ON LINEAR INDEPENDENCE OF SEQUENCES IN A BANACH SPACE

P. ERpOs AND E. G. STRAUS

1. A. Dvoretzky has raised the following problem:

Let xy, x5, «++, xp, +++ be an infinite sequence of unit vectors in a Banach

space which are linearly independent in the algebraic sense; that is,

k
Z cixn; =0 = ¢; =0 (i =1,e00, k).

i=1

Does there exist an infinite subsequence {x,,} which is linearly independent

in a stronger sense?

We may consider three types of linear independence of a sequence of unit

vectors in a normed linear space:
o1l
I. Cnxn=0 ©CH=O (n=1,2’..-).

n=1

II. 1f ¢(k) > O is any function defined for k=1, 2, -+« , then

[ < g k) (n, k=1,2,.-)
and
lim z C,(lk) %, =0
k— 00 n=1
imply
lim cr(zk)=o (n=1,2 ).
k— 00
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oo

Il lim 2 c¢®Px =0 = lim ¥ =0 (n=1,2+0).

k— oo k=1 k— o
It is obvious that III implies both II and I; and if

lim inf ¢ (k) > 0

k—;oo

then II implies L. It is easy to show that the converse implications do not hold.

In this note we give an affirmative answer to Dvoretzky’s question if in-
dependence is defined in the sense I or even II for arbitrary ¢ (k). However the

answer is in the negative if indepence is defined in the sense III.

2. The negative part is proved by the following example due to G. Szegé
[1;1,p.861:

THEOREM. If {tA;} is a sequence of positive number with A, — o, then

the functions {1/(x + \,) } are complete in every finite positive interval.

Obviously every infinite subsequence of { 1/(x + A, )} satisfies the condition

of the theorem and is therefore complete.
3. For the affirmative part of our result we prove the following:

THEOREM. Let {xp;} be an infinite sequence of algebraically linearly
independent unit vectors in a Banach space and let ¢ (k) > 0 be any function
defined for k=1, 2, -+« . Then there exists an infinite subsequence {xni} such

that |¢™] < ¢ (i) (i, m=1,2,+++) and

m— oo

lim > cL(.m)xni =0
—

imply

lim cg’")=0 (i = 1,2 000 )

n — oo

It was pointed out to us by the referee that it suffices to prove the theorem
for a separable Hilbert space. The separability may be assumed since we may
restrict our attention to the subspace spanned by {x,}. Now every separable

Banach space can be imbedded isometrically in the space C (0, 1) of continuous
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functions over the interval (0, 1); and C(0, 1) C L, (0, 1), where linear in-
dependence, in any of the above defined senses, in L, implies the same in-
dependence in C. Let {z,} be the orthonormal sequence obtained from {x,} by

the Gram-Schmidt process; then

n
Xp = 2 , Cnm Zm>
m=1

with |app,| < 1 and ap, # O.

Since {app } is bounded for fixed m, we can select a subsequence {x,,} such
that

lim apn,;m = bn
i — 00

exists for every m.

If we prove the theorem for (%) > ¢ (k), then it is proved a fortiori for
¢ (k). Hence we may set

Y(n) =max{l, (1), -+, 4(n)},

so that ¢ (n) > 1 and ¥y (n) is nondecreasing.

If the theorem we false then for every infinite subsequence {y, } of {x,,}

there would exist a sequence of sequences {c}(cm)} with
lefm| < w(k) (kym=1,2¢00)

and

while

lim sup | cl(c'g)] # 0 for some fixed kg .
m— oo

We can then select a subsequence of sequences { cl(tmi)} such that

lim c,(c'"i)

=C
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exists for every k, and c¢; # 0. For convenience of notation we assume

: (m) _
lim ¢;™ =c.

n— oo

Since ¢y, # 0, there would exist a least k; > ko such that
le, | < 2% w(k) e, | forall & > k.
k ko t
This implies
(1) e < 2% g k) Jefm) forallk > kysm > mo.

Case A: b”ij =0 for j=1,2,¢0+.

In order to simplify notation we assume b, =0 for all =1, 2, -++ by omit-
ting all terms with n; # ni; from our subsequence. We select the subsequence

ty, } as follows:
Yi = Fnys Ypao = Fngp g

where

(anj, n]-\

la"ik+l’nj| for j=1,2,:00,1i.

< k
45y (B + 1)
We write Y =%,

If the theorem were false then there would exist a sequence of sequences

§c1(tm)} with the above properties such that

=€ —0 as m-—w.

2 Cfcm)yk
k=1

m
If we take the k&, defined in (1), then
(2) > cl(cm)alk,lkll < €.
k=kl

but for all m > my we have
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lcl(cm)\SQk"kl (r/,(k)Ickll (k=ly, ki +1,+2),

and hence

o~ _(m)

m
Z % Y, b,
k=k1+l

00 2k-k1 ‘/"(k)lckll\alkl,lkll

-2k,
< 2 =27 ey Hay,
k=kqy+1 4%y (k) 1 kystky

.

We can now choose m so large that

-4k
]cl(t'”)—— cklt <9 Ickl

-4k,
X Halkl.lkll and € <2 'Cklllalkl,lkl .
Then for the left side of (2) we obtain
(m) (m) o~ (m)
2 Ck alk»lkl 2 |Ckl ' 'alk,,lkli - Z kML
k=ky k=k +1 1

-4k1 -Zkl
Zlck1l|“1kl,lkll“2 lclea[kl’[,.xl*z tckl||01k1,1k1|

I

'4kl
> 2 ‘Ckll ‘alkl:lkl

while for the right side of (2) we have

-4k
€, <2 ! lckll |

a
Ly iy
a contradiction.

Case B: by; # 0 except for a finite number of i.

Without loss of generality we may assume b, # 0 for all i by omitting a
finite number of elements from {x,,}. We select the subsequence {y, } as fol-
lows:

Yi=%ngr Yier = "nipy 0
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where
{ bnik+1 |

— by, | < — for j=1,2, -+, .
1 2 2 2 k
4 (k4 1)

|
lanik+1,n]'

For simplicity we again write y, = Xy,

If the theorem were false then there would exist sequences {cl(im)} with the

foregoing properties such that

I chim)ykll =€, —0 as m— .

If we let k£, be defined as in (1), then on the one hand we have

1 > 1 >
O=|r— C/Em)az I, ~ 2 C/Em)az !
blk‘ K=k, ks “ky blklﬂ k=g +1 kslkyt1
Pl = 2™
> |C;(£m)| - —_— - —_
! Lt k=k +1 45y (k)
o keky
>|c(’")| 1——1- - Z —2'2 i (k) >-1-1 (”‘)l>—\c I'>0
- 1 e 4R gk 2 kg R
—h

for all m > mgy; on the other hand, we have

1 > 1 >
(m) (m)
Q<+ 2 ||t 3 2 "
Ly k=1 L+ || k=1
1 c 1 | |
<|l— +—| €<= lc,
blkl blk !
for all sufficiently large m, a contradiction.
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