GENERALIZATIONS OF THE ROGERS-RAMANUJAN IDENTITIES

HENRY L. ALDER

1. Introduction. The first of the two Rogers-Ramanujan identities [1, Chap. 19] states that

(1)
$$\prod_{\nu=0}^{\infty} \frac{1}{(1-x^{5\nu+1})(1-x^{5\nu+4})} = \sum_{\mu=0}^{\infty} \frac{x^{\mu^2}}{(1-x)(1-x^2)\cdots(1-x^{\mu})},$$

where the left side is the generating function for the number of partitions into parts not congruent to 0, $\pm 2 \pmod{5}$. This paper shows that as a generalization of (1) the generating function for the number of partitions into parts not congruent to 0, $\pm k \pmod{2k+1}$, where k is any positive integer, can be expressed as a sum similar to the one appearing in (1); in fact in general the x^{μ^2} are replaced by polynomials $G_{k,\mu}(x)$, so that we have the following theorem:

THEOREM 1. The following identity holds:

(2)
$$\prod_{\nu=0}^{\infty} \frac{(1-x^{(2k+1)\nu+k})(1-x^{(2k+1)\nu+k+1})}{(1-x^{(2k+1)\nu+1})(1-x^{(2k+1)\nu+2})\cdots(1-x^{(2k+1)\nu+2k})}$$

$$= \sum_{\mu=0}^{\infty} \frac{G_{k,\mu}(x)}{(1-x)(1-x^2)\cdots(1-x^{\mu})},$$

where the left side is the generating function for the number of partitions into parts not congruent to 0, $\pm k \pmod{2k+1}$. The $G_{k,\mu}(x)$ are polynomials in x and reduce to the monomial x^{μ^2} for k=2, that is, for the Rogers-Ramanujan case.

While the right side of (1) is the generating function for the number of

Received March 12, 1953.

Pacific J. Math. 4 (1954), 161-168

partitions into parts differing by at least 2, no similar interpretation of the right hand of (2) is possible. In particular, it follows from a theorem of the author [2] that the right side of (2) cannot be interpreted as the generating function for the number of partitions of n into parts differing by at least d, each part being greater than or equal to m, unless d=2, m=1, that is, unless we have the Rogers-Ramanujan identity (1).

As a generalization of the second of the Rogers-Ramanujan identities:

(3)
$$\prod_{\nu=0}^{\infty} \frac{1}{(1-x^{5\nu+2})(1-x^{5\nu+3})} = \sum_{\mu=0}^{\infty} \frac{x^{\mu^2+\mu}}{(1-x)(1-x^2)\cdots(1-x^{\mu})},$$

we have again that not only the generating function for the number of partitions into parts not congruent to 0, $\pm 1 \pmod 5$, but in general the one for the number of partitions into parts not congruent to 0, $\pm 1 \pmod 2k+1$ can be expressed as a sum; in fact again the x^{μ^2} are replaced by the same polynomials $G_{k,\mu}(x)$ appearing in (2), so that we have the following theorem:

THEOREM 2. The following identity holds:

(4)
$$\prod_{\nu=0}^{\infty} \frac{1}{(1-x^{(2k+1)\nu+2})(1-x^{(2k+1)\nu+3})\cdots(1-x^{(2k+1)\nu+2k-1})}$$
$$= \sum_{\mu=0}^{\infty} \frac{G_{k,\mu}(x) x^{\mu}}{(1-x)(1-x^2)\cdots(1-x^{\mu})}.$$

More generally, it can be shown that identities involving the generating function for the number of partitions into parts not congruent to 0, $\pm (k-r)$ (mod 2k+1), where $0 \le r \le k-1$, can be obtained, of which (2) is the particular case where r=k-1, that is, for each modulus 2k+1 there are k identities.

2. Proof of Theorem 1: If we replace, in Jacobi's identity,

(5)
$$\prod_{\nu=0}^{\infty} (1-y^{2\nu+2}) \left[1+(z+z^{-1})y^{2\nu+1}+y^{4\nu+2}\right] = \sum_{\mu=-\infty}^{\infty} y^{\mu^2} z^{\mu},$$

y by $x^{(2k+1)/2}$ and z by $-x^{1/2}$, we have

(6)
$$\prod_{\nu=0}^{\infty} (1-x^{(2k+1)\nu+k})(1-x^{(2k+1)\nu+k+1})(1-x^{(2k+1)\nu+(2k+1)})$$

$$\sum_{\mu=-\infty}^{\infty} (-1)^{\mu} x^{((2k+1)\mu^2 + \mu)/2} ,$$

so that, dividing both sides of (6) by $(1-x)(1-x^2)(1-x^3)\cdots$, we obtain

(7)
$$\prod_{\nu=0}^{\infty} \frac{(1-x^{(2k+1)\nu+k})(1-x^{(2k+1)\nu+k+1})}{(1-x^{(2k+1)\nu+1})(1-x^{(2k+1)\nu+2})\cdots(1-x^{(2k+1)\nu+2k})}$$

$$=\frac{\sum_{\mu=-\infty}^{\infty}(-1)^{\mu}x^{((2k+1)\mu^{2}+\mu)/2}}{\prod_{s=1}^{\infty}(1-x^{s})}.$$

To prove Theorem 1, we therefore have to show that the right side of (7) is the same as the right side of (2).

We use the auxiliary function

(8)
$$C_{k,i}(y) = 1 - y^i x^i + \sum_{\mu=1}^{\infty} (-1)^{\mu} y^{k\mu} x^{(2k+1)(\mu^2 + \mu)/2 - i\mu}$$

$$(1-y^{i}x^{(2\mu+1)i}) \frac{(1-yx)(1-yx^{2})\cdots(1-yx^{\mu})}{(1-x)(1-x^{2})\cdots(1-x^{\mu})},$$

which was first used by Selberg [3] and is a generalization of the function used in some proofs of the Rogers-Ramanujan identities [1, Chap. 19]. The function (8) converges if |y| < 1 and if k is real and sim 2 - 1/2. In our case k and i will be nonnegative integers. For i = k and i and i and i be nonnegative integers.

(9)
$$C_{k,k}(1) = \sum_{\mu=-\infty}^{\infty} (-1)^{\mu} x^{((2k+1)\mu^2 + \mu)/2}.$$

Since the $C_{k,i}(y)$ satisfy the equation

$$C_{k,i}(y) = C_{k,i-1}(y) + y^{i-1}x^{i-1}(1-yx)C_{k,k-i+1}(yx),$$

it is easily seen that we can find a functional equation for the $C_{k,\,k}(y)$, which can be found to be of the form

(10)
$$C_{k,k}(y) = \sum_{\mu=1}^{k} A_{k,\mu}(y,x) (1-yx^{\mu}) C_{k,k}(yx^{\mu}).$$

If we let

(11)
$$Q_{k}(y) = \frac{C_{k,k}(y)}{\prod_{s=1}^{\infty} (1 - yx^{s})},$$

(10) reduces to

(12)
$$Q_{k}(y) = \sum_{\mu=1}^{k} A_{k,\mu}(y,x)Q_{k}(yx^{\mu}).$$

If, for instance, k = 3, (12) becomes

$$Q_3(y) = (1+yx)Q_3(yx) + y^2x^2Q_3(yx^2) - y^3x^5Q_3(yx^3),$$

while for k = 4 we would have

(14)
$$Q_4(y) = (1 + yx)Q_4(yx) + y^2x^2(1 + yx + yx^2)Q_4(yx^2) - y^4x^7Q_4(yx^3) - y^6x^{13}Q_4(yx^4).$$

In order to solve (12) for $Q_k(y)$ we try a solution of the form

(15)
$$Q_{k}(y) = \sum_{\mu=0}^{\infty} B_{k,\mu}(x) y^{\mu},$$

where $B_{k,0}(x) = Q_k(0) = 1$ by use of (11) and (8).

Putting (15) into (12) we obtain a difference equation for the $B_{k,\mu}(x)$. It can easily be verified that the $B_{k,\mu}(x)$ are of the form

(16)
$$B_{k,\mu}(x) = \frac{G_{k,\mu}(x)}{(1-x)(1-x^2)\cdots(1-x^{\mu})},$$

where the $G_{k,\mu}(x)$ are polynomials in x and reduce to the monomial x^{μ^2} for k=2. In general these polynomials do not seem to possess any striking properties, even for small values of k and μ , as shall be illustrated below for k=3 and k=4.

Substituting now (16) into (15), and remembering (11), we obtain

$$(17) \quad Q_k(y) = \sum_{\mu=0}^{\infty} \frac{G_{k,\mu}(x)y^{\mu}}{(1-x)(1-x^2)\cdots(1-x^{\mu})} = \frac{C_{k,k}(y)}{\prod_{s=1}^{\infty} (1-yx^s)},$$

so that we have, in view of (9),

(18)
$$\frac{C_{k,k}(1)}{\prod_{s=1}^{\infty} (1-x^s)} = \frac{\sum_{\mu=-\infty}^{\infty} (-1)^{\mu} x^{((2k+1)\mu^2+\mu)/2}}{\prod_{s=1}^{\infty} (1-x^s)}$$

$$=\sum_{\mu=0}^{\infty}\frac{G_{k,\mu}(x)}{(1-x)(1-x^2)\cdots(1-x^{\mu})},$$

which completes the proof of the theorem.

In case k=3, the difference equation for the $B_{3,\mu}(x)$, which can easily be obtained from (13), is the following:

(19)
$$B_{3,\mu}(x)(1-x^{\mu}) = B_{3,\mu-1}(x)x^{\mu} + B_{3,\mu-2}(x)x^{2\mu-2} - B_{3,\mu-3}(x)x^{3\mu-4}$$

from which we calculate, remembering that $B_{3,0}(x) = 1$:

$$G_{3,1}(x) = x,$$

$$G_{3,2}(x) = x^{2},$$

$$G_{3,3}(x) = x^{5} + x^{6} - x^{8},$$

$$G_{3,4}(x) = x^{8} + x^{10} - x^{14},$$

$$G_{3,5}(x) = x^{13} + x^{14} + x^{15} - x^{18} - x^{19},$$

$$G_{3,6}(x) = x^{18} + x^{20} + x^{21} + x^{22} - x^{25} - x^{26} - x^{27} - x^{28} + x^{31},$$

$$G_{3,7}(x) = x^{25} + x^{26} + x^{27} + x^{28} + x^{29} - x^{32} - x^{33} - x^{34} - x^{35} - x^{36} + x^{42},$$

and so on.

It can easily be verified by induction that the degree of the $G_{3,\,\mu}(x)$ is equal to

$$\frac{5\mu^2 + \mu}{6}$$
 if $\mu \equiv 0$ or 1 (mod 3),

and is less than or equal to

$$\frac{5\mu^2 - \mu - 6}{6} \quad \text{if } \mu \equiv 2 \pmod{3}.$$

Similarly, it can be shown that the term with smallest exponent in each polynomial $G_{3,\mu}(x)$ is $x^{\left((\mu^2+1)/2\right]}$, so that each polynomial has this power of x as a divisor and no higher power.

For k = 4, we obtain the difference equation for the $B_{4,\mu}(x)$ from (14):

(20)
$$B_{4,\mu}(x)(1-x^{\mu}) = B_{4,\mu-1}(x)x^{\mu} + B_{4,\mu-2}(x)x^{2\mu-2}$$

 $+ B_{4,\mu-3}(x)x^{2\mu-3}(x+1) - B_{4,\mu-4}(x)x^{3\mu-5} - B_{4,\mu-6}(x)x^{4\mu-11},$

so that we obtain:

$$G_{4,0}(x) = 1$$
,

$$G_{4}(x) = x$$

$$G_{4,2}(x) = x^2$$

$$G_{4,3}(x) = x^3$$
,

$$G_{4,4}(x) = x^6 + x^7 + x^8 - x^9 - x^{10} - x^{11} + x^{13}$$
,

$$G_{4,5}(x) = x^9 + x^{10} + x^{11} - x^{14} - x^{15} - x^{16} + x^{20}$$
,

$$G_{4,6}(x) = x^{12} + x^{14} + x^{15} + x^{16} - x^{19} - 2x^{20} - x^{21} - x^{22} + x^{25} + x^{26}$$
,

$$G_{4,7}(x) = x^{17} + x^{18} + 2x^{19} + x^{20} + x^{21} - x^{23} - 2x^{24} - 2x^{25} - 2x^{26} - x^{27} + x^{30}$$

$$+ x^{31} + x^{32}$$
.

and so on.

In this case the term with smallest exponent can be shown to equal $x^{\left[(\mu^2+2)/3\right]}$, while for $G_{5,\mu}(x)$ we would find the corresponding term to be $x^{\left[(\mu^2+3)/4\right]}$ for $\mu>2$, and so on.

3. Proof of Theorem 2. From the definition of $C_{k,i}(y)$ we find

(21)
$$(1-x)C_{k,k}(x) = \sum_{\mu=-\infty}^{\infty} (-1)^{\mu} x^{((2k+1)\mu^2 + (2k-1)\mu)/2}.$$

Substituting now, in Jacobi's identity (5), $x^{(2k+1)/2}$ for y and $-x^{(2k-1)/2}$ for z, and dividing at the same time both sides by $(1-x)(1-x^2)(1-x^3)\cdots$, we obtain

(22)
$$\prod_{\nu=0}^{\infty} \frac{1}{(1-x^{(2k+1)\nu+2})(1-x^{(2k+1)\nu+3})\cdots(1-x^{(2k+1)\nu+2k-1})}$$

$$= \frac{\sum_{\mu=-\infty}^{\infty} (-1)^{\mu} x^{((2k+1)\mu^2+(2k-1)\mu)/2}}{\prod_{s=1}^{\infty} (1-x^s)}$$

$$= \frac{(1-x)C_{k,k}(x)}{\prod_{s=1}^{\infty} (1-x^s)} = Q_k(x) = \sum_{\mu=0}^{\infty} \frac{G_{k,\mu}(x)x^{\mu}}{(1-x)(1-x^2)\cdots(1-x^{\mu})},$$

if we recall (11), (15), and (16).

Identities involving the generating function for the number of partitions into parts not congruent to 0, $\pm (k-r)$ (mod 2k+1), where $0 \le r \le k-1$, can be obtained by noting that, using Jacobi's identity with $y = x^{(2k+1)/2}$ and $z = -x^{(2r+1)/2}$, we obtain

$$\prod_{\nu=0}^{\infty} \left[(1-x^{(2k+1)\nu+k-r}) (1-x^{(2k+1)\nu+k+r+1}) (1-x^{(2k+1)\nu+(2k+1)}) \right]$$

$$= \sum_{\mu=-\infty}^{\infty} (-1)^{\mu} x^{((2k+1)\mu^{2}+(2r+1)\mu)/2},$$

where the right side, as can be verified, is expressible in terms of $C_{k,k}(y)$, which was shown already for r=0 by Theorem 1 and for r=k-1 by Theorem 2 and shall only be indicated here for r=1, where we find

$$(23) \quad C_{k,k}(1) - x^{k-1} (1-x) (1-x^2) C_{k,k}(x^2)$$

$$= \sum_{\mu=-\infty}^{\infty} (-1)^{\mu} x^{((2k+1)\mu^2 + 3\mu)/2}.$$

This method therefore allows us to find for each modulus 2k + 1 exactly k identities, that is, one for each value of r in $0 \le r \le k - 1$.

REFERENCES

- 1. Hardy and Wright, Introduction to the theory of numbers, Oxford, 1938.
- 2. H. L. Alder, The nonexistence of certain identities in the theory of partitions and compositions, Bull. Amer. Math. Soc. 54 (1948), 712-722.
- 3. A. Selberg, Über einige arithmetische Identitäten, Norske Videnskaps-Akademi, Avhandlinger, 1936, 1-23 (No. 8).

University of California, Davis