REMARKS ON THE SPACE H?

STANLEY S. WALTERS

1. Introduction. The space /JP is the collection of all single-valued complex

functions f which are regular on the interior of the unit circle inthe complex plane,

and for which

2m 10 pd9<m.
oS S 1 f(ret?)]

In [6] it was shown that #P, 0 < p <1, is a linear topological space in which

the metric is || f — g|P, where we define
/p
1 27 . )1
= — 16 p
I£1 = su (277 7 1seet®ypas)

It was moreover shown that (//F )*, the conjugate of HP, has sufficiently many ele-
ments (linear functionals on #P) so as to distinguish elements in 4P, in the sense
that if f # 0 is in /P, then there is a ¥ € (HP)* such that y(f) # 0.

In the present paper it will be shown that if yis in (HP)*, 0 <p <1, then
there exists a unique function G which is regular in the open unit circle, contin-

uous on the closed circle,! and such that
1 . r .
7(f) = lim — f0271 f(Pele)G(“e_“g)dQ, r<p <1,
r=1 27 o)

for every f in HP. It is further shown that the following is true of G:
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(@ if 0 <p <1lfm,n = 2,3,+++,then ld™1 G(2)] /dz™" is continuous on
the closure of the unit circle;

(b) if 0 < p <1/2n,n =1,2,++,then G(e®) has a continuous nth deriva-
tive with respect to t; and

(e) if 0 < p < 1/2, then the power series for G converges absolutely on the
boundary of the unit circle.

It is moreover shown that if G is regular on the open unit circle and is such
that

lim 17 f(,Oew)G(Le'ie)de, r<p<1,
r=1 27 P

exists for every f in HP, then the functional so defined is in (HP)*. Thus (HP)* is
equivalent to a subspace of the functions which are regular on the open unit circle
and continuous on the closed unit circle when 0 <p <1; and indeed, as p tends
toward zero, the spaces (HP)* are equivalent to subspaces of spaces whose mem-
bers have far stronger properties than merely the property of being continuous on
the closure of the unit circle.

A generalization of a theorem by Khintchine and Ostrowski [1, p.157], which
is a sort of generalization of Vitali’s theorem, will also be presented; namely, it
will be shown that a bounded sequence in HP,0 < p < ®,whose boundary values
converge on a set of positive measure, converges uniformly on all compact subsets
of the unit circle. Khintchine and Ostrowski proved this theorem in the case that

the sequence consists of uniformly bounded elements.

It is worth remarking that under the present “norm” ,HP,0 <p <1, is
definitely not a normed linear space, this being due to the complete failure of
Minkowski’s inequality for index smaller than unity. As a result, it is conjectured
by the author that #P, 0 <p <1, is not a normed linear space at all (and hence
contains no bounded convex neighborhood). If this conjecture is true, then HP, 0 <
p < 1, offers an interesting example of a linear topological space which is not lo-
cally convex (since HP is clearly locally bounded) and whose conjugate space has

sufficiently many members so as to distinguish the elements in ZP.

2. Representation of linear functionals on HP, 0 < p < 1. In this section we
shall suppose always that 0 < p < 1. We let A be the set of all z such that

|z| <1, and U the class of all single-valued complex functions which are regular



REMARKS ON THE SPACE H” 457

on A. We shall first make some definitions and prove several lemmasbefore proving
the representation theorem.

For many of the topological terms used in the ensuing, see [3].Bya complete
linear topological space, we shall mean a space in which f,;, — f,;, = 0 implies
lim,=» f, exists in the space. Locally bounded linear topological space and
normed linear space will be abbreviated LBLTS and NLS respectively. By F*,
where F' is a linear topological space, we shall mean the conjugate of F, that is,
the space of linear functionals on F.

I F is a LBLTS, it is easy to show that F* is a complete NLS (Banach space)

in which

[yl = sup [¥(£)],
feu

where -y € F*, and U is a fixed bounded neighborhood of the origin. Moreover, the
topology so introduced into F'* is independent of U. With respect to /P, we let U
be the unit sphere, so that

Iyl = su .
il il ly()]

It is then simple to prove the following theorem, merely by modeling the proof

exactly after that given in the theory of NLS’s.

LEmMA 1. If F is a complete LBLTS, and " is a subset of F* having the prop-
erty that, for each fixed f in F, y(f) is bounded as 7y varies over ', then I is a
bounded set.

We remind ourselves that /fP is locally bounded, and is moreover complete by

[6]. We make the following definitions, where [ and g are any elements in U:

(i) yalf) = )N 1, n=0,1 """,

(ii) Twf : Tuwflz) = flwz) , wE A, z€AN

(iii) un ¢ un(z) = 2, zEN, n=0,1,:,

(iv)  B(f,g2) = 2 w(y) wig) 2", (€A
n=0

It is easily verified that
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1 , )
B(figiz) = - J7 fz1e®) elzae?) s,

where z; z, = z, and z, and z, are in A. The proof is made by expansion of the
integrand above ina Taylorseries about the originand then term-by-term integration.

In particular,
1 - roo_
B(f,g;r) = P I f(pei®) g(;e ‘9) 4o, r<p <1.
T

LemMA 2. If fis in HP, then T,,f is in HP, and moreover

Tuf = E 'yn(f) v up.

n=0

Proof. Let g = 22 ¥u(f)w" u, . We first show that this series converges.
Note that ||u,|| = 1, and

pn +1

)] < (P2) (o 1 - Dp ]

The last inequality appears in [6, Theorem 6] . Thus
p m
< Z "')’n(f) o' u, ||p——) 0 as l,m— o,
n=1

Z 7n(f) w" ug
n=1

whence 23 _o ¥, (f) w" un converges, by the completeness of HP. Then, noting
[6, Theorem 8], which tells us that a convergent sequence in HP converges point-

wise to its limit, we have

oo}

60) = 3 mPura () = 3 ) (wa)”

n=0 n=0
But T,f () = Z%_o¥n(f Jwz)". This completes the proof.

We note that it was obvious that T,,f was in HP in the first place, merely from
the definition of 4P; but the form for T,,f, which was obtained above,will be
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needed later.

THEOREM 1. If G € U such that lim,=y B(f, G; r) =y(f)(that is, we as-
sume that this limit exists) for all f in HP, then 7y is in (HP)*. Conversely, if 7y
is in (HP)*, then there exists a unique G in U such that Y(f) = lim =, B(f, G;r)
for all fin HP.

Proof. To prove the first part of our theorem, let v, (f) = B(f, G; r). Clearly
¥(f) is distributive in f. Suppose [|f| = 1 andr <p < 1. Then

5D < Z 0] @1 < Z1n@I(ZEE ) + e,

n=0 pn

Thus, ¥(f) is bounded in f for ||f| = 1, r being fixed. It is then clear that 7, is in
(#1P)*. Since lim,_; ¥4(f) exists, it follows that y,(f) is continuous on 0 < r < 1
for each fixed f in HP. Thus {¥/{f)} is bounded for 0 < r < 1. As a result of
Lemma 1, we may conclude that {|v;| } is bounded for 0 < r < 1; that is, there
exists an M such that ||| < M for 0 < r <1.Let [f]| = 1. Then [%()| < M,
whence Iy(f) l < M. Thus 7y is necessarily in (HP)* since it is bounded on the
unit sphere in /P,

We now prove the second part of Theorem 1. We note that if lim,_, B(f, G;r) =
¥(f) for some G and all f, then

y(un) = lim B(un, G; r) = lim yn(G) r* = 'yn(G) ;
r=1 r=1

that is, ¥,(G) = ¥(u,) for all n, or merely G(z) = Z%_, Y(up) z". We note that
2% -0 Y(up) 2" converges, for |y(un) | < |yl *llunll = |yl. Let us now verify
that G, as defined, has the desired property. We see that

B(f, Gir) = 2 7(f) ylup) r* = 7[ i 'yn(f)r”unl = A Trf).

But [|[T,f = f| — 0; see [5] for this result; note that

Y.
Irf—fl = (2%7‘ j;)zﬂ [ f(rett) — f(eig)lp dé )p,
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where f(eie)’ is the boundary function for f(z). Thus y(T,f) — y(f), or B(f,G; )
—>  y(f). Our proof is thus complete.

THEOREM 2. The function G in Theorem 1 is continuous on the closure of A.

Proof. We first verify that fi(z) = (1 — ze’!)™! is in HP for every real s. It
suffices to show that f, is in //P. We see that
1= e = (1= 7)1 = re )] = (1 2 cos 6 4 £2)7H,

whence

[1 = ret|™P = (1 — 2r cos 0 + r2)P?,
Fxéom the character of (1 — 2r cos 8 + r?), we see that it suffices to show that
fo (1 —2r cos 7+ r?)~P/2 0 is bounded in r, where § is any positive number.

We note that the following is true for 0 < 6 < § (where § is some sufficiently
small positive number) and for all r such that 1/2 < r <1:

Il

2 94

Jak
(1—2r+r%)+ rez(l—-—)
24

12

ro? G2
> — >,
2 4
Thus, (1 — 2r cos 8 + r2YP/2 < 4P2 QP, Since 6P is integrable on [0, 8],
our statement is proved.

We remind ourselves that we are trying to show that G is continuous on the as-
sumption that

1 o
A = Lin = S f(pe™®) 6( Set)de, r<p<t,

exists for each f in HP. Let 7y, be defined as in the proof of Theorem 1. Then
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1 277 1 fr .
¥ (fe) = o fo —l—:‘m '(;'("e ‘6) dd

= G(rett), r<p<1l,

The last equality is true by virtue of Cauchy’s integral formula. We then have
shown that C(re’) = /(f,). Consequently, since lim,_, ¥(f;) exists by hypothe-

sis, lim,_; G(rett) exists for all ¢, and in fact
Hfe) = alett),

where we define G(e!) to be the boundary function lim,_; G(rett).
We now show thatlim;= toft = ft in the topology of //P. Now, for any g in HP,

letting g(e’ ) be its boundary functlon, we know that

sup [ 1 g(ret) [P = [ [ g(e'f) [Pt .
ogr<1

It is easily verified that (see, for example, [4, Theorem 7, p.29])
lin [ (et 0) = () = g

Clearly ft(eie) = (1 — 7" whence ft(ei;q) = fo(ei(é‘”)). Thus lim ;= fr =
fty» in the topology of /¥
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Now, by Theorem 1, 7 is continuous, whence lim t=t0’}’(f:) = 'y(f,o); hence
limt-_-to G(e') = G(e'0). We have now shown that G(e*t) is continuous.

We remember that, in the course of proving Theorem 1, we showed that $9:3 is
bounded in r as a subset of (HP)*. Obviously {f;} is a bounded subset of AP, all
of the elements having the same norm. Thus ‘(f;) is bounded in both r and ¢.
In other words, G(re!) is bounded in r and ¢, or equivalently G is uniformly bound-
ed on A. We then know that

G(reit)=2—1‘ ./(; ) Pr(6—¢t)do,

where B(0) is the Poisson kernel. But, since G(e??)is continuous, the right side
above is necessarily a continuous function on the closed unit circle. Our proof is

now complete.
It will now be shown that even more can be said of G when 0 <p <1/2.

THEOREM 3. If 0 <p < 1/2, then G(e®) satisfies the Lipschitz condition
of order one.

Proof. It suffices to show that

[fesh = Fell = Ifn = foll < A4 - |1 — ¢

for some fixed constant 4 . We have

(1 1 1 Po\VP
I fn = fol = om fo 1= Gi(6+h) ] ,if ¢
— Jth /p,
_ |tz e l{ozw _ei(9+h))(l_ei0)]-pd6)

The proof will then be complete after we have shown that

J7 (1= efO) (1= ei0) | g
is bounded for all sufficiently small 4. It is evident that

(1 - et?)(1 “ei(9+h))]2 = 4(1 —cos 8)[1 —cos (6 +h)],



REMARKS ON THE SPACE H” 463

and hence
(1 "eig)(l —ei(8+h)lp = 4P2 (1 = cos 6)P'% (1 — cos (6 +h))P?,

We now must show that
1;277 (1 = cos @)-p/2 (1 — cos (6 +h))—p/2d‘9

is bounded in % for all sufficiently small 4. We note that the following is true for

all sufficiently small Gand 4 :

82 52 @2

s 22 (1) 2
CET =y 12/ = 4
6+ h)?
1— cos (9+h) > '——( . — .

Thus we have

(1= cos &)7P2[1 = cos (6 + h)]‘P/’ < 4PETP (6 + h)P

for all sufficiently small &and 4 .Since 8-2P is integrable on the interval [0,27],

it is then rather easy to show that

.12,217 (1 = cos &) P/ [1 = cos(6 + h))™P2 4B

is bounded in 4 for all sufficiently small 4.
We now have the rather interesting result:

CoROLLARY. If0 <p <1/2, then 27_, | yp(G)| < .

1
i

Proof. Since G(e'') is of bounded variation, it follows that G(z) is a power
series of bounded variation according to [7, §7.5]. lence the conclusion is

obtained by [7, (i),p. 158].
We shall now show that even more way be said of G when 0 < p <1/2,

TrrorEM 4. 1[0 <p < /2, then (d/dz)G(z) is continuous on the clusure of
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A, and moreover (d/dt) G(e*) is continuous on [0,27].

Proof. By Cauchy’s integral formulas (where (d/dz) G(z) = G '(z)):

G(_"_ eie) L .i6 oL ~i6)\ L 6

. 1 pron P P 1 o P r

G'(re’?) = — do =— : <

(ret") 277"; (r i6 it)2 27 Y0 (1__pe1(6+t))2 d
;e - re

1 . . .
LU e i) o )i < <
2mr P

Thus G'(re't) = /)y (f? u;). We note that since 0 < p < 1/2, we have
f# € HP, whence f} * u; € HP, since u, is bounded. Thus we show exactly as
in Theorem 2 that

y(ffuy) = G'(*),
G’ (e*) is continuous in ¢,

G'(z ) is uniformly bounded on A ,

G' (re't)= — 27TG'(elg)P, (6 —t)d6,
277 Y0

where we define G '(e%?) to be the boundary value of G'(z). Let us now consider

" ; 1 27 L= d .
F(re't) = o fo |:~ iet? P G(e'? )j\ P.(6—1t)db.

We note that G(e’?) is absolutely continuous by virtue of Theorem 2, whence
(d/d0) G(e*?) is integrable. We also note that

. 1 , ot .
G(relf) = 2_77 0277 G(ele)Pr (9 — t) do = Z C, rn eint ,
n=0
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where

1 : ,
= — 27 (+( ,16) —inb
G = — J77alet?)emin? db

Moreover, it is not at all difficult to verify that the real and imaginary parts of
—ietf(d/dO) (et f) are conjugate, whence

n_wnt

[eo]
F(reit) = Z dyre ,
n=0

where

1 d .
dn = fozn[—w—te — (j(ele):\ el .

Integration by parts readily yields
dn = (n + 1) Cn

that is,

F(reit) — Z (n + 1) C“+1 rnelnt ,

=0

>

and hence /(z) = G '(z). Thus, we necessarily have

; : od
G' 9y — _ . -6 Glet?
(e*?) e (et?)

almost everywhere. Since G '(e'”) is continuous, it follows that G(e'f) neces-

sarily has a continuous derivative, and in fact

ddé_c(eie) — ieie G’(eie),

This completes the proof of the theorem.
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We sum up by presenting the following theorem, which is readily proved by in-
duction, the proof being modeled after that given for Theorem 4.

THEOREMS. If0 <p <1/n,n = 2,3,***, then (d™Ydz""1) G(z) is contin-
uous on the closure of A. Moreover, if 0 < p < 1/2n,n = 1,2,* **, then Ge')

has a continuous nth derivative with respect to t.

3. Generalization of Vitali’s Theorem. In this section we assume merely that

p is any positive real number. We here need the following:

LEMMA 3. If {fn} is a bounded sequence in HP, and if lim p= fp(2) exists on
a set having at least one limit point in A, then lim = o fn(2) exists uniformly on
all compact subsets of .

Proof. The proof is a simple consequence of the following inequalities:

Il

[ f(z)| < =%

when 0 < p <1,

and

(5
1- |z| when 1 < p < @ |

| r(2)] <
The first of the above inequalities appears in {6, Theorem 2] .The second is easi-
ly obtained as follows. By Cauchy’s integral formula,

1 ” i6 i0
6 = = K Hee™) pe”
U pe " — 2z

do

?

and hence, by Hélder’s inequality,

1 fon .
& S oL - BT (e ot

1 (o ‘ »
S;_—ﬂ;(;,ff lf(pe‘e)l"de) :

whence

I£]

If(z)1 < 72 N
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Let

(1__r)1/p !
1 1<p< @,

3

1—r

It is then clear that |f,(z)] < N(r) * Y when |z| < r <1, where lIf,| < ¥
for all n.We choose r so large that the set |z| < r includes a set having
a limit point in [z| < r and such that lim ,=« [,(z) exists on this set. Then, by
Vitali’s theorem, lim , = f,,(z) exists uniformly on all compact subsets of ] z| < r,

and hence on all compact subsets of A. This completes the proof.

THEOREM 6. Suppose if,} is a bounded sequence in l/P. Further, suppose
lim, = f,l(eze) exists on a set of positive measure in the interval [0,27). Then

lim =« f,(2) exists uniformly on all compact subsets of AA.

Proof. It suffices, by the preceding lemna, to show that lim,=« f,(z) exists
on some neighborhood of the origin. Thus, we shall show that this is the case
whenever | z| < 1/9. Let|z,| <1/9, and suppose lim =, f,(z,) does not exist.
Then we may find a positive number & and subsequences {fnki and {fmki of §fn}
which have the nroperty that lfnk(zo) - fmk(zo)l > o for all k. We then define
7, = f”k = fmye Itis clear that qui is a bounded sequence in //P. We then wriie
9, = 8k * hi, by virtue of I'. Riesz’s decomposition theorem [5], where g} and
hy are such that

(1) g € 1P and gi(z) # 0 for all z in A,
(ii) [hie(z)] < 1 onA and |Ay( eie)] = 1lalmost everywhere,
(iii) gl =l

We note that [;(z) = [gk(z)]p/2 is in /2, and in fact {/,} is a bounded sequence
in {f2. Since lim j = [fnk(eig) - fmk(eie)] = ( on a set of positive measure, it
follows that lim ;= [,(e?’) = Oon a set £ of measure i > 0. We next shall show
that lim k=w [1(z,) = 0, which will in turn imply that limg=0 gi(zo) = 0, and
hence imply lim =0 qu(zo) = 0, a contradiction to | g(zo)| > o for all k.
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Let A > 0, and define

. _ A/,u. on E
A6) = A/(w— 27) on CE ,

where CE is the set [0,277] — E. There is no loss in supposing that u < m.
Define

w(rei®) = o [27 9(e) B0 = 1) e,

where P,(0) is the Poisson kernel. Then u, is harmonic in A and lim =, uo(rew) =
¢(6) a.e., by virtue of Fatou’s theorem; see [7, §3.442]. Let

i9)._

u(rew ) = uo(re uo(zo) .

We note that

. ao b
ug(ret®) = — + Y r"(a, cos n6 + b, sin nf)
n=1
where {@n, b,} are the Fourier coefficients of @(6). Since uy(0) = 0, this being
dueto the fact that f02"¢(t) dt = 0 and Py(6 — t) = 1, we then have ao equal to
zero, or

[+ 4]

uo(reie) = ¥ r"(a, cos n6+ b, sin nb) .

n=1

We note that | a, | < 24/7 as well as |b,| < 24/, whence

. 44 2
luo(rele)l _<_ - rn = 4f. r < A < A
T iy 7 1—r 2 T 2(2m - W)

provided 0 < r <1/9.

Let v(z) be the harmonic conjugate of u(z) which vanishes at z,, and define
glz) = et2)*iv(2) | Then g € %, and g(z,) = 1. Moreover, since |g(z)| =
eu(z)’ we have lim =, |g(rei9)| = ¢®(Duolzg), By Cauchy’s integral formula
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we have

_ 1 (o 9 6 pe'? _
z) = 5= 57 lee®) 6(ee™®) G a8, |nol < o<1,
This is true since [;(z,) =

11(z4) g(zo). We note that u(z) is bounded in A, and
hence so is g(z). Since

Lim 37 [ 1e(ee®) = Li(e™) P &
p:

and since g(z) is bounded on A, it is then evident that

1mflu e?) g(pei®) a8 =J) [1,(ei0) g(ei®)|do .

Hence
1 1 .
l ——— A 10 #(0)=~uplzg)
l lz(lo)I_z77 l_llolj; | k(e )Ie do .
Consequently
1
llk (2 l < oA/ = uolzg) _<_h~) fllk(ele
27 \1 — l o] E
1
+ eA/(N-"ZW)"UO(Zo)( )(—._—._) l i6)| 40 .
o/ \1 — |zo] S )]
Since

S @ < L g )l < (2 7 ) )
2m CE ki€ — 2mTo kle _2770 kie

and since §{l;} is a bounded subset of /2, we see that

1 .
— [ |(e?9)] do
277 &";
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is bounded with respect to k. Moreover

A A A 44 z
~ uole0) b luoleo)| < A Ll
u— 27 S op= 27 m— 27 7\ 1= |zo]

A A A

< + =
w= 2m 2027 — ) 2(u— 2m)

By virtue of Schwarz’s inequality, where £ is an arbitrary measurable subset of
[0,27], we have

Sl a0 < [n()]¥ (!“k(eieﬂd@)w

Hence, by a convergence theorem of Lebesque (see [2,p.190], we have

lim f[lk(ew” dé = 0,
k=o

since limj=o lk(eie) =

that

0 on E. Now, for arbitrary € > 0, we choose 4 so large

1 .
oA/ [2(u ~2m)] (“—)('11_) fllk(e13)|d<9 < €/2 .

2m/\1 = |zo| /) ¢k
and hence we obtain, from the foregoing,
eA/lu-27] - uo(zo)(‘i‘)(—*l—) S| 1k(e*®)|db < €/2
2m I\ = |zo|/ ¢k

laving so chosen 4, choose K so large that £ > K implies

eA/;L-Uo(ZO)(—l—)<——-1——> S 1k(ei®) | o < ¢/2.

2mI\1 = |z]| ] &

Hence, & > K implies|i;(z4)| < €/2 + €/2 = €. This completes the proof of
the theorem.



REMARKS ON THE SPACE H” 471

REFERENCES

1. L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 11, Leipzig, 1931.

2. L. M. Graves, Theory of functions of real variables, New York, 1946.

3. D. H. Hyers, Linear topological spaces, Bull. Amer. Math. Soc. 51 (1945), 1-24.
4. J. E. Littlewood, Theory of functions, Cambridge, England, 1944.

5. F. Riesz, Uber die Randwerte einer analytischen Funktion, Math. Zeit. 18 (1923),
87-95.

6. S. S. Walters, The space H with 0 <p < 1, Proc. Amer. Math. Soc. 1 (1950), 800-805.

7. A. Zygmund, Trigonometrical series, Warsaw, 1935.

UNIVERSITY OF CALIFORNIA, L.LOS ANGELES








