. We shall
denote the nth trigonometric interpolating polynomial, that is, the
uniquely defined polynomial of order not greater than n which agrees
with a given periodic function fix) at the points of (1), by l\?\x\ / ) ,
except that we write In(x; f) for I%\x; /)•

In this paper, by refinements of the Marcinkiewicz example, along
with adjustments for the new set of fundamental points, we show the
strong dependence of the convergence behaviour of IQn\x /) for certain
functions f(x) on the number a. For proper choice of a, the con-
vergence behaviour may be the worst possible, divergence for all xφO
(mod 2π), whereas for the same function, another choice of a will lead
to uniform convergence of the above sequence. We make these notions
precise in the statements of our theorems.

THEOREM 1. For any real number a, irrational with respect to π,
there is a continuous function fix) for which the sequence In(x; f) di-
verges for all xφO (mod 2π), but for which the sequence Ic"\x; f) con-
verges uniformly.
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2. The function in question, f(x), is of the form

We shall define each fn(x) on certain points and impose some further
general conditions which ensure that Is(x; f) diverges for every xφO
(mod 2π). This part of the construction is quite similar to that of
the Marcinkiewicz example and is discussed in [3], so that our remarks
here will be brief.

Each function fn(x) satisfies the following conditions : it is continu-
ous and bounded by 1; smooth enough so that I8(x; fn) converges
uniformly to it; but such that there is a bounded integral-valued
function μ{x) defined on the closed intervals [1/w, π — 1/w], [π-fl/w,
27r —1/ra], and also for x=π for which \IμCx>(x; Λ)|>w . Thus for each
n, we choose m so large that

| ^ ^ ^af( w ) > s > m ;

ι» 2 sin (0/2) g w = ^ i==Of ± 1 ± 2 , . . . .
2s-h 1

M(n) is some function of n which we may take as large as we wish.
Let pl9 #2, , pm be integers all depending upon n such that m<pι
and

m(2pt + Sy<2pi+1 + l , i = l , 2, . . . , m - 1 .

For each p, let ^ be the system of points θ\*>, i = 0 , 1, 2, ••• , 2p; and
let Sp(u) be the intersection of Sp with the interval [u, 2π\. We define
fn(x) on SP l as follows :

((-1)%
\

Since S^ and S^+i are disjoint, except for the point x=0, we may
define fjβ) in the same way in SPi+1; that is equal to ( —1)* if ^ P l + 1 )

G SPι+1{2πlm) and 0 elsewhere in S^ i+1. Suppose now that fjβ) has
been defined for θe Spi\JSPi+1, ΐ = l , 2, ••.•, A; — 1 . For the points of
Spk\JSPk+1 which coincide with points of Sp.\JSp.+ι, i = l , 2, . . . , yfc — 1 ,
the original definition holds. For the remaining points of SPic{.JSPic+1,
we define fn(θ) as follows :
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(-l)S

0,

f( — 1 ) %

(O, ^ ^ - υ e ^ A + 1 - ^ + Ί ( 2 7 r A : »

Thus by recurrence, /w(0) is defined for all points of SPί\JSPi+1, i = l ,
2, •••, m — 1. /w(0) may be defined arbitrarily elsewhere except that
it must be continuous, bounded by 1, and smooth enough to ensure the
uniform convergence of Is(x; f n ) .

Every point x of the interval [1/rc, 2π — l/ri] belongs to some inter-
val [2(k — l)πlm} 2kπ\m~\, k=l, 2, ••• , m — 1 . For x in the &th interval,
we may write according to a well known formula

is{χ /„)=— Γ
π Jo

sin (s + U2)x rfn(θ) coφ +1/2)*
J ( e )

where

A ( a , ) = s i
2sin(»/2)

By arguments similar to those in [2], we may show, using (2), that

, a=pt, pt + l.

If x=π, then sin (s + l/2)a?= ± 1 . If a; belongs to one of the intervals
, π — l/n, n+l/n, 2π — ljri], then either | sin (pλ + l/2)a; | >llπn or

- 3/2)^|>l/7Γ7z. This shows with suitable choice of M(n) that

xe[l/n, π — lj?ι], [π-\-l(n, 2π — \\ri\, or x=π

where s is chosen to be pk or pfc4-l for some fc. The n/s are spread
out so sparsely that the following conditions are satisfied :

j^nrll2<co pm^(nt) Σ ^ 1 / 2 < 1 and |/β(a?;

Because of the first condition, /(a?) is continuous, and the last can be
satisfied by the uniform convergence of Is(x; /„) . By well known
arguments (cf., for example, Zygmund [3, pp. 79, 80]), these conditions
are sufficient to make Is(x; f) diverge for every xφO (mod 2π).
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3 Our own proof depends upon defining more explicitly each
fn(x) throughout the interval [0, 2τr]. Let T(n) denote the set of
points where fjx) has already been defined to be ± 1 . Let r=rn be
the number of points of T(n). For each s, there exists an integer
v(s) such that all the points

belong to the interval [0, 2π], All of the numbers

i = 0 , 1 , . . . ,2s; s = l , 2, .- . ,« !

l==Qf i9 ... f 2p p=pl9 p.it" ,pm-i,Pι + l, — 9 Pm-i+ l

are different from 0, else our hypothesis about a would be violated.
Let riSi), depending upon n, be the minimum of the absolute value of
these numbers. Choose disjoint intervals /a of length 2r]=2ηn centered
about each point ξ of T(n). We choose η so small that 1% contains no
other points of Sp.\JSPί+1, i = l , 2, ••• , m — 1. Let sλ be so large that
(a) 2r/ί?(2s +1)<1 for s^s1. Now in each interval Ĵ , we let fn(x)
equal a "roof" function, ±λB(x-ξ) where ;δ(0) = l ; >ίδ(^)=0 if \x\^δ,
and δ̂(^—6) is linear from f—δ to f and from ξ to f + δ. The plus or minus
sign is of course chosen in accordance with the original definition of
fn(x) at ξ. Let δ=δn be so small that (b) rd<jj and (c) 3<r(»i). Else-
where, we define fn(x) to be 0. Condition (c) guarantees that fn(x)
will be 0 at all points x/s), j=Q, 1, ••• , 2s s^s lβ Since fn(x) satisfies
a Lipschitz condition, both Is(x; fn) and Ic

s

a\x; fn) converge uniformly
to fn(x).

4. We now proceed to show that \Ic

s

a\x; fn)\<A for all x in [0, 2ττ]
where 4̂ is a constant independent of x, s, and n. We have

π

2

If s^sx, then /^(ίc; /„) is 0 by condition (c) on δ. If s>sl9 we write

where Ic

s%x; fn) consists of those terms of the sum corresponding to
the points xs(s) which belong to the interval /ξ containing x for some
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ξ (if x belongs to one such interval), and I^\(x /„) consists of the
remaining terms of the sum. We have

'29-4-1 ^ Ί τ - τ ^ l

Let 7j — δ=β=βn. Then |# —ίfy(s)|;>/3 for the terms of Σi» whether x
belongs to any interval 1% or not. Now let kn(s) be the number of
terms of Σ i I* follows that

\ ° ) I1 s, ι\*£ , j

To estimate kn{s), consider all of the intervals Iξ, except the one which
contains x (if there is such). In each fn(x) is different from 0 only
on a subinterval of length 2δ. Since successive fundamental points are
separated by a distance 27r/(2s-fl), there are at most <δ(2s4-l)/τr>-f 1
distinct points Xj(s) of the sum ^ in this interval, where (if) denotes
the least integer greater than or equal to y. Since there are not more
than r such intervals, we have that

and from (3)

(4)

Condition (b) implies that δ<j]β for r;>2, and hence that
Thus δrlβ<2δrlη<C2, the latter inequality also following from condi-
tion (b). For the second quantity on the right side of (4), we have
r/(2s + l)/3<2r/(2s+l)7<l, the latter inequality being condition (a),
which holds since s>Si. Combining these results, we obtain from (4)
that

If x belongs to none of the intervals 7ξ, then the estimate (5) of
•ίβ?ί(#; fn) will serve also for IY°(x) f n ) . If x does belong to one of
the intervals Iξ, then

(6) I™(x; / n ) = ± - - 1 _ s i n [ .

) - - —

2sin[(a?-a?/β))/2J
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where the index j corresponds to the points Xj(s) of the interval 1%.
The sum in (6) can be written as Σ2,i+Σ2,2+Σ2,3 where Σ M con-
sists of those terms of Σ2 for which \x — Xj(s)\<£π 1(28 + 1), Σs,2 of the
remaining terms for which sin [(x —Xj(s)) 12]<C0, and Σa.s of the remain-
ing terms for which sin [(^ — ̂ (s))/2]>0. Since there are at most three
terms of Σ2,1 >

( 7 ) sin x - ( 1)

The sum of successive terms of Σ2.2 is

/ 8 ) λ(x(8)ξ)

2 sin [(α?- a?,+1(β))/2] 2 sin [(x - ^ (

All of the terms, except possibly for two, of Σ2,2 can be paired as in
(8) so that λh(x~-ξ) is linear for Xj(s)^x<^xJ+1(s). For these two terms
4s + 2 is a bound. For the remaining, we apply the mean value theorem
to obtain that the absolute value of the difference (8) is not greater
than

3{2s + l)\x~xj{s)\

and so

( 9 )
2s+'l 2sin[(»-a:7(s))/2]

+
- a?χ8)ί 2(2s

Since the number of terms of Σ2,2 is not greater than 2 + ̂ (
and the smallest possible value for \x — Xj(s)\ is 2π/(2s + l), the second
term on the right side of (9) is not greater than l/2 + 7r/δ(2s + l). If
(2s + ΐ)δlπ<Clf then there is at most one term in the sum of (6) so that
one would serve as a bound for \I^l(x; /»)|. Hence, we assume other-
wise, and 7r/<5(2s + l)<;i. For the third term on the right side of (9),
since the smallest possible value for \x—Xj(s)\ is 2^/(2s + l), and since
successive terms differ by 27r/(2s + l), we have

2(2s \χ - 2(2s + I) 2 L , 2
1

J

a constant. Hence, collecting these results, we see, using (9), that

(10) 1
2 si + l

(-iy
2sin[(a?-a;/8))/2]
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A similar result holds for Σ 2, 3, so that from (6), (7), and (10), we see
that \Ic

s*ϊ(x; fn)\ is bounded by a constant At independent of x, s, and
n. From (5), \I^i(x; fn)\ is bounded by a constant Al9 independent of
x, s, and n. Thus, \W\x\ fn)\ is bounded by a constant A=Ai

5. The last result shown together with the uniform convergence of
x; fn) gives

Σ

for s large enough. Since the right hand side is arbitrarily small with
e and 1/JV, our theorem is proved.

6 With a slight modification of the previous argument, we may
establish the following theorem.

THEOREM 2. There is a continuous function f(x) such that Is(x; f)
diverges for every xφO (mod 2π) ivhile for almost every number a,
Ic

s

Λ\x; f) converges uniformly.

Our function, f(x), will be of the same form as in Theorem 1,

Σ^Γ1 / 2 fnί(%)> where the f,H(x) are sums of nonoverlapping roof func-
i = 1

tions. Let /ξ, η, s1 be defined as before. Consider

o 7 Z=-2s- l ,—,0, l , — ,2s; s<^s, o .
I JL -L I "i U,: , , U ΐ

On I "1 -. _< O/v-> I 1

ZS-f-1 i = 0 1 ••• 2p* p = Pι Pi + l > ' >PϊΛ>P»ιH"l Δp+L

Suppose that there are r = r n such numbers. Choose symmetric neigh-
bourhoods of length 2/r2 about each, and denote the set which consists
of the sum of these neighbourhoods by R'n. Let a belong to Rn (com-
plement of R'n), 0<a<2π. Let φ) denote the least integer such that
α-f-27Γi;(s)/(2s4-1)>0. Clearly - 2 s - l < φ ) < 0 . Then the numbers

belong to the interval (0, 2π) and so are our χff°(s). Also the numbers
j + v(s) are included in the numbers I of (11) for s<ίs1 since — 2s —1<;
i + v(s)<,2s. We choose δ such that it satisfies rd<j] (Condition (b) of
Theorem 1) and in addition (cx) <5<l/r2. We have
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for some I such that -2s-l<l<^2s, s ^ . Hence k f ^
by (cθ so that I^\x\ / n ) = 0 for all a?, s ^ , and all a inRn. To show
that I^(x; fn) is bounded for all s and all a in iuw, we employ the
previous argument, which, beyond this point, used nothing about a.

Considering only the portions of Rn and R'n in (0, 2π)f we have

for the ^z spread out sufficiently. Hence, except for a set of measure
0, every a belongs to at most a finite number of sets R'n. and so to
every Rn. for i large enough.

The author would like to acknowledge his indebtedness to Profes-
sor A. Zygmund for suggesting to him a result of the type of Theorem
1. Theorem 2 was established in response to a question raised by
Professor E. G. Straus.
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