AN ISOPERIMETRIC MINIMAX

WiLLiaM GUSTIN

Introduction. In the preceding paper J. W. Green considers for a given
convex body K in the euclidean plane the minimum of the isoperimetric ratio r
(ratio of squared perimeter [2to area a) taken over all affine transforms & of K.
e then investigates the maximum value taken over all K of this minimum ratio,
shows by variational methods that such a maximum is attained by some polygon
of five or fewer sides, and conjectures that it is, in fact, attained by a triangle
with 12\/3, the isoperimetric ratio of an equilateral triangle, as the minimax
ratio. I shall prove this conjecture directly by refining an estimation used by

Green, the precise statement of results being as follows:

I. Let K be an nontriangular plane convex body; there then exists an affine

transform k of K with r(k) < 12\/?3.
II. Let T be a nonequilateral triangle; then r( T) > 12\5.
Before taking up the proof of these results we dispose of a lemma.

IIl. Let k be a possibly degenerate convex body withs C k C t, wherein t
is an equilateral triangle, and s a side of t; there then exists a number x with
0<% <1 such that

I(k)

A

(2/3 + x/3) L(¢)

a(k) > x a(e),
simultaneous equality occurring if and only if either x=0, k=sorx=1, k=t

Proof of IIl. Let p be that supporting strip of & parallel to the line-seg-
ment s; and let x be the ratio of the width of p to the width or altitude of ¢. Thus
0< %<1, withx=0 orx =1 according as k = s or k£ = ¢t. Choose a point at which
k touches the side of p opposite s, and define k4 to be the triangle with this
point as apex and s as base. Define £* to be the trapezoid formed by intersection
of pand ¢t. Clearly s Ck, ChkCk*Ct; and k, =k = E* if and only if k=s or k= ¢.
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Since kD ky, it follows that a(k) > a(ks), with equality if and only if k = ky.
And since & C k¥, it follows that [ (%) < L(E*) with equality if and onlyif k& = &%,
These inequalities become, upon the easy computation of a(%«) and [(£*), the

asserted inequalities of IIL.

Proof of I. Let K be the given nontriangular convex body. Since the area
functional is continuous, it easily follows from a compactness argument that a
triangle T of maximal area can be inscribed in K. Let the three sides of T be
labelled S; (i =1, 2, 3), and let V/; be that vertex of T opposite S;. Because the
area of T is maximal, the line L; through V; and parallel to S; is a line of sup-
port of K. The triangle formed by the three lines L; then circumscribes K and
also T; it is composed of four nonoverlapping congruent triangles T and T;,
where T; is labelled so as to have S; as a side. That part K; of K in T;is a
possibly degenerate convex body with S; C K; C T;. Now any triangle can be af-
finely transformed into any other triangle. In particular, 7' can be affinely trans-
formed into an equilateral triangle ¢, with T; going into ¢;, S; into s;, K; into k;,
and K into k. Therefore s; C k; Ct;, and t; is congruent to ¢ According to III,
ratios x; exist giving inequalities on [(%;) and a(%;). Furthermore, since K and
hence k is nontriangular, not all x; = 0 and not all x; = 1. Therefore 0 <x< 1,
where x = 2 x;/3. Evidently k is composed of the four nonoverlapping sets ¢ and

k; in such a way that

L(k)Y = 20 1(k;) - 1(2) < (1+x) U(0),

a(k) = 22 alk;) +a(t) 2 (1+32) a(s),

whereupon
1+%)? x(1~x)
r(k) < Qo r(e) = [1— ] 123 < 12V/3,
T 1+3x ; 1+3x

as was to be shown.

Proof of Il. Through II is merely a matter of trigonometry, and very likely
can be verified by exhibiting a neat but perhaps unperspicuous trigonometric i-

dentity, I shall here prove it by the sort of methods used above.

Let T be a nonequilateral triangle. Define S;, V;, L; as above. Since T is
nonequilateral, some two of its sides, say S, and S,, are unequal. Let v, be that
point on the line L, regarded as a linear mirror, at which v, = V| is reflected

when viewed from v, = V,; and let ¢ be the so symmetrized isosceles triangle
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with vertices v; and sides s;. Then the path s, s, is shorter than S; S,, so
1(t) < I(T); and, since both triangles have the same base and altitude, a(t) =
a(T). Therefore r(¢) <r( 7). Consequently if the minimum isoperimetric ratio
among triangles is attained, it is attained by an equilateral triangle only; where-
upon it would follow that r( T) > 12y/3, as was to be shown. Now all possible
triangle isoperimetric ratios are realized by triangles of fixed perimeter con-
taining a fixed point. By a compactness argument, some such triangle achieves
a maximum area and hence a minimum isoperimetric ratio. This completes the

proof.
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