ON THE THEORY OF SPACES A

G. G. LoRENTZ

1. Introduction. In this paper we discuss properties of the spaces A(¢,p),
which were defined for the special case ¢ (x) = «x“~1, 0 < & < 1,in our previous
paper [8]. A function f(x), measurable on the interval (0,1), [ < +® belongs to
the class A(¢,p) provided the norm [if]!, defined by

(.1 Il = {f 90 1 Gz}

is finite. Here ¢ (x) is a given nonnegative integrable function on (0,1), not identi-
cally 0, and f *(x) is the decreasing rearrangement of |f(x)], that is, the decreas-
ing function on (0,1), equimeasurable with |f(x)|. (For the properties of decreasing
rearrangements see |5, 12, 7, and 8].) We write also A (u, p) instead of A(¢, p)
with ¢ (x) = ax®', and A(p) instead of A (¢, 1). We shall also consider spaces
A(@,p) for the infinite interval (0,+w). In $2 we give some simple properties of
the spaces A, and show in particular that A(¢,p) has the triangle property if and
only if ¢(x) is decreasing. In §3 we discuss the conjugate spaces A*(¢,p), and
show that the spaces A (¢, p) are reflexive. In $4 we give a generalization of the
spaces N (¢,p), and characterize the conjugate spaces in case p = 1. In §5 we
give applications; we prove that the Hardy-Littlewood majorants &(x, f) of a func-
tion f € A(¢,p) or f € A*(¢,p) also belong to the same class. We give suf-
ficient conditions for an integral transformation to be a linear operation from one

of these spaces into itself, and apply them to solve the moment problem for the

spaces (¢, p) and A*(¢, p).
2. Properties of spaces A(¢,p). We shall establish the following result.

THEOREM 1. The norm ||f| defined by (1.1) has the triangle property if and
only if ¢(x) is equivalent to a decreasing function; in this case f,g € A(P,p)
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412 G. G. LORENTZ
implies f + g € A(¢&,p).

Proof. (a) Suppose that ”flf has the triangle property. Let 6 > 0, 2 >0, a > 0,
and a + 2k < [. Set

1+8on (0,a +h) 1 on (0,h)
f(x) =1 1 on(a+hat2n) gx)=4{1+35on (ha+2h)
0 on (a+2h1), 0 on (a+2h1);
then
. 2+ 28 on (0, a)
(F+g) (x)={2+8 on (a,a +2h)
0 on (a+2h1).
We have |[f|l = [g|l; hence the inequality |[f + g| < {lf|l + ||g| is equivalent to

{(2 + zg)PI/(;a qb(x) dx + (2 + g)p‘/;anh ¢(x) dx }I/P

<21+ £ () ax + L2 (x) dx}l/p,
or to
at2h a+h at2h
(2-1*5)1"[‘~ 2 ¢(x)dx < (2 +23)p‘l‘; @(x) dx +2pfa+h d(x)dx,

and thus to

(1+8)P— (1 +38)P
(1 +is)r—1

2.1 ‘/(;Nh ¢(x) dx > L:;thb(x) dx .

If $(x) is the integral of ¢ over (0,x), we obtain from (2.1), making 5 — 0,
‘i)(a + h) Z% [‘I’(a) + @(a + 2h)];
that is, ®(x) is concave, and thus ¢(x) is equivalent to a decreasing function.

(b) Suppose that ¢ is decreasing. Instead of (2.1) we can now write

(2.2) Il = sup {fo Y glfPds }1/",
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the supremum being taken over all possible rearrangements ¢, of ¢. It follows

from (2.2) that f,g € A(¢,p) implies f + g € AMe,p) and ||f + g| < |if] + ||g||

It is now easy to see that, for ¢(x) decreasing, A(¢,p) is a Banach space;
the completeness may be proved by usual methods (compare [8]). In general,
M, p) is not uniformly convex. Suppose, for instance, that there is a sequence
8, — 0 such that

(2.3) $(25,)/®(5,) — 1.

This condition is satisfied, for example, if ¢(x) = x™" |log x| 7P, p > 1. We take
fn(x) = Ay on (0,28,),fn(x) = 0 on (28,,1); we take g 4(x) = A, on (0,8,), g n(x)
= —hy, on(%,,2%,), and g, (x) = 0 on (25,,1); and we choose k, so that

152 1P = llgnll” = A @(28,) = 1.

Then we have

h, on (0,8,),
31 (x) +gn(2) =l )

0 elsewhere ,

and (1/2)(f, — g) ¥ (x) is the same function. Therefore

p P

W+
Lot —hEa(5) — 1,

2

_ fn ~ &n

and so A(¢, p) is not uniformly convex. In case of the spaces A(c,p), the problem

remains open.

The remarks made above apply also to the spaces A(¢,p) in case of the infinite
interval (0, +®). We assume in this case that fé(ﬁ(x) dx < +® for any [ < +®;
the additional hypothesis on f € A(¢,p) is that the rearrangement f*(x) exists,
which is the case if and only if any set [If(x)‘ > €], € >0, has finite measure.
The completeness of A(¢,p)in this case follows from the fact that the set of such
f is a closed linear subset of the Banach space of all f for which (2.2) is finite. If

(2.4) ST (x) dx =+,

this subspace coincides with the whole space. Condition (2.4) is in particular

satisfied if ¢ (x) = %1,
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3. Reflexivity of the spaces A(¢,p). We shall first give some definitions and
lemmas which will be usefulin the sequel.If g(x), g,(x) are two positive functions
defined on (0,1), 0 < < +®©, we write g < g, if for all finite 0 < x <[ we have

fo'x g(t)dt < j‘;xgl(t) dt.

Integration by parts readily yields:

LeEmMA 1. If g < gy, and f is positive and decreasing on (0,1), then
l l
(3.1) _I; gfdx < f(; g1fdx.

LeEMMA 2. If g < gy, and g, g, are positive and decreasing, then also Y (g)
< Y(g,) for any convex increasing positive function, in particular for J(u) = uP,
p2L

For the proof, let f(x) = {(g,(x)) — Y(g)}/{g.(x) — g(x)} if glx) # g,(x),
and let f(x) be equal to one of the derivates of Y (u) at u = g(x) if g(x) = g,(x).
Then f(x) is the slope of the chord of the curve » = y/(x) on the interval (u,u,),
u = g(x), u; = gy(x). The slope decreases as both u, u; decrease. Therefore f(x)

is decreasing and positive. Applying LLemma 1, we obtain
l
L f(®)e(x) —ei(x)]dx <0,

which proves our assertion.

THEOREM 2. Suppose that f(x), g(x) are positive and decreasing on (0,1), and
f € M¢,p),p > 1. Then

H

}l/q

l . . l 1
62 f rede <lflly jnt { flo07dx ol

1
p
where infimum is taken for all decreasing positive D (x) for which ¢D > g. More-
over, this infimum is equal to the supremum of fol fg dx for all positive decreasing
fwith ||f|| <1, if there is a function D with ¢D > g and [ $D? dx <+, and is
to +® if there is no such D.

This theorem is due to I. Halperin. For the proofs, see a paper of Halperin ap-
pearing in the Canadian Journal of Mathematics and, for a simpler proof, [10].
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Inequality (3.2) is a combination of (3.1) and the usual Holder inequality. For
if gg = ¢D >g, then

(3.3) [ rede < [ ferde = [leVrsoYiDax

1/q

< A { £ epv ax }

Here and in the next section, the following theorem will be useful:

THEOREM 3. Suppose that X is a normed linear space of measurable functions
f(x) on (0,1), 0 <1 < +®, with the properties: (i) X contains all constants; (ii) if
fi is measurable and |fi(x)| < |f®)|, f € X, then f; € X and ||fi || < |f];
(iii) if f € X and fe denotes the characteristic function of the set e, then ||f fe ||
—0 as meas e — 0.

Let Y consist of all measurable functions g for which fol fg dx exists for all
f € X. Then

l
(3.4) F(f) =f" fedx, g €7,
is the general form of a linear functional on X, and its norm is equal to

lsl = sup [ feds <+,
AR

Proof. (a)Let g € Y; then f(f f|g| dx exists for all f € X, and |g| =
supfol flg| dx, where f runs through all positive f € X with |f| < 1. If |g|
= +0, there is a sequence f, > 0, ||fn] < 1 such that [f,|g| dx > n® Then
f=Zn"%f, € X, and therefore fol flg| dx must exist. However [f|g| dx >
n~2 [faulg| dx > n, which is a contradiction. Hence ||g| < +® for g € Y. We
see now that for g € Y, [ fg dx is a linear functional with norm |g].

(b) Suppose that F(f) is a given linear functional on X. By (i) and (ii), any
characteristic function f,(x) belongs to X. Define G (e) = F (fe); since |G(e) <
I|F]) lIfel — 0 as meas e — 0, there is an integrable g (x) with G(e) = fe gdx.
This means that (3.4) holds for f = f., and therefore also for all step-functions f
(which are linear combinations of the fz). For a bounded f, there is a sequence
falx) — f(x) uniformly. As ||f, — f|| — 0, this establishes (3.4) for all bounded
f. Now suppose f € X is such that fg = |f] |g]|. Let fa(x) = f(x) if |f(x)| <n,
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falx) = 0 otherwise; then |f —f, [l = 0 by (iii), and hence ['f, gdx = F(f,) has
a finite limit. This shows that f]fl lg |dx < + @ therefore g € V. Repeating

the last part of this argument for an arbitrary f € .1, we obtain (3.4).

Remarks. (A) Let X have the additional property: (iv) f,(x) — f(x) almost
everywhere, f, € X, and |if,| <l imply f € X. Then the existence of [ fz dx
forall g € Y implies f{ € X.

For taking the subsequence f,(x) — f(x) of (b), we see that /', (g) = [ fng dx
is a sequence of linear functionals convergent toward [fg dx for any ¢ € Y.
Then the norms ||F,| = |if,| are uniformly bounded, and using (iv) we obtain

f €4X

(B) Since Y is the conjugate space to X, Y is a Banach space, and Y clearly
satisfies (ii). Suppose now that X satisfies (i)—(iv) and that ¥ satisfies (i) and
(iii). Then Remark A and Theorem 3 together imply that X is the conjugate space
of Y, in other words that any linear functional F(g) in Y is of the form /' (g) =

Sfgdx, f € Xand [£] = [f].

(C) The above results hold for the interval (0, +®©) if the conditions (i)—
(iii) [and eventually (iv)] are true for functions vanishing outside of a finite
interval, and also (v) for any f € X, |f = !} — 0 as | — ©, where flis de-
fined by fl(x) = f(x) on (0,1) and f'(x) = 0 on (I, +).

Applying these general results to the space A(¢,p) in case of a finite interval,

we see that (i) and (ii) are satisfied. Condition (iii) follows from
llhe I < j()‘measeqif*p dx — 0, meas e — 0,

[he(x) is the function fx) fex)], and (iv) from (2.2) and Fatou’s theorem. We
obtain the result that the space A*(¢,p) conjugate to M ,p) consists of all
measurable functions g such that there is a decreasing positive D with ¢D > g*

and foquDq dx < +®; further,

(3.5) el = int { [ opoax ],
¢D=g*

For it follows from Theorem 2 that

fo'lfgdx

< [ rerdx < Il lielye
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and that |/g || * is the supremum of the integral J fg dx forall |fi <1.

Now if g(x) = C > 0 is a constant, we take an [; > 0 with $(/,) >0 and C, =
CULypU)]™ . Then [HC ) dx > Cls and if U(x) = Cy on (0,4,), U(x) =0
on ({,1), then ¢ > g. Therefore A* satisfies (i). Also (iii) holds, for if h(x) =
g(x)felx), g € A%, g* < @D, then h¥ < ¢y, where D,(x) = D (x) on (0, meas e),

¢(x) =0 on (meas e,[), and
I|he||‘5\* < jo‘lctzli‘ll dx = ‘/O‘measeqS[)q dx — 0, meas e — 0.

We have proved the theorem:

THEOREM 4. The space A@,p), p > 1, is reflexive. Its conjugate is defined
by (3.5).

We now consider the case of an infinite interval and assume fomgb dx = +©,
Then f € Alg,p) implies f*(x) — 0 for x — ©. If @ > 0 is fixed and [ suf-
ficiently large, then the function |fl(x) ’ of (v) will take values > f*(a) only on a
set of arbitrarily small measure. In view of (iii), condition (v) will follow for
M, p), if we can show that the norm of the function f*(a + x), 0 < x < +®, tends

to 0 as a — @, or even if this is true for some sequence a — ©. This norm does

Hx t+a Ve
([7 650 + )P dx | = [fo°°¢<x>f*(x>P[L(r+—l]p dx] —o,

1*(x)

as the integrand has the majorant ¢ f*P, and f*(x + a)/f*(x) — 0 for a — ©,

not exceed

To prove (v) for A*(dD,p), we need a result going beyond Lemma 1, namely that
if g and O are decreasing and positive, and ¢D > g, then there is another such
function Dg for which ¢D) > @, > g, and that except for certain open intervals
| where D, is constant, ﬁ)xqﬂ)odt = Lxg dt. (This fact is proved in the paper of
Halperin, mentioned at the beginning of this section and in [10]).As before, we
have to prove that if g € A*(qb,p) is positive and decreasing, then the norm of
the function A(x) = glx + a),x > 0, tends to 0 as ¢ —— © for certain values of
a. There is a D with D > g and [° ¢D%dx <+ ©;and, by Lemma 2, J& #Dd dx
<+ o, As j;,w ¢dx = + ®, we deduce that Dy(x) — 0 forx — . Therefore

ST #Dy dx = ol@(x)] .
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On intervals [, f:(j)l)o dt is of the form CP (x) + C,, where ¢ (x) = f:qﬁ dt. If an
I extends to +©, we have C = 0, that is f;‘qb,')o dt = C for all large x. and D (x)
is necessarily © for all such x. In this case also g(x) = 0 for all large x, and our
assertion is trivial. If, on the other hand, there are arbitrarily large values @ which

do not belong to any I, then we have for these a,
a . _ a
j(; P, dt ~f0 gdt .

It tollows that j:‘qSDO dt > _f:g dt, x > a, or ¢(x + a)Dy(x + a) >g(x + a), and
this implies ¢ (x) Do(x + a) > g(x + a). Therefore,

DQ(X + a)

q
Rl < f7P () Do(x +a)?ax = [7¢(x) Do(x)q[ S ] dx — 0

for a — @, We obtain in this way:

THEOREM 5. The space A(¢,p), p > 1, | = © is reflexive; its conjugate is
given by (3.5).

4. A generalization, There is an obvious generalization of the spaces A(¢, p).
Consider a class C of functions ¢(x) > 0 integrable over (0,1), and let X(C,p)
consist of all those functions f(x) for which

1/,

(4.1) I = sup {ffe1plpax} < +e.
eC

A special type of these spaces is obtained if C is chosen to consist of all inte-
grable positive functions ¢ (x) whose integrals ¢, (e) satisfy the condition

(4.2) di(e) < 9(e),

where ®(e) is a given positive finite set function of measurable sets e C (0,().

We may then assume that

(4.3) ®(e) = sup ¢1(e) .

é1
(A full characterization of set functions ®(e) which may be represented in form
(4.3) by means of a class of positive additive ¢»; will be given by the author else-
where [9].) In particular, let ¢ (x) be a fixed decreasing positive function, and
let ®(e) = fo"‘eas €&o dx ; then condition (4.2) is equivalent to the condition
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¢*(’C) < &0 (x) .

Therefore, in this case the norm (4.1) is equal to (1.1), and so X (®,p) = Algpg,p).

For the space X(¢,p), the condition |f|| = 0 is equivalent to f(x) = 0 almost
everywhere if and only if ®(e) > 0 for any set e of positive measure. Suppose now
that ¢ (e), defined by (4.3), vanishes on certain sets e with meas e > 0. There is
then [2, p.80, Theorem 15] a least measurable set e, which contains any such
set e up to a null set; and e, is a union of a properly chosen denumerable set of
these sets e. Hence ¢(e,) = 0, and $(ey) = 0. It is easy to see that in this case
[fll = 0 is equivalent to f(x) = 0 almost everywhere on (0,1) — e, and that the
values of f(x) on e, have no significance whatsoever for |/f|. Omitting e, from
(0,1), we do not change the space X(¢,p), and we obtain a ®(e) satisfying the
above condition. In the sequel, ¢ is assumed to have this property.

The spaces X(¢,p) are normed linear spaces. Their completeness may be
proved by usual methods, if for instance F(e) has the property that meas e — 0
implies ®(e) — 0 and if [ < + @,

The spaces X (C,p) satisfy the conditions (i), (ii), and (iv) of 3 [(iv) follows
easily by Fatou’s theorem]. Condition (iii) is not fulfilled in general. We can
however enforce (iii) by defining the spaces A(C, p) and A(®,p) to consist of all
those functions f € X(C,p) or f € X(&,p), respectively, for which I ffe [— o
with meas e —> 0 in X. Then the conjugate space A*(C,p) and all linear function-
als in A(C, p) are given by Theorem 3. We conclude this section by describing the

spaces A*(®, 1) more precisely:

TuEoREM 6. If f € A(D,1), then

(4.4)

1
< |7l P50 L leldx,

‘/(;lfgdx

and the left integral exists provided the right side is finite; moreover, the supre-
mum M (g) in the right side is equal to the supremum of folfg dx for all {f € A(®,1)
with |f| < 1.

Proof. Consider the function ¢ (x) = M (g)™" | g(x)| ; then

LHIf el dx =te) L' ¢ol 5] dx <mi(e) Il

since
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Ldo(x)dx =u(g)™" [g(x) dx < Ble),  ec(01).
This proves (4.4). On the other hand, if e is an arbitrary subset of (0,/) with

®(e) > 0, then the function f(x) = ®(e)™ fo(x) sign g(x) has norm 1 in A(¢,1),

and

J(‘)lfgdx=@(e)'lj; |g|dx .

Therefore the integral folfg dx takes values arbitrarily close to M (g).
From Theorems 3 and 6 we deduce that the space M($,1) = A*(®,1) consists
of all g (x) for which

(4.5) lell = sup {2(e) [ lg(x) | dx} <+,

In particular, the space M(¢), conjugate to A(p), is given by
(4.6) ”8”M(¢) = sup {¢’1(€)—1 J; lgl dx} .

It is easy to see that the expression (4.6) is the limit, for p — 1, of the norm of
g in the space A*(gb,p), p>1

5. Applications. We shall make three applications.

5.1. Hardy-Littlewood majorants. We take in this section [ = 1. We write

1
(5.1) O(x,f) = sup

osys1y T X

L7 1) de,

and denote by O, (x,f) and &,(x,f) the supremum of the same expression for

0 <y <x orx <y < 1, respectively. Then
(5.2) 6(x: f) < max iel(x’ f): 92(5(, f)} .
On the other hand, it is well known [5, p.291] that

69 (1) S60as?) == £ £ (1) dt,

and this is also true with 6, in place of §;. From (5.2) we derive, for any p > 1,
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6F(x, ) < 64(x, 1) + 65(x, 1) .

It follows that

6 (x, /)" < (6F + 65) < (6f) + (68) =6 + e3P <20(x, f*)F;
that is,
(5.4) 6* (x, )7 < 26(x, 1 *)" .
We shall make repeated use of the inequality of Hardy [12, p.72]:
b
(5.5) [ ok () dx §( p—"———) Sl () dx
where p > 1, s < p — 1, 0 < [ <+®, and F(x) is the integral of the positive

function f(x).

In our present situation it follows from (5.3) and (5.5), if p > 1, that

p
L) de < (p—%) SO ) ar

and, by Lemma 1,

p
(5.6) j{;l ¢ (x)6™(x, ]")p dx < ?( _[i ) f1¢(x)f*(x)p dx .
p— 1] 0

This is case (i) of the following theorem:

Turorem 7. () If f € Mep,p) and p > 1, then also O(x,f) € Ap,p);
(ii) if f*(x) log (1/x) € A(@), then Olx, f) € Mep); (iid) if f € M), and P(x)

is decreusing with respect to x? for some & > 0, then O(x, ) € N).

To prove (ii) we observe that (5.4) with p =1 and L.emma 1 imply
1
, W . 1o .
H@HM@ = ‘/O‘l(p(x%? (x, f) dx < 2‘1(; @ (x) ;‘dx‘/(;)‘f*(t) dt

1
=2+ (t)dt f’ ?‘(f‘)'a'x <2 f () r*(t) log —dt < e,
x
Finally, if the hypothesis of (iii) holds, that is if ¢ (x) = x %D (x) with a decreas-

ing positive D, then the preceeding inequality gives
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lel <2 £ £ ()D(e) £l a8 dx <287 L1 (2) f*(e) dt .

TueoREMS8. (i) If f*(x) log (1/x) € A*(¢,p), p > 1, then O(x, f) € A*(¢p,p);
(ii) if f € A*(a,p)y p > 1, then O(f) € A*(a,p).

Proof. (i) Letp > 1 [the case p = 1, A*(¢>,p) = M(¢) is simpler]. By (5.4),
and since O(x, f*) decreases, we have

ler)lr < 2lerle =20 int L6 (x)D(x)7dx .
But by (5.3), we have
du x 1
SO du= fEf(e)de 7 —< f7f(2) log — dt,
which means that O(x, f*) < f*(x) log (1/x) = & (x); hence
l6(N9 < 29 inf ['#DIdx =29[n]7 <+
¢D>h

(ii) Let f € A*(Ot,p); because of (5.4) we may assume that f = f*, that is,
that f is positive and decreasing. Suppose f < D and fO‘¢Dq dx < +© with
¢ (x) = ax*~1. Then by (5.3) we have

1 o

O(x, f) == fo"f(t)dt <= f(;xta'lD(t)dt

xR

1
= -1 x L o-1 —
= Ux o j(; t*1p(t) dt = ¢(x)Dq(x),
say. The function D,(x) is positive and decreasing, as

D/(x) = "otx'o“"lfc;xto"‘ll) dt + x1D(x)

<—ax %D (x) [Fe*de +x7D(x) =

Therefore, by Hardy’s inequality, we have

[a—

q
le(Hlle < Ot‘l(;lx“"_lDf dx = ot‘l(;lx(l—“)(q'l) [" fo‘xto"lD dt] dx

R
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SC‘/-01x(l.g,)(q-1)+(on—1)q]_)(x)q dx =Cj(;1xa—qu dx

with some constant C. Thus &(f) € A*, which proves (ii).
It should be remarked that f* log (1/x) behaves very much like f* log®* f*:

(@) If * log (1/x) belongs to N*(¢,p), p > 1, then f log® |f| belongs to
A*(qb,p). For if p > 1 [the case p = 1 is similar but simpler], there is a D (x)
with * log (1/x) < ¢ D and jolqbl) dx < + @, Then also f*(¢) log (1/x) < ¢D on
(0, 6); in particular,

B 1 B
f*(zs)f0 log;dxﬁjo‘ PDdx <1

if § is small. Therefore f*(8) < 8§~ for all small 8§, which shows that

flog" |f| € A*(¢,p).

(b) Now suppose ¢ (x) is such that, for some & > 0, we have foqu)(x)x—sdx <
+o., If flog"|f| belongs to Z\*(qb,p), p > 1, then f* log (1/x) also does. In fact,
by Young’s inequality [5, p.111; or 11, p.64], for the pair of inverse functions
d(u) = logJr u, U(v) = e¥, we obtain ab < a log+a + eb(a, b > 0) and therefore

1
F* log =< 87 % log" (871f*) + 27 < 87f* log" ‘51‘+ 571f* log* f* +x7°
X

< Af* log* f*+ B+ 27

for some constants 4, 5.

It follows from these remarks, that Theorem 7 (ii) may be regarded as a gener-
alization of the theorem of Hardy-Littlewood [12, p.245]) that flog*|f| € L
implies 6(f) € L.

Theorems 7 and 8 have many applications which may be derived in the same
way as the corresponding results for the spaces LP (see [12, p.246]). As an
example, we give the following result. Let £ > 0, and let O',(,k)(x, f) denote the
Cesaro sum of order & of the Fourier series of a function f(x). If O(x, f) is taken
for the interval (0,4 7), we have: if f(x) satisfies one of the hypotheses of Theo-
rems 7 or 8, then Io,gk)(x,f)l < CpBOx,f)yn=20,1,++. We may give another
formulation of this result. In the spaces A(¢,p) and A*(¢p,p) we introduce a
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partial ordering, writing f; < f, if f;(x) < f,(x) almost everywhere. With this order-
ing, A and A* become Banach lattices for which the order convergence f, — f is
identical with the convergence f,(x) — f(x) almost everywhere and the existence
of a function A (x) of the lattice such that ]fn(x)] < h(x)almost everywhere. This
is an immediate consequence of the fact that the lattices A, A* satisfy the condi-

tion (ii) of Theorem 3 (see [6, pp.154-156]). Then the above result implies that

O’,(lk)—-)f in order in the corresponding space. Theorems of this section may also

be used to obtain analogues of theorems of Hardy [3] and Bellman [1] for spaces
M and A*; see Petersen [11].

5.2. Integral transformations. Let K (x, t) be measurable on the square 0 <x <1,
0<t<1, and let

(5.7) F(x) = fO‘K(x, t) f(t) dt.

THEOREM 9. Suppose that there is a constant M such that

. 1

(i) ./(; |K(x, t)|dt < M almost everywhere ;

(ii) for any rearrangement ¢;(x) of ¢ (x), the function h,(t) = fol &br () K (x,t)dx
belongs to M(¢) and has a norm not exceeding M. Then (5.7) is a linear operator of
norm < M mapping M\, p) into itself. Condition (ii) may also be replaced by

(iii) jo'l |K(x,t)] dx <M almost everywhere.

Proof. Condition (ii) is equivalent to
(5.8) Rr(t) < Mp(t).

Assuming f € A(p,p), p > 1, we have

[l e () FG)IP dx < [ b dx {1 1K] 15(2)] die}”

< [ e dx [UIK] 5P ae] £ 1K) @}

< MP/4 f

0

HAIP de [ b (x) [K(x, )] da

<HP/9 [TRE(e) £*(¢)P dt;

(=)
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by (5.8) and Lemma 1, this is
1
SHUPA LR () ()P de =uF|flP,

which proves the first part of the theorem. Suppose now that (i) and (iii) hold. Let
6 > 0, e an arbitrary set of measure 0, and e, a set of measure § such that ¢,(x)
> () on e; and ¢, (x) < @ (5) on the complement C e, of e;. Then we have

[Ine(e)lde < [ ae f |or ()] Ikl ax+ [ [

<l j;llgbr(xﬂ de + ¢(8) [ dt [ 1Kz, t)] dx

<MP(8) +MSp(8) <2mM2(8) .
This shows that the norm of %, (¢) in M (¢) does not exceed 2}/, and proves (ii).

REMARK. If the conditions of Theorem 9 are satisfied, then

(5.9) G(t) = j(;lK(x, t)g(x) dx

is a linear operator of norm < 2} mapping A*(¢, p) into itself.
We have in fact, for g € A*(¢,p) and f € Alg,p),

fo‘c(t)f(t) dt = _I(;lg(x) dxfolk(x, t)f(t) dt = folg(x)F(x) dx

< gl IFl, <M AFlL lglla

(the integrals evidently exist), and this shows that G € A* and that |G || < M|g].

Theorem 9 is akin to the “convexity theorem” of M. Riesz [12, p.198]. We
mention for completeness that there is a generalization of this theorem, in which
the different spaces LP involved are replaced by the spaces A(¢p, p) with the same
¢. The proof, which follows closely the proof of M. Riesz’s theorem in [12], is
omitted.

5.3. Moment problems. We give an application of Theorem 9 to moment problems
of the form

(5.10) pn = fa" fx) dx, n=012"*
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We shall write
; v+1 v N x
Cpy =9 -9 , ¢(x) = dt,
" (n + 1) (n + 1) (x) ‘I(; ¢

pne = (2) 87 = L1 Do) i,

n -
pnv:(Z)xV(l—x)nv, V=0,1,“.’ny

and 1, for the decreasing rearrangement of the | tnw |, v=0,1,+««, n. More-

over, we set

+ c v <. < v+1
(5.11) fa(x) = (n + Dpm or ——<x<——,
and obtain
(5.12) fn(x) = ‘IO'IK,,(x, t)f(t) dt
1% v+1
= < x <
Kn(xyt) (n + 1) an(t): n+1= x n+1 ’

For the special case ¢(x) = ax*~! and p = 1, the following theorem (with an-
other proof) has been given in [8].

THEOREM 10. The sequence of real numbers (i, is a moment sequence of a
function of the space A(¢,p) or of A*(gb, p) [ for the case A(¢p,1), weassume ¢ (x)
— ©for x—> 0] if and only if the norms of the functions (5.11) are uniformly

bounded in this space.
For the space A(¢,p), the condition is

n

(5.13) Y Ppuul <M(n +1)7P

and for A*(¢,p), p > 1,

=~Q
IA
=
_PQ

n
(5.14) tny < @pyDpy Z
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with some positive decreasing D,,,,, v=0,1, ¢ ¢+, n.

Proof. If f € A(¢,p), then condition (5.13) is satisfied by Theorem 9, because
the kernel (5.12) satisfies (i) and (iii) with ¥ = 1.
Conversely, let ||f, ”A < M. Since

1) dx < #(8)° lf ¢ (2) |falx)] dx <M (8)7", meas e = 8,

it follows in case p = 1 that the integrals [, |f,| dx are uniformly absolutely
continuous and uniformly bounded. In case p > 1, this follows by Hélder’s ine-
quality. We deduce that for a certain subsequence fnk(x), the integrals fe fnk(x) dx
converge for any e = (0, x) with x rational; hence they converge for any measurable
sete C (0,1). We then have

(5.15) Lim [ fo, (x) dx = [ f(x) dx,

k>

with some f € L. Then also

(5.16) jO‘f,,k\p dx_+j0‘f¢ dx

for any bounded . For any such y we have, by (3.2),

| < tim [ £ fuw dx| <Mlvly

hence this must be true for any  in A*. Thus by §3, it follows that f € A, p).
We remark also that it follows easily from (5.16) that we have

(5.17) L fredx — [ fds,

if the sequence yj (x) is uniformly convergent towards a bounded function ) (x).

Now let P be the vector space of all polynomials
Y(x) =ag +arx + o+ + apa"

with usual addition and scalar multiplication. On P we define an additive and
homogeneous functional F' by
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P(¢) = agpo Tajpy Tt apug.

Let

BY (x) = i ( )an(x

be the Bernstein polynomial of order n of i (x); then it is known [10] that

Y — () (n) ces . _m
Bn(x) a,” + a™x + toaVx

?

and that a,-(n) —a; for n — @, Hence (Bf) — F (). In particular, let Y (x) =
x™. We have

(5.18) F(BY) = i( )m (pnv) = Zn‘, (%)muny

v=0 v=0

= ‘L.‘lf (x)gn(x) dx,

where Y, (x) is equal to (v/n)™ in the interval (o/(n+1), (v + 1)/(n + D]. As J, (x)
— ) (x) uniformly, we deduce from (5.18) and (5.17) that

ffx)x dx = 1lim F(B,) = F(Y) = un, m=0,1,¢°".

Since f € A(¢,p), this proves that the condition is sufficient in case of the
space A. The proof for the space A*(q‘;,p), which is similar, is omitted.
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