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1. Introduction. Let f^f(z) denote an analytic function of the complex

variable z in the open circle \z\ < /?. For each positive number tf the mean of

order t of the modulus of /(z ) is defined as follows:

— [*" \fireiθ)\* dθY", (0<r<R).
2π Jo J

The reader might consult [5, p. 143-144; 3; and 4, p. 134-146] for some of the

properties of this mean value function l*(r; /) .

We consider the question: does the analyticity in | z \ < R of the function /

imply the convexity of the mean 30!* (r; /) as a function of r in the interval 0 < r <

A? It is known [ l ] that:

(A) Unless the function / is suitably restricted, the set of positive values t

for which the question may be answered affirmatively has a finite upper bound.

(B) If the number t is of the form 2/A, with k a positive integer, then, for

every analytic function /, the mean of order t is convex.

(C) If the function / vanishes at the origin, then the mean 5B$(r;/) is convex

for every fixed positive number t.

(D) If the function / has no zero in the circle, then its mean of order t is

convex, provided that the positive number satisfies t < 2.

(E) If the function / has at most k zeros, k > 1, in the circle, then the mean

of order t is convex provided that the positive number t satisfies t < 2/k.

The main purpose of this paper is to prove that, for every analytic function /,

the mean of order four is convex. Moreover, we show by example that if the

number t is greater than 5.66, then there is an analytic function whose mean of

order t is not convex.

2. Means of nonvanishing functions. Assume that g(z) is analytic in \z \ < R9
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and that the e x p a n s i o n for g(z ) in the g i v e n c i rc le i s

g(z) = £ an z\

Then the integral

n =o

— [2π \g(reiθ)\2 dθ
2π Jo

has the expansion

71 = 0

valid in r < /?. Let

ρ ( r ; g , c ) = hh" - c(h')2,

where primes denote differentiation with respect to r, h i s the function h(r; g ) ,

and c i s a constant independent of the variable r and of the function g. If C i s

a c lass of functions {g(z)\, and if, for all functions g in this c l a s s C, for all

r < R9 and for a particular positive value c 0 , the inequality

Qir g, c o ) > 0

holds, then the inequality

<?(r; g, c) > 0

holds for all c < c 0 , all r < /?, and all functions g in the class C. We now specify

the class C to be the class of all functions g(z ) which are analytic and do not

vanish in | z\ < R. If f(z) is in class C, then any single-valued branch of [f(z)]a

where α is an arbitrary real number, is also in class C. Given a function fo(z)

in class C, and a fixed positive number ί, let go{z) be a single-valued branch of

[ / 0 ( Z ) ] ί / 2 ; a n d l e t

1

Then
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and since hQ is a nonvanishing function of r, we have

d2%(r;f0) _

dr2 ~ ' r'8°'

where

at(r;/B)
r = - > U

th,Q

Every function g(z) in class C is a single-valued branch of [/(z)] , where

/(2) is some appropriate function in class C. Therefore, for positive values t,

the mean Έt(r; f) is a convex function of r for all functions / in class C if and

only if

<?[r;g, ( 1 - 1 / 0 3 > 0

for all functions g in class C. Since the inequality 1 - 1/t < 1 - l/ί0 holds for

all t and ί0 satisfying 0 < t < ί0, we conclude from the preceding remarks that,

if the positive value ί0 is such that the mean ϊίj (r; /) is convex for all non-

vanishing /(z), then the mean 501̂ (r; f) is convex for all nonvanishing f(z),

provided that t is any positive value not exceeding ί0.

For a simple example of a function %lt(r; f) which is not convex, consider

the mean βf order eight of a single-valued branch of

f(z) m vTΠ in \z\ < 1 .

In this case, we have

λ(r) = 1 + 4r2 + r 4 ;

and [h(r)]i/8 is not convex in 0 < r < 1.

Since, for every analytic function /, the mean of order two is convex, it now

follows that there exists a greatest positive value ί0, in the range 2 < t0 <Q9

such that Έlt (r; t) is convex for all nonvanishing analytic functions. It will be

a corollary of our result that this greatest value t0 satisfies the inequalities

4 < t0 < 5.66.

3. Preliminary lemmata. The proof of our main theorem will be based on the

following lemmata.

LEMMA 1. Let aι (i = 1, 2, ••• ) be a sequence of positive numbers such
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that the sum

Σ l/α,
i = l

converges to the finite value U. If the sequence of real variables Xi(i = 1,2, )

is restricted to satisfy the inequality

oo

then the maximum value of the function

oo

i = 1

is (BM)ι/2.

Proof. We consider first maximizing

n

i = l

with the variables subject to the condition

n

i =1

Let

n = £ I/-,-
ϊ = 1

The critical points of the function fn are at the solutions of the simultaneous

equations

ai xi = aj xj

which are given by
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x] = B(M
n
a

2
.)

9
 (i-1, ••• ,n).

Therefore, the maximum fn is Mn(B/Mn)
i/2 or (BMn)

ι/2. Since Un <M, and all

the values aι are positive, it follows that for all n the partial sums fn are bounded

by (BM)i/2 and the conclusion of the lemma follows.

LEMMA 2. Let S be the sum

oo

S « £ V(6n 2 - 9n + 2) .
n =3

Γλen ίΛts sum S is less than 0.09504.

Proof. The function f(n) = 1 / ( 6 Λ 2 - 9Λ + 2) has the following expansion in

powers of l/(n — 1):

with o 2 = 1/6, α 3 « -1/12, 04 = 5/72. For determining subsequent values of α^

it is convenient to use the recursion formula:

The coefficients a2 and α 3 are positive and negative respectively. Therefore it

follows directly from the recursion formula that the general coefficients α& alter-

nate in sign. By another use of the recursion formula, we see that the sum ak +

α ^ + ι is equal to (a^ - α Λ - 1 ) / 1 2 , and therefore that the sign of the sum a^ +
ak+ι ι8 ^ e s a m e a s ^ a i : °̂  ^ e coefficient a^ , or of the coefficient α .̂. Since

the inequalities | α 2 | > | α 3 | > | α 4 | hold, it now follows that the numerical

values of the coefficients all decrease with increasing &• Let ζ(k) be the

Riemann zeta-function, and let s (k) = ζ(k) — 1. Since the foregoing expansion

for f(n) is an absolutely convergent series, the sum S may be expanded in an

alternating series of the form

S = 2 2 a k s(k)9
k=2

w h o s e terms d e c r e a s e in numerical va lue with increas ing k. U s i n g ( s e e [ 2 ] ) the

approximations s ( 2 ) = 0 . 6 4 4 9 3 5 , s ( 4 ) » 0 . 0 8 2 3 2 4 , s ( 6 ) « 0 . 0 1 7 3 4 4 , s ( 8 ) -

0 . 0 0 4 0 7 8 , s ( 1 0 ) = 0 . 0 0 0 9 9 5 , which are too large, and the approximations s ( 3 ) =
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0.202056, s (5) = 0.036927, s (7) = 0.008349, s (9) = 0.002008, which are too

small, we obtain the value 0.09504 stated in the lemma by summing this last

series up to and including the term for k = 10.

LEMMA 3. Let

y = V* + V° 04752 ^9x2 - 10* + 1 ,

where x lies in the range 0 < x < 1/9. Then the maximum value of y is less than

Proof. Setting the derivative of γ equal to zero, we find that the value of x

maximizing y is the solution of the equation

0.04752* (10 - 18% ) 2 - (9x 2 - 10* + 1) = 0.

This critical value of * lies between 0.07 and 0.08. Therefore

max y < y/oM + >/θ.O4752 [ 9( 0.07)2 - 10(0.07) + 1]

< 0.283 + 0.129 = 0.412.

Since (y/2 - 1) is greater than 0.414, the conclusion of the lemma follows.

4. The mean of order four. Let

gU) = [/U)] 2

have the expansion

g ( 2 ) = Σ % zΠ>
n = 0

valid in \z\ < R. Following the ideas developed in § 2 , we see that

with

n =0

and that 3K4 (r; /) is convex in r < R if and only if
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ρ ( r ) B * A " - i ( A ' ) 2 - £
4

with

Q.. = i(2i-l) + / ( 2 / - 1 ) - Άij and p. = | α | 2 ,

is nonnegative in the interval 0 ζ r < R. The only coefficient Q. which is nega-

tive is Q = - 1 . That the mean of order four is convex may be concluded from

the following theorem.

T H E O R E M . // a f u n c t i o n g ( z ) i s a n a l y t i c i n t h e circle \ z \ < R , a n d t h e

f u n c t i o n

fe2τr . - ^ I 1/4

is not convex as a function of r in the interval r < R9 then g(z)is not the square

of an analytic function in \ z \ < R.

Proof. It is pointed out in the introduction that if /"(0) = 0, then the mean

Sβ̂  (r; /) is convex for all t. Therefore we may assume that

= g ( 0 ) = p 0

is not zero. The hypothesis of the theorem implies that

takes on negative values; since Q is the only negative coefficient, this is

possible only if the value pί = \aί \2 is not zero. Therefore, we may make the

normalizations

αQ
= 1, aχ = yβ, pQ = 1, and p χ = 2 .

Let

Σ Won Po Pn
n =3
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with Qon = n(2n~ 1) and Qιn = 2 / ι 2 - 4 n + 1. Since Q(r) > Qx (r), and Qt(r)

can be negative only for values of r satisfying

2 P O P ι ~ P 2

ι r 2 < 0 ,

we have in the normalized case the result that Qx (r) is negative for some r > 1;

and the expression

£ 2 ( r ) = 4 + (12p 2 - 4)r 2 + 4p 2 + £ (127i 2 -18/ι + 4)p I r 4

L Λ = 3 J
a l s o takes on negat ive v a l u e s . The discriminant oί Q (r) a s a quadratic form

in r 2 must be pos i t i ve . Therefore we have the inequality

Λ < ( 9 p 2 - 1 0 p 2

n = 3

and the result that p is less than 1/9. Applying Lemma 1, we see that

n = 3

with

oo

Σ 2 - 9/ι + 2 ) .
Λ = 3

By use of Lemma 2, we have

Vθ.04752 V9?2 ~ 1 0 P 2

n =2

and, by use of Lemma 3, we have

oo

£ | α j <V2-1
/I = 2

Applying Rouch^'s Theorem to the function
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n = 2

we see that, if the function g(z) i s analytic in the circle \z\ < 1, then g(z)

has exactly one zero within this circle, and therefore that g(z) i s not the square

of an analytic function in this c ircle . Since the convexity of the mean must break

down only for values of r greater than one, we have establ i shed the theorem.

5. Examples of nonconvex means. Let / ( z ) be a single-valued branch of the

function [ ( 1 - z ) 2 / ( l - ez)]2/t

f with e = 0.19. We shal l show that if t > 5.66,

then the mean SDl^r; /) i s not convex in r < 1. Since

[f{z)]t/2 = 1 + ( - 2 + e)z + [ ( 1 - e ) 2

2

2 / ( l - e * ) ] ,

it follows that

with

A(r) = 1 + (4 - 4 e + e 2 ) r 2 + [ ( 1 - e ) 4 r 4 / ( l - e 2 r 2 ) ] .

By straight-forward calculation, we have

( 1 + e) A ( l ) « 6 - 2 e = 5.62; U + e ) 2 A ' ( l ) - 12 - 4 β 2 = 11.8556;

( 1 + β ) 3 λ " ( l ) = 20 + 4 e - 4 e 2 - 4 e 3 « 20.588164;

and

( 1 + e ) 4 ρ ( r ) = ( l + €)4 [ A A " - ( 1 - I / O (AO21

< (1 + e) 4 [115.71 - ( 1 - 1 / 0 (140.55)]

< 0, if t > 140.55/24.84, and therefore if t > 5.66.

Thus we have examples of nonconvex means 3Rj(r; / ) for t > 5.66 even under

the restriction that f(z) does not vanish in its circle of analyticity.
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