LOOPS WITH TRANSITIVE AUTOMORPHISM GROUPS

R. H. Bruck

1. Introduction. lvery automorphism of an additive loopt L maps O upon 0. The
automorphism group A (L) of L will be called transitive if A (L) is transitive on the
nonzero elements of . It is readily deduced from work of L. J. Paige [4] and
I'. 1. Bateman [3] that, for every cardinal number n, there exists a loop L of
cardinal number n with a transitive automorphism group. We shall demonstrate that
(aside from the obvious exceptions) such a loop L must be simple, that is, its only
normal subloops must be O and [, if it satisfies the following ascending chain

dition:

(C) N, C N, C N3 € ++- is an ascending chain of normal subloops of

the loop /., there exists an integer i such that \; = V;4.
2. Theorem. ‘e shall establish the following result.

THEOREM 1. An additive loop [ which satisfies (C) and has a transitive

automorphism group is either (1) a simple loop or (ii) a finite abelian p-group of

type (p, p, ==+, ph

Proof. For each nonzero a of L, denote by ¥ (a) the smallest normal subloop

of L. which contains a.

(1) The subloop M(a) has a transitive automorphism group and is a minimal
normal subloop of L. If b # 0 is in M(a), then there exists & € A (L) such that
a® = b, Since & maps normal subloops upon normal subloops, we have ¥ (a) & =
1/ (b). Since b € M (a), it follows that ¥ (b) C M(a). If ¢ = A1, then M(a) =
i(b)g < V(a)¢, and, by induction, #(a) C M(a)¢ C il(a)¢? C +++. In
view of (C), we have ¥ (a)¢* = M (a) ¢! ™" for some integer i. Since ¢ is an auto-
morphism of 1, it follows that 1/(a) = ¥ (a) ¢ =" = M (@) @ = } (b). Hence & induces

an automorphism of ¥ (a). This is enough to prove (1).

1 Readers unfamiliar with loop theory will get the sense of the paper if they read group
in place of loop. The necessary loop theory will be found in Baer[1,2].
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(2) If N is a normal subloop of L, then N N M(a) = 0 or M(a). This follows
from the minimality of ¥ (a).

(3) The loop L is a direct sum of a finite number r of isomorphic simple sub-
loops M;; that is, L = M, ® My & «++ & M. If a, b are nonzero elements of L,
there exists & € A(L) such that a@ = b, Then Y (a) & = M (b), showing that all
the minimal normal subloops ¥ (e) are isomorphic. If @, is an arbitrary nonzero
element of L, define 4/; = M(a,). Now suppose that }f; = M (a;) has been defined,
fori =1,2,+++,s, such that the (normal) subloop N generated by the }f; is the
direct sum Ng = M, b + + « ®Mg. Write t = s + 1. If there exists a nonzero element
ay of L which is not in Ny, define M; = #(a;). Then Ny N M; =0, by (2), and
hence Ny = Ng @My =M &+ -« dM},. In view of (C), the strictly increasing chain
Np © N, C ¢+ ¢ must be finite. Therefore L = N, for some integer r. If }/' is a
normal subloop of 4, then ¥’ is normal in L, by virtue of the direct decompo-

sition. Hence, by (1), each M; is simple. This proves (3).

The center Z(L) of a loop L is a characteristic subloop and an abelian group.
In view of (1), either Z (M;) =0 or Z (M;) = M;. UHence, by (3), either (i) Z(L) =0
or (ii') L is a direct sum of isomorphic simple abelian groups. Since a simple
abelian group is cyclic of prime order p, (ii’) implies (ii) of Theorem 1. (Con-
versely, every finite abelian p-group of type (p,p,* + *,p) satisfies the hypotheses
of the theorem.) In the case (i'), assume r > 1 in (3). Since Z (L) = 0, the decom-
position (3) is unique. However, the nonzero element ¢ = a; + a, is in M; ® ¥,
but not in any of the ;. Yet the proof of (3) shows that M (¢) could be chosen as
the first factor in the direct decomposition of L, a contradiction. Therefore r =1,
and we have (i). This completes the proof of Theorem 1.

As the following (trivial) theorem shows, simple loops need not have transitive

automorphism groups:

THEOREM 2. A finite simple group G # 0 with a transitive automorphism

group is necessarily cyclic of prime order.

Proof. Every nonzero element of G has the same order p, necessarily prime.

Thus G is a p-group, Z (G) #0, Z(G) = G, and G is cyclic of order p.

3. Remarks. The author does not know whether finiteness is necessary for

the conclusion of Theorem 2.
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The following is the nonabelian loop L of lowest order with a transitive auto-
morphism group; it is readily verified that [ (L) is the (alternating) group of order

12 generated by (12)(34) and (123):

+101234
0101234
1110342
2124013
3132401
43120
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