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ON A CLASS OF NODAL ALGEBRAS

MICHAEL RICH

In this paper it is shown that there do not exist nodal
algebras A satisfying the conditions:

( I ) x(xy) + (yx)x = 2(xy)x
(II) (xy)x — x(yx) is in N9 the set of nilpotent elements

of A, over any field F of characteristic zero. Also several
results regarding algebras satisfying (I) alone are established.

A finite dimensional power-associative algebra A with identity 1
over a field F is called a nodal algebra [7] if every element x of A
can be represented in the form x = al + n where a is in F and n is
nilpotent and if the set N of nilpotent elements of A is not a sub-
algebra of A. It is known [5] that there are no nodal flexible algebras
over any field F of characteristic zero. (An algebra is said to be
flexible if the identity {xy)x = x(yx) is satisfied). There do exist,
however, nodal algebras over fields F of characteristic zero in which
{xy)x — x(yx) is in JVfor all elements x, y of the algebra [3]. Algebras
satisfying (I) were first studied by Kosier [6]. The concern, however,
was for algebras of degree > 1 .

Throughout, we shall be using the result of Albert [2, p 526] who
proved that there are no commutative nodal algebras over any field
F of characteristic zero by showing that N forms a subalgebra. In
the noncommutative case we let A+ be the same vector space as A with
multiplication in A+ given by x y — l/2(xy + yx), xy the multiplication
in A. Then N is a subalgebra of A+. In particular, N is a vector
space. We use the standard notation, [x, y], for the commutator
xy — yx and (x, y, z) for the associator (xy)z — x(yz).

2. It is a well known fact that if an algebra A is power-
associative then A+ is power-associative. For algebras satisfying (I)
the converse is also true.

THEOREM 1. If A is an algebra satisfying (I) over a field F of
characteristic Φ2 and if A+ is power-associative then A is power-
associative.

Proof. The following lemma is due to Witthoft [8].

LEMMA 1.1. xxn = χ*x for all x in A and for all n.

The proof is by induction on n. Trivially the lemma holds if
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n = 1. Assume it holds for n = k — 1. Then ra^"1 = x^"1^ = #fc. By
(I), however, ^(xxfc~L) + (xk~ιx)x — 2(£xfc~1)# which reduces to xxk — xkx
and the lemma holds by mathematical induction.

Now linearize (I) to get:

( 1 ) x(zy) + z(xy) + (yx)z + (yz)x = 2(xy)z + 2(zy)x .

Assume inductively that xaxb — xa+h for all positive integers α, b such
that a + b < n. This is certainly true if n — 3. The induction hy-
pothesis leads to the following.

LEMMA 1.2. xn~kxk = xk xn~k for all k < n.

Proof of Lemma 1.2. In (1) let x = xn~k, y = α;*-1, and s = <e.
We get:

= 2(^%~A;x/fc-1)x + 2(xxk-1)xn-k .

However, by hypothesis xn~kxk~ι ~ xk~ιxn~k = ^%~1 since the degree
of each of these terms is n — 1 < n. Also, by Lemma 1.1 xx1**1 =
ί̂ ^1^ = ίcfc and ^^%~L = xn~ιx = xw. Therefore, the identity is reduced to

χn-kχk + χn _|_ ̂  + ίcfcίc%-fe = 2xTO + 2xkxn~k or α;w-fcxfc = ^&^w~fc as desired.
Now since A+ is power-associative we have xn — xn~k>xk for any

k < n. Since xn~kxk = αj*a?n~* we get α;% = 2/2xn-kxk = xn~kxk. Suppose
now that a + b = n. Then a = n — k,b = k for some k <L n. Then
α̂+δ _ χn _ ^̂ -λ̂ fc _ ^α b̂ a n ( j the result holds for a + 6 = w. It follows

by mathematical induction that xaxb = xa+b for all positive integers
α, b and A is power-associative.

Clearly, Theorem 1 would also hold for a ring A in which the
equation 2x = α is solvable for all α in A. It should be noted that
(I) alone is not sufficient to guarantee power-associativity of A since
Albert [1, p. 25] has shown that commutativity does not guarantee power-
associativity.

3* In this section we shall be considering finite dimensional,
power-associative algebras with 1 every element of which is of the
form al + n with n nilpotent. We call a nilpotent element w of such
an algebra a commutator nilpotent if there are elements u, v in the
algebra such that [u, v\~a\Λ-w for some a in the base field. We
write tr. (T) for the trace of an operator T.

THEOREM 2. Let A be a finite dimensional algebra satisfying
(I) over a field F of characteristic zero in which every element z is
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of the form z — al + n where a is in F and n is nilpotent. Then
a necessary and sufficient condition for the set N of nilpotent elements
to form an ideal of A is that tr. (R(w)) = 0 for every commutator
nilpotent w. (R(w)) is the operator which takes any x into xw.)

Proof. Gerstenhaber [4, p. 29] has shown that in a commutative
power-associative algebra over a field of characteristic zero, the as-
sumption that an element n is nilpotent implies that R(n) is nilpotent.
We apply this result to the algebra A+ so that if a is a nilpotent
element of A then R(a)+ = l/2(R(a) + L(a)) is nilpotent and thus
tr. [R{a)\ + tr. [L{a)\ = 0. Writing (1) in terms of operators we get:

(2) R(y)L(x) + R(xy) + L(yx) + L(y)R(x) = 2L(xy) + 2R(y)R(x) .

If we interchange x and y in (2) and subtract the result from (2) we get
[L(y), R(x)] + [R(y), L(x)]+R([x, y\) +L([y, x]) = 2L([x, y\) + 2[R(y), R(x)]
which gives rise to:

( 3 ) tr. R([x, y\) + tr. L([y, x]) = 2tr. L([x, y]) .

Assume that tr. R(w) = 0 for all commutator nilpotents w of A.
Then tr. L(w) — tr. R(w) = 0 also. Let x and y be arbitrary elements
of N. Then [x, y] = al + n for some a in F and n in N and n is a
commutator nilpotent. Therefore (3) reduces to tr. [i2(6tl]] — tr. [L(αl]] =
2tr. [L(al)] or tr. [i?(αl)] = 3tr. [I/(αl)] a contradiction unless a = 0.
Therefore, [x, y] is in N and by [2], xy and yx are in N. Thus N
is an ideal of A.

Conversely, let N be an ideal of A. Therefore [x, y] is in JV for
all x, y in N and consequently for all x, y in A. Thus if w is a com-
mutator nilpotent of A there is an x, i/ such that w = [x, y]. From (3)
we have that tr. R(w) - tr. L(w) = 2tr. L(w). But tr. R(w) + tr. L(w) = 0.
Therefore tr. R(w) = 0 and the result holds.

THEOREM 3. There are no nodal Lie-admissible algebras satisfy-
ing (I) over any field F of characteristic zero.

Proof. For if A is such a Lie-admissible algebra then for all
u, v in N and w in A we have [[u, v], w] + [[v, w], u] + [[w, u], v] = 0.
In operator form this becomes:

L([u, v]) - R([u, v]) + [L(v), R(u)] + [R(u),R(v)]
+ [Liu), L(v)] + [R(v), L(u)\ = 0 .

Therefore, tr. L([u, v]) = tr. R([u, v]).
Suppose that \u, v] = al + z with a in F and z in N. Then

tr. L(al) + tr. L(z) - tr. R(al) + tr. R(z). Therefore, tr. R(z) - tr. L(z)



790 MICHAEL RICH

for all commutator nilpotents z. From [4] we conclude that tr. R(z) = 0
and by Theorem 2, N is an ideal of A. Therefore A is not a nodal
algebra.

We say that N has nilindex p if p is the smallest positive integer
such that np = 0 for all n in N.

LEMMA 1. There are no nodal algebras satisfying (I) over a field
F of characteristic zero for which the nilindex of N is two.

Proof. For if N has nilindex two, then xy + yx = 0 for all x, y
in N. Applying (I) to x and y in N we have x(xy) — (xy)x — 2{xy)x
or x(xy) = S(xy)x. If xy = al + z with α in F and 2 in AT the
preceeding identity becomes ax + xz — Sax + Szx. But xz = —zx.
Therefore it reduces to 2ax = Axz and since characteristic F Φ 2 to
α# = 2x2. Multiplying on the left by x we have 0 = ax2 — 2x(xz) or
x(xz) = 0. But x[x(xy)] = x[x(al + 2)] = x[ax + α;̂ ] = <ra2 + x(x )̂ = 0.
Therefore we have yL(xf — 0 for all x, y in N.

Let al -\- n be a typical element of the algebra A. Then
(αl + n)L{xf = αa;3 + nL{xf and nL(xf = 0 as above. Therefore
L(a?)8 = 0, L(x) is a nilpotent operator of A and tr. !,(#) = 0. As
before, this implies that tr. R(x) = 0. By Theorem 2, JV is an ideal
of A and A is not a nodal algebra.

Anderson [3] has shown the existence of simple nodal algebras
over a field of characteristic zero for which the associators (x, y, z)
are nilpotent for all x, y, and z. The following theorem shows that
no such algebras exist which satisfy (I).

THEOREM 4. There are no simple nodal algebras satisfying (I)
and (II) over any field F of characteristic zero.

Proof. We first prove the following lemmas.

LEMMA 4.1. If x and y are in N then xy2 and y2x are also
in N.

For if we let xy = al + n with a in F and n in N, then yx —
2x y — al — n and (x, y, x) — 2ax + nx + xn — 2x(x y). But xn + nx =
2x-n is in N, 2ax is in N, and by hypothesis (a?, 1/, x) is in iSΓ. There-
fore, 2x(x y) and consequently x(x-y) is in JV. Linearizing this we
have:

(4) x{z y) + z{x-y) is in N it x, y, z in N .

Let 2 = 1/ in (4). Then xy2 + y{x-y) is in iSΓ. But y(y x) is in iV
from the previous remark and we conclude that xy2 is in N. Since
x y2 is in N y2x is also in N.
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It can be further shown by mathematical induction that xjyk is
in N if 3 > 1 or k > 1.

LEMMA 4.2. For any x,y in N the following elements are in N:
(xy)x, x(xy), (yx)x, and x(yx).

For, since A is power-associative we have

(x, x, y) + {y, x, x) + (x, y, x) = 0 .

But (x, y, x) is in N. So we have that (x, x, y) + (y, x, x) is in N for
all x, y in A or: x2y — x(xy) + (^)x — ?/#2 is in N for all x, y in A.
If x and ΐ/ are in N then by Lemma 4.1, x2y — yx2 is in N. Thus,

( 5) (yx)x — x(xy) is in N for all a?, ?/ in N .

We write x(xy) — (yx)x — n for some n in iV. Adding (I) to this we
get that 2x(xy) = 2(xy)x + w. But characteristic i'7 Φ 2. Therefore,
#(#?/) — (xy)x is in JV. But x (xy) is in iV. Thus, x(xy) and (^)α are
in N if a; and ?/ are in N. Applying (I) again (yx)x = 2(xy)x — x(xy).
By the previous remark the right side is in N. We conclude, therefore,
that (yx)x and hence x(yx) is in N completing the proof of the lemma.

Since x(xy) is in N, it follows that:

( 6 ) x(zy) + z(xy) is in N if x, y, z are in N.

Also (yx)x in N implies that:

( 7 ) (yx)z + (yz)x is in N if x, y, z are in N .

Now, let y be an element of N. Then y2 is in N. We shall analyze
the ideal I generated by the element y2. I is the set of all sums of
terms, each term being a product of elements of A at least one element
of which is the element y2. Consider the number of multiplications
on y2 in a typical summand. If we multiply y2 by a single element
in N, say z, we have either y2z or zy2 which are in N by Lemma 4.1.

We prove by mathematical induction that any number of multip-
lications on y2 by elements of N maintains nilpotency. The result
has been shown for one multiplication. Assume that n multiplications
on y2 maintains nilpotency and consider n + 1 multiplications by elements
Qu Q21 * •> Qn> Qn+i of N. There are only four cases to consider:

( l ) {[(((••• (»•)••• )))]?.}?.+i ( 2 ) ?.

( 3 ) ϊ+1{ϊ.[((( (If) )))]} ( 4 ) {?.[((( (if)

for all other arrangements would involve n or less multiplications. Let



792 MICHAEL RICH

b = ( ( ( . . . (y2) . . . ))). By hypothesis b is in N. We must show then,
that

( 1 ) Φ q n ) q n + ί ( 2 ) q n + 1 ( b q n ) ( 3 ) q n + 1 ( q n b ) ( 4 ) ( q n b ) q n + 1

are all in JV.
In (6) let x = qn+1, z = b, and y = qn. Then we have that

Q»+iΦqJ + b(qn+ίqj is in N. But b(qn+1qj involves only n multiplica-
tions on y2. Therefore, by the induction hypothesis it is in N and
we conclude that qn+L(bqn) and therefore by [2] (bqn)qn+1 are in N.
Similarly, in (7) let x = b, y = qn, and z — qn+1. Then we have
(qnb)qn+i + (qnqn+i)b are in N. As before this implies that (qnb)qn+ι

and consequently qn+1(qnb) are in JV. Therefore n + 1 multiplications
on i/2 by elements of N maintains nilpotency and the result holds for
any number of multiplications. It follows easily that any number of
multiplications on y2 by elements of A preserve nilpotency.

Now every element of / is a sum of terms of the above type and
consequently nilpotent. Thus I £ JV. Hence, I is an ideal of A which
does not encompass all of A and by the simplicity of A, I = 0. But
y2 is in 7. Therefore y2 = 0. This holds for all y in JV and so the
nilindex of N is two. By Lemma 1, A is not nodal.

THEOREM 5. There are no nodal algebras satisfying (I) and (II)
over any field F of characteristic zero.

Proof. For let A be such an algebra. By Theorem 4, A is not
simple. Let B be a maximal ideal of A. Then A/B is a simple nodal
algebra satisfying (I) and (II) contradicting Theorem 4.
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