
ON THE RENEWAL EQUATION

SAMUEL KARLΪN

Introduction. Recently Chung and Pollard [3] considered the following

problem: Let A (̂£ = l, 2, •) denote independent identically distributed random

variables having the distribution function F(χ) with mean

m = JxdF{χ) (0 < m)

and let

Define

if X is not a lattice random variable then they show that limζ_oc u(ζ) -h/m.

The above authors imposed the restriction that the distribution F possess an

absolutely continuous part. T. E. Harris by written communication and inde-

pendently D, Blackwell [2] show that this restriction was unnecessary. Of

course, as can be verified directly, u (ζ) satisfies a renewal type equation

/

oo rr+h

u(ζ-t)dF(t)= / dF(t)=g(ζ).

The existence of solutions and the limiting behavior for bounded solutions of

such renewal type equations which involve positive and negative values of t

has not been treated.

Feller [ 1 0 ] and later Tacklind [ 1 2 ] have developed many Tauberian resul t s

for the cases where all the functions u(ζ), F{ζ) and g(ζ) considered are
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zero for ζ negative. This reduces (*) to the classical renewal equation where

Laplace transform methods can be exploited. Doob [6] and Blackwell [ l ]

discussed the same type of renewal equation from the point of view of prob-

ability theory and appealed to the ergodic theory of Markoff chains.

In this work we shall show that most problems of the general renewal equa-

tion can be reduced to an application of the general Wiener theorem and the

properties of slowly oscillating functions. Our methods are thoroughly analytic

and apply to situations which do not necessarily correspond to probability

models. Moreover, a complete analysis of (*) shall be given concerning ex-

istence and asymptotic behavior of solutions with results describing rates of

convergence under suitable assumptions. Erdδs, Pollard and Feller [7 ] and

later Feller [9] in the study of recurrent events did apply the Wiener theorem

to some discrete analogues of (*) and these examples have served to suggest

to this writer this general unified approach. Most of the results of Tacklind

who dealt with the classical renewal equation use deep methods of Fourier

analysis. These results are illuminated and in many instances subsumed by

our methods. Finally, in the course of revising this paper it has come to our

attention that W. L. Smith very recently [11] independently has discussed the

classical one-sided renewal equation from the point of view of Wiener's general

Tauberian theorem. His treatment and this investigation supplement each other

in many respects. We employ the basic properties of slowly oscillating functions

while Smith uses Pitt 's extension of the Wiener theorem.

Some fundamental differences appear between the general renewal equation

(*) and the type of renewal equation studied in [8], [13] and [11]. For ex-

ample, solutions to (*) need not exist and when they do exist there are, in

general, infinitely many bounded and unbounded solutions. This complicates

the analysis of the asymptotic behavior of solutions of ( * ) . In fact, solutions

u(ζ) can be found for certain examples which oscillate infinitely as | ζ | —»oo.

Even when we restrict ourselves to bounded solutions to (*), the abundance of

such solutions necessitates a careful analysis which does not occur in the

handling of the one-sided renewal equation. (See the beginning of V 3.)

In § 2 we present a complete treatment of the discrete renewal equation

(**) un~ Σ an-kuk =

In this case necessary and sufficient conditions are given to insure the ex-

istence of bounded solutions to (**) . Asymptotic limit theorems for bounded
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solutions to (**) are obtained and appropriate conditions are indicated which

yield results about the rates of convergence of such solutions as n—>oo.

The general equation (*) is treated in § 3 where the existence and limit

theorems for bounded solutions of (*) are given. The Plancherel and Hausdorff-

Young theorems are used to establish the existence of bounded solutions to

(*) . Limit theorems are analyzed and rates of convergence are obtained. Some

applications are made to the classical renewal equation.

The relationship of Wiener's Tauberian theorem to ideal theory motivated

the content of §4. This last section indicates a new avenue of approach to the

meaning of the renewal equation.

Finally, I wish to express my gratitude to James L. McGregor for his helpful

discussions in the preparation of this manuscript.

2. Discrete renewal equation. This section is devoted to a complete analy-

sis of the renewal equation

oo

(1) un- Σ «

The convolution of two sequences \xn \ and \γn } is denoted by

* I f I
y ^ v ~ / y Ύ i Λf X.

[A;=-oc j

This product operation is well defined whenever, for example, at least one of

the sequences is an absolutely convergent series while the other sequence is

uniformly bounded. Equation (1) can thus be written as
(2) u - α * u = b,

We suppose hereafter, that the sequences {an\ and {bn\ have the property that

Un >L ®9 Σ α n = l and Σ | bn | < oc and that un represents a solution of (2) .

In general, there exist many solutions of (2) which complicates the study of

the asymptotic behavior of solutions {un\ of the renewal equations. We first

investigate the general problem of the existence of solutions of (1) . To this

end, we introduce the linear operation T which can be applied to any sequence

{ cn \ which forms an absolutely convergent series. Precisely, let



232 SAMUEL KARLIN

vhere

c;
i=π + l

n > 0

n < 0.

Let

1 7i > 0

0 n < 0

and define the linear functional

lation for future use

cn. We note the following re-

(3) φ (c)σ - σ * c = Tc .

The operation Γ can be repeated provided that the resulting sequence { Tc \ is

an absolutely convergent series. If, for example, Σ n = - o o \n cn \ < oo, then

Γ c is well defined. Moreover, we observe for later reference that if

Σ\n> < 00,

then

lim \nk(Tc)n\=0.

We now impose two very fundamental assumptions.

ASSUMPTION A. The greatest common divisor of the indices n where

an > 0 is 1.

ASSUMPTION B. The series Σ,\nan\ < oo and Σrc=-oo nan = / n / 0 , (For

definite ness we take m > 0.)

Many of the following results can be extended to the case where the g.c.d. of

the indices n where an > 0 is d > 1. We leave this task to the interested reader.

However, Assumption B is indispensible for the validity of many of the sub-

sequent results. Some results can be extended by suitable modifications to

m = oo.
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An important tool to be used frequently is the following lemma.

LEMMA 1. // Assumptions A and B are satisfied, then there exists a se-

quence ί rn i with

Σ I rn I < oc and r * Ta = δ

where 8 - { δ° }. (The sequence δ is the identity element with respect to the

* multiplication.)

Proof. For the sequence \an\ let α ( # ) = Σ β O O an e ι n . The relation ( 3 )

implies for 0 < θ < 2 π

= Y(Ta)ne
inθ=Ta(θ).

\-eιu tZ

Assumption A implies that Ta{θ) ^ Oίoτ Θ^O and \Θ\ < 2π. Assumption B

yields that Ta{0) £ 0 and the fact that Σ . o o | ( Ta) \ < oo. By virtue of Wiener's

Tauberian theorem

r einθ

n(Ta)(θ)

defines an absolutely convergent Fourier ser ies . The conclusion of Lemma 1 is

now evident from this last relation.

We now proceed to discuss the existence of solutions to ( 1 ) or ( 2 ) .

THEOREM 1. // Assumptions A and B are satisfied, then there exists a

bounded solution of ( 1 ) . Any two bounded solutions of (1) differ by a fixed

constant.

Proof. We seek a bounded solution of

( 2 ) u -a * u = b.

Mult ip ly ing formally ( 2 ) by σ and u s i n g ( 3 ) we o b t a i n u * (Ta) = σ * b and

h e n c e by L e m m a 1

u - r * σ * b.

The sequence r * σ * b is a bounded sequence and it is easily verified
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provides a solution for relation (2). To establish the second half of the theorem

it is sufficient to show that

(4) u - a * u = 0

possess only constant bounded solutions. Let (Δu) = (un - un + ι). It follows

readily that (4) implies ( Ta) *. Δu = 0. Multiplication by r yields that (/Su) = 0

and hence the result sought for.

We now show that in general, nonbounded solutions of (4) and therefore of

(1), can be found. This is illustrated by the following example. Although the

example is special, the technique is general and the reader can easily construct

many other such examples.

Let ai = 1/2, α2 = 1/2 and α; = 0 for i £ 1, 2. Equation (4) becomes

1 1
«τι = - «rc-i + " «n-2 all n.

We can prescribe UQ and u\ arbitrarily and therefore we obtain a two-dimensional

set of solutions. However, by virtue of Theorem 1 only a one-dimensional set of

bounded solutions exists. Hence, unbounded solutions also exist. The unbound-

ed solution oscillates infinitely as n — » - oc.

It is worth showing that a converse to Theorem 1 can be obtained.

T H E O R E M 2. //

]Γ bk > 0, Σ I nan I < oo but £ nan = 0,
k = - oo - oo

then there exists no oounded solutions to ( 2 ) provided that

oo

2 2 bn > 0, ax > 0 and <M > 0.

Proof. Suppose to the contrary that { un } is a bounded solution to (2) . Let

λ = lim^^oo un then there exists a subsequence uni —> λ. By virtue of a stand-

ard probability argument (see [10, p. 260]), it follows that lim^^^oo i^./c = λ

for each integer k. A similar subsequence m; can be found such that l i m ^ ^ ^ «,

u>m'-k =*w> where u =limm_>_ oo um. As in Theorem 1 we obtain that ( Γα)*Δw = i .

Summing from mi to nι gives
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Allowing π j —» oo and m/ —> — oo, it follows readily since Σ | ( Ta)jc\ < oc that

0 <J2 bk = (λ-u) ^
- OO A rt=-OO

a contradiction.

REMARK. Theorem 2 can be established using the weaker Assumption A

in place of the hypotheses that a\ > 0 and a.γ > 0. We omit the details

Having discussed the question of existence we now turn to investigate the

asymptotic properties of bounded solutions to (2) . Throughout the remainder of

this section we assume that Assumptions A and B are satisfied. A useful result

which we state here for later purposes is the following well known Abelian

theorem.

LEMMA 2. // {rn\ is such that L n , _ o o \rn I < oo, { cύn \ is bounded and

lim^^oo a.n - 0, then

lim Σ ωn-krk = °

The following theorem is a simple Tauberian result for solutions of ( 2 ) .

THEOREM 3. If un is a bounded solution to (1), then lim^^oo un and

l i m ^ - ^ ^ un exist.

Proof. By Theorem 1, it is sufficient to prove the result for the special

solution

u = r * b * σ.

For this special solution, we have

k--

Hence the limit exists, in fact,
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φΛb)
lim un~0, lim un = ^ (r * 6)/,

Q.E.D. To obtain more precise results let

Φ0(b)

where α = r * 6 * σ i s the unique bounded solution for which un

From the proof of Theorem 3 it is clear that vn —> 0 as \n\ •

to show that

• 0 as n —> oc.

> oo. It is easy

(5)

or

Ta*v=-Tb
φΛb)

T2a
m

<^0(6)
Γ6 - -^ T2a

m

Hence if we assume in addition to A and B that

Σ\(T2a)n\ <oc and Σ |

then it follows that Σ . | v Λ | < oo. These new assumptions -enable us to obtain

further results about the rate of convergence of vn and hence of un. To this end,

we define the operation S on any sequence {tn j , St = \ntn !. The hypothesis

Σ | ( Γ 2 o ) n | <oc and Σ\(Tb)n\ .< oo

or the equivalent assumptions

Σ n2 an < oo and Σ | nbn \ < oc,

respectively imply easily that STa defines an absolutely convergent series and

ST a constitutes a bounded sequence which tends to zero as \n\ —> oc. A

direct calculation using (5) gives that

(6) S(Ta *v)-ST(a) * v--STb
Φ0(b)

ST2a -STa * v.
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T h e left s i d e of ( 6 ) i s i d e n t i c a l c o m p o n e n t w i s e wi th Ta * Sv. Mul t ip ly ( 6 ) by

Ta, t h e n w i t h t h e a i d of ( 5 ) , we o b t a i n

(7) Ta * Ta * Sv = - Ta * STb + ί Ta * ST a !
m

•STa * -Tb
φΛb)

T2a\.

On account of the hypothesis and Lemma 2, we find that the right side is a

bounded sequence which tends to zero at ±oc. Employing Lemma 1, we conclude

that Sv is bounded and lim^^oo \nvn \ = 0.

Although it might appear as if the relation (7) is rather fortuitous, a simple

method to deduce the formula begins with the Fourier series relation

(8) Ta(θ)v(θ)=- Tb{θ) T2a(θ)

which is well defined and is an alternative way to express (5) . Differentia-

tion of (8) with multiplication by Ta(θ) and use of (8) gives a formal repre-

sentation of (7) . The preceding argument was in essence a justification of

this differentiation process.

The preceding analysis extends with the aid of an induction argument. The

details are omitted and we sum up the results in the following theorem.

THEOREM 4. Let an > 0, Σ - o o an = 1> satisfying Assumptions A and B.

Let un represent the unique bounded solution of ( 2 ) for which l im^^oo un = 0

(see Theorem 3). If

\nk bn\ < co and T \nk+l an
<<χ,

then

Σ
n> 0

Φ0(b)\
' l

n<0

and
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lim nh

7Ϊ—> oo

Φ0(b)
= lim

A first classical application of Theorem 1 can be obtained from the theory

of Markov chains. Let E represent a recurrent state from an irreducible non-

periodic chain. Let un represent the probability of starting from E and returning

to E in n steps. Let an denote the probability that the first return occurs at the

nth. step (n > 0). Put u0 = 1, u.n = 0 and a.n = 0 (for n > 0), then

an-k
k=0

where bn = 0 for n £ 0 and bo = 1. Since E describes a recurrent state, Σ α ; = 1

and trivially m = Σ ί = 0 iai > 0. As an immediate consequence of Theorem 4,

we infer that if

Σ nk+ί an < oc, then
1

< oc and lim n*L--]=o.
L m J

A second application deals with the following problem treated by K. L.

Chung and J. Wolfowitz [4] ^e generalize their result in obtaining stronger

rates of convergence by assuming further conditions on the moments. Let X

denote a random variable which assumes only integral values and define for all

an =Pr{Λ: =τι n = 0, ± 1, ± 2,

Let X({i = 1, 2, . •) denote an infinite sequence of independent events with the

same distribution as X, Define

ι and un = ^ P Pr \ Sj = n \ = Expected number of sums where Sy - n.

Let m -E(x) be the expectation of X. Suppose the greatest common divisor of

the indices n such that an > 0 is 1 and 0 < m < oo. Chung and Wolfowitz in

[4] allow m =oc, but the present method does not apply. The restriction on the

greatest common divisor is not essential but the requirement that m j/= 0 is very

crucial and in fact in the contrary case un = oc as is shown by Chung and Fuchs

[5] . We obtain that if Σ ~=_ ^ \nk+ί an\ < oo, then
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. I X I j

lim n \un | = lim n un=0.
n<0 n-*°o

Indeed, it follows from the definition of un that

oo

"Λ - Σ an-kuk=an-
k=- oo

It can be seen that the sequence z% is uniformly bounded and lim^^.oo un = 0

(see [ 5 ] ) . The conditions of Theorem 4 are met and the conclusion follows from

the results of that theorem. Summing up, we have

COROLLARY. Let X( be identically distributed independent lattice random

variables with distribution given by Pτ\x =n\ — an and un = ̂ / = i Pr {sy = n \

where SJ= Σ ί = 1 #;. // the expected value of x = m > 0 and g.c.d. n = 1, then

£ \ n k + l an\ < c o
n = — 00

implies

Σ
τz> o

while

1

< oo

n < 0

k.lim Λ Λ | M Λ 1= lim nκ un = 0.

3. Continuous renewal equation. This section is devoted to an analysis of

the existence and asymptotic properties of solutions for each ζ of the relation

(9) u{ξ)-Γ u(ξ-t)df(t)=g(ξ).
J-00

T h e c o n v o l u t i o n o f t w o f u n c t i o n s x ( t ) a n d y(t) i s d e f i n e d a s

x{t-ξ)y{ξ)dξ
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which exists if, say, x is integrable and y is bounded. We shall be concerned

only with bounded solutions of (9) . It is assumed that

df(t) > 0, Λ° rf/=l and j\g\ < oo.

The following hypotheses are now imposed:

ASSUMPTION A'. The distribution / is a non-lattice distribution, that is,

the points of increase of / do not concentrate at the multiples of a fixed value.

/

' oo Γ oo

\t\df (t) < co a n d / t df it) =m ^ 0 ( s a y m > 0 )
- oo J - oo

These two assumptions constitute the continuous analogues of Assumptions

A and B and hereafter we suppose these assumptions satisfied.

We introduce the operation T defined for any function of bounded total varia-

tion hit). Let

1 t > 0

and φΛh)= dhit)

and

or

0 t < 0

Th = φΛh) σ-σ* h

(Th)(t)=<

dhit) t > 0

- Γ dhit) t < 0
J - oo

T i s a l s o d e f i n e d for i n t e g r a b l e f u n c t i o n s kit) a s f o l l o w s :

Tk = Tk*it) w h e r e & * ( * ) = / k i ξ ) d ξ .
J - oo

Let

un(£) = n J uit)dt
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with g d e f i n e d s i m i l a r l y . E q u a t i o n ( 9 ) c a n be c o n v e r t e d to

Since the derivative of un is essentially uniformly bounded, we obtain on inte-

gration by parts that

do) τf*<

T h e f i n i t e n e s s of £ ^ \t\ df (t) i s e q u i v a l e n t t o t h e i n t e g r a b i l i t y o f Tf (t) a n d

t h u s ( 1 0 ) i s w e l l d e f i n e d . I n t e g r a t i n g ( 1 0 ) f r o m a t o ζ g i v e s

/

ex, rξ

[ u n i ξ - t ) ~un{a - t ) ] Tf i t ) d t = / £ ( t ) dt.
oo J a

Letting n go to oc, we have almost everywhere

(11) f ° ° [ u ( ξ - t ) - u ( a - t ) ] T f ( t ) d t = ϊ ξ g ( t ) d t .

Since both the right and left hand sides of (11) are continuous this identity

holds everywhere in ξ and α. Allowing a —>oc, we find from (11) that

lira
a —• -

foe
i r a / u ( a - t ) Tf ( t ) d t = c .

Adding to any solution of ( 9 ) a constant produces a new solution u of ( 9 ) .

Therefore, we may suppose that c — 0. Thus,

(12) [°° u(ξ-t) Tf(t)dt=[ξ g(t)dt.

We define for this u satisfying (12),

It follows directly that

(13)
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We now present a series of lemmas needed in the sequel.

LEMMA 3. Under the assumptions stated above, the Fourier transform

eitθTf(t)dt
- oo

vanishes nowhere.

Ίhe proof is similar to that of Theorem 1, and is based on the identity

i θ ( T f ) * ( 6 > ) = - l + [°° e i t θ d f ( t ) .

L E M M A 4 . Any two bounded solutions of (9) differ by a constant.

Proof. It is enough to show that the only bounded solution of

u(ξ-t)df(t)=O

are constants. Using a reasoning similar to that of deducing (12), we get

(13a) f°° u ( ξ - t ) T f ( t ) d t = c .
J - OO

By subtracting an appropriate constant from (13a), we have for v = u — c ' that

v * Tf = 0. Lemma 3 and the general Wiener's Tauberian theorem yields that

v * r = 0 for every integrable r(t). It follows readily from this last fact that

v = 0 almost everywhere or u = c ' a.e.

L E M M A 5 , If r it) is integrable and wit) — > 0 a s | £ | — > o o , then

l i m f°° wiξ-t)rit)dt = 0 .

This last Abelian theorem is well known and straightforward.

LEMMA 6. If v is bounded and satisfies (13), then

lim ί°° riξ-t) vit) = 0
\ξ | - ~ ° °

for any integrable function r.



ON THE RENEWAL EQUATION 2 4 3

Proof. The hypothesis and the character of the operation T imply that

l i m Tg{ξ)= l i m T2f(ξ)=0.

Consequently,

lim f°° v ( ξ - t ) T f ( t ) d t = O .

An a p p l i c a t i o n of the g e n e r a l Wiener T a u b e r i a n theorern l e a d s to t h e c o n c l u s i o n

of the lemma.

COROLLARY. Under the assumptions of Lemma 6 we have

lim / v(t)dt=0.

l*μ~ Jx

Indeed, choose

- for 0 < ξ < Δ
Δ

0 elsewhere

We now establish the fundamental asymptotic limit theorem for bounded

solutions of (9). The basic Tauberian theorem used is the Wiener theorem

coupled with the properties of slowly oscillating sequences.

THEOREM 5. If u is a bounded solution of ( 9 ) , and f has a decomposition

f = fχ + f2 where fχ is absolutely continuous and the total variation of f2 = λ < 1,

a n d l i m | ̂  | _ o c g ( £ ) = 0 , t h e n l i m ^ o c u { t ) a n d l i m ^ . o o u ( t ) b o t h e x i s t .

If l i m ^ ^ . oo u ( t ) = 0 , t h e n l i m ^ _̂  cχ> u ( t ) =

Proof. It is enough to assume that v defined by (12-a) from u satisfies

(13). This can be achieved if necessary by altering u by a fixed constant (see

the discussion preceding Lemma 3). As before, we find that

(14) lim f°° v(ξ-t)Tf(t)dt=O
I ξ h°°

It will now be shown t h a t v(t) i s s l o w l y o s c i l l a t i n g a s | ί | — > oc (v(t) i s
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said to be slowly oscillating (s .o.) if

l i m \v{ξ+η)-v(ξ)\ = 0 .

£->oo

7 7 - 0

Λ similar definition applies at ί = - o o . The general Wiener theorem and the

s.o. character of v ( t ) implies the stronger conclusion over Lemma 6 that

lim v(t)=0

which is our assert ion. It thus remains to establ ish that v{ζ) is s .o. and we

confine our argument to the situation where ζ—»oo A similar analys is applies

at - o c . Ilemembering that the convolution of an absolutely continuous distribu-

tion and any other distribution remains absolutely continuous, we obtain upon

n fold iteration of ( 9 ) that

u(ξ)=ί°° u(ξ-t)dkι(t)+Γ u{ξ-t)dk2{t) + P ° g(ξ-t)dk3U)
J - 00 J-00 J-00

= Iι(ξ)+I2(ξ)+I3(ξ)

where kγ i s a b s o l u t e l y c o n t i n u o u s , k^ i s the n fold c o n v o l u t i o n of f2 wi th i t se l f

and A 3 ( ί ) i s of bounded to ta l v a r i a t i o n . S ince g(ζ)—>0 a s \ξ\—> oc by

L e m m a 5

lim / 3 ( £ ) = 0 .

Next , we observe t h a t 1 ^ ( ^ ) 1 < λn c where c i s the upper bound of u. F i n a l l y ,

\ h ( ξ + η ) ~ h ( O \ < f \ u i ξ - t ) \ \ k [ { t + ξ ) - k [ { t ) \ d t

by virtue of a well-known theorem of Lebesgue. Combining these estimates, we

get that

Tϊm" \v{ξ+η)-v(ξ)\ < 2cλn

7 7 - » 0
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which by proper choice of n can be made as small as one pleases. This com-

pletes the proof.

REMARK. Theorem 5 is valid if we merely assume that some iterate of

/ has an absolutely continuous part.

C O R O L L A R Y . Under the conditions of Lemma 6, ifv(t) is uniformly con-

tinuous for t > 0 and £ < 0 , then

lim v ( t) = 0.
\t\-*oo

Proof. The function v(t) is s.o. from which the conclusion follows as in

Theorem 5.

In many examples, we deal with a solution u of (9) which is by physical

considerations bounded while in other cases boundedness for certain solutions

has to be verified. Our next object is to give sufficient conditions so that we

can establish the existence of bounded solutions of (9) . From now on we as-

sume that / is absolutely continuous and let

a(t)dt.

LEMMA 7. / / u is a solution of ( 9 ) which belongs to Lp ( p > 1 ) , a G L l

also belongs to Lp where p ' is the conjugate exponent to p and g is bounded^

then u is bounded.

Proof. Applying Holder 's inequality to ( 9 ) and an obvious change of vari-

able, we obtain

( f J r ) *'•
THEOREM 6. Ifait) belongs to L 1 and L2, git) is bounded,

I \x | 2 a(x)dx < oo

and

I \x I g(x) dx < oo,

then a bounded solution u(t) of (9) exists.
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Proof. T h e F o u r i e r t r a n s f o r m of a n y i n t e g r a b l e hit) i s d e n o t e d b y h * ( θ ) .

C o n s i d e r t h e e x p r e s s i o n

, _ , , „ . . , g*(θ)-(Ta)*{θ)[φ(g)/m]
(14) w*{θ)~

1 - α* ( θ)

It will now be shown that (14) is the Fourier transform of a function in L2. To

this end, by the Riemann Lebesgue lemma α* ( θ) —> 0 as \θ\ —> oo and

| α * ( 0 ) | < 1 for θ £ 0 with a*(θ) continuous. Since the first moment of a

exists, Ta is bounded and in Lι. Hence, Ta belongs to L2 and Ta* ( θ) EL2.

A similar argument shows that g*(θ) EL2. Thus for | θ | > α > 0, w* ( θ) is in

L 2 for any fixed positive constant α . But,

w { θ ) m

-(Tg)HΘ) +[φ(g)/m](T2a)*(θ)

= (Ta)*(θ)

The existence of the second moment of a implies that ( Γ 2 α ) * ( θ) is continuous.

Analogously, ( Γ g ) * (θ) is continuous by virtue of f\x \ g (x) < oo. Since

Ta* (0) - m > 0, we find that w*(θ) is continuous in the neighborhood of zero

and hence w* (θ) i s in L 2 . Consequently, w{t) in L 2 ex i s t s which is the Fourier

transform of w* ( θ) and conversely. Moreover, ( 1 4 ) yields

J -
(t)a(ξ-t)dt=g(ξ)-Ta(ξ)

J -oo m

for almost all ξ.

As a convolution of two elements of L2 the integral on the right is bounded

and continuous. Hence the right side is bounded and remains unaltered, if w is

changed on a set of measure zero.

As in Lemma 7, it follows that w(ζ) is bounded. Putting

u{ξ)-w{ξ)+ —-σ(ξ),
m

we find that u is bounded and sat is f ies ( 9 ) .
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REMARK. Theorem 6 can be established under the weaker conditions that

J \ x \ l + a a(x) < o o

and

for some Cί > 0. These assumptions are sufficient to imply the boundedness of

w* ( θ) in the neighborhood of zero.

Other sufficient criteria can be obtained for the existence of bounded solu-

tions to (9) involving use of the Hausdorff-Young inequalities in place of the

Plancherel theorem.

THEOREM 7. If ait) belongs to Lι and L p ( 1 < p < 2 ) ,

J\t\l+aa(t)dt < oo

with α > 0,

f\g*(θ)\Pdθ <oo

and g is bounded, then a bounded solution of ( 9 ) exists.

It is worth noting that the solutions u guaranteed by Theorems 6 and 7 have

the property on account of Theorem 5 that l imj^^oo u(t) exist .

Our next objective is to find conditions which imply conclusions about the

rate of convergence of w{ζ) of Theorem 6 as \ζ\ —> oo and thus of u{ζ)

To this end, we differentiate ( 1 4 ) and 15), we get

a*'(θ)w*(θ)+g*'(θ)-Ta*'(θ)[φ(g)/m]
(16) u/*'(60 =

(17) w*'(θ) =

l - α * ( 0 )

Ta*'(θ)w*(θ)~ Tg*'(θ) + [φ(g)/m](T2a)*'(θ)

Ta*(θ)

Relation (17) can be derived from (16) by dividing numerator and denomina-

tor by iθ similar to the method of obtaining (15) from (14).

Under the assumptions that
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t I3 a(t)dt <

and

Jt2g(t)dt < oo

with g b o u n d e d and m o n o t o n e d e c r e a s i n g a s 11 | — > oo we now s h o w t h a t w*'{θ)

b e l o n g s to L 2 . I n d e e d , for | θ \ >^ (X > 0 we u s e ( 1 6 ) to e s t i m a t e w*'(θ) and

we u s e ( 1 7 ) to a n a l y z e u ; * ' ( θ) in the n e i g h b o r h o o d of the o r i g i n .

F o r ξ > 0

ξTaiξ) < f00 tait)dt < c

and similarly \ ζ Ta( ζ) \ ;< c for ζ negative. Also,

f ° ° t2 T a 2 i t ) < c Γ \ t T a { t ) \ < c ' f t 2 a ( t ) d t <
J - OO J - OO J

00

and

f™ t2

 g

2 ( t ) < c f t 2 g ( t )
J - OO J

Since git) is monotone decreasing as \t\ —> oo, we obtain easi ly that

\t&(t} I S. c ^ s a*'(θ) is the Fourier transform of t ait) in L (except for a

fixed constant factor) we know that α * ' ( 0 ) is uniformly bounded. By Theorem

6, w*(θ) is in L2 and therefore a*'iθ) w* i θ) is in L 2 . g*'(θ) is in L 2 by

virtue of t git) £ L2 and Tα* ' ( 0 ) is in L 2 as a consequence of t Ta i t) in L2

which were established above. Since | α * ( 0 ) | < 1 for θ £ 0 and tends to zero

as \0\—>oo, we find, collecting all these cited facts, that w*'( θ) is in L2

for \θ\ >L Ot > 0. The assumptions of the existence of the third and second

moments of a and g respectively yield as in the proof of Theorem 6 using ( 1 7 )

that t ϋ * / ( θ ) is continuous at zero. Thus w*'(θ) is square integrable through-

out and as a result of standard Fourier analysis i s the Fourier transform of

twit) in L2. Relation ( 1 6 ) gives

(18) twit)-l°° ait-ξ)ξwiξ)dξ

= / ;
w(t-ξ)ξa(ξ)+tg(t)-——tTa(t)

m
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The fact that tgit) and t{Ta) (t) are bounded imply by an argument completely

analogous to the proof of Lemma 7 that tw it) is bounded. It follows as before

that twit) is s.o. ( s e e Theorem 5 ) . The relation ( 1 7 ) leads to

(19) / Taiξ-t) twit)dt

(ξ-t)Ta{ξ-t)w(t)dt-ξTg(ξ)+— ξT2a(ξ).ξT2

Since wit) —» 0, ξTgiξ) —> 0 and ξiT2a) iξ) —> 0 a s \t\ —> oo, we obtain

by Lemma 5 that the right side of ( 1 9 ) tends to zero as | ξ | —> oo. Combining

the s.o. character of twit), i ts boundedness and the Wiener Tauberian theorem

leads to the conclusion that

lim twit) =0.

\t\-*OQ

Proceeding inductively we can obtain higher rates of convergence by imposing

the requirement of the existence of higher moments using this same method. We

sum up the discussion in the following theorem.

T H E O R E M 8. Let

\t\n+2ait)dt <oo

with a in Ll and L2. Let git) be bounded monotone decreasing for t > to > 0

and nondecreasing for t <̂  — to < 0 with

then

f \ t \ n + ί g i t ) d t < o o ,

lim tnwit)=0

I ί I ->oo

where

u = w + σ
m
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is a solution of ( 9 ) , and wit) is the Fourier transform of w*(θ) ( s e e ( 1 4 ) ) .

(We recall that Lemma 4 shows that uit) as given above is the only bounded

solution for which uit) —» 0 a s ί —> ~ oo.)

We now append some remarks about the c lass ica l renewal equation

( 2 0 ) u(x)=g(x)+ u{χ-ξ)df(ξ) * > 0 .
Jo

The assumptions made are that

a > 0 , g > 0 , / g{ξ)dξ=b<ω
0

and / is the distribution of a non-lattice random variable. The function Tf{ξ)

is introduced as before. If the first moment of / exists, then Tf G L and

m = f°° χdf(x) > 0.
Jo

Thus, we deduce as before that Tf possesses a Fourier transform which is

never zero. Throughout the discussion of this case it is no longer necessary to

assume any boundedness condition on u(ζ), the nonnegativeness of u suffices

to enable us to obtain all the results of Theorems 5-8.

To indicate the simplicity of our methods we now show how Wiener's

Tauberian theorem can be used directly to establish a slight generalization of

one of the fundamental results of Tacklind on the classical renewal equation.

His procedure involves complicated estimates.

THEOREM 9. Let Φ(x) denote a monotonic solution to the integral equation

(21) Φ{χ)=Q{x)+ [* Φ(x-y)dfiy) % > 0
Jo

where Φ{x) is continuous and Φ(0) =0, Q(x) is a distribution on (0, oo) with

finite first moment and f is a non-lattice distribution continuous at zero with

finite second moments, then

1 1 μ a Λ
φ ( * ) - - * + l = o

m m 2m

where



m =
to
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xdf(x), α= f°° x2df(x) and μ = [°° xdQ(x).
Jo Jo

Proof. Define

x,
m

then it follows from (21) that

(22) Ψ U ) - f* y ( x - t ) d f = Q ( x ) - - [X Tf{ξ)dξ.
Jo m Jo

Integrating (22) over the interval (0, γ) and then performing an integration by

parts we obtain

(23) fy Γ / ( y - ί ) Φ ( ί ) Λ = - [y [l-Q(ξ)U + - fY T2f(ξ)dξ.
Jo Jo m Jo

By an elementary calculation as γ —> oc the limit of the right side tends to

(t)dt.
/ μ σ2 \ Γoc

- - + / Tf
\ rn 2m2 J Jo

We now collect the facts needed to employ the Wiener theorem. That the Fourier

transform of Tf never vanishes has been shown previously. It is easy to show

that Ψ ( ί ) = O ( l ) see [12], Finally, we verify that Ψ ( ί ) is slowly decreasing

(s.d.) that is,

In fact,

T h u s ,

l im [Ψ(ξ+η) - Ψ ( f ) ] > 0 .

Ύ] —• 0
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As Tf is nonnegative and ψ ( £ ) >_ •*• C a sharp form of the Wiener theorem be-

cause of the (s .d . ) character of Ψ implies that

lim ¥ ( * ) = - £ + —
t-*°o m 2m2

We continue with a brief examination of the example discussed in the in-

troduction. Let X( denote independent identically distributed non-lattice random

variables with cumulative distribution f which has an absolutely continuous

component. We assume the first moment exists and

lf = m > 0.

Put

/

S / = ^ X i a n d * < £ ) = £ ?τ\ξ<sj < ξ + h \
ί = l /=l

where A is a fixed positive number. The intuitive fact that uiζ) i s bounded can

be proved directly from probability considerations. We do not present the deta i l s .

The function u is readily seen to satisfy the renewal equation ( 1 ) .

u(x)-l u(x-ξ)df(ξ)=g(x) = dfiξ).
J - oo J x

The hypothesis of the corollary to Theorem 5 can be shown to be satisfied by

probability analysis and we obtain l i m ^ o o uit) = h/m and l i m ^ . ©o u ( ί ) = 0 ,

the result obtained by Chung and Pollard by other methods [ 3 ] , We close this

section by presenting some extensions of these results by imposing further

conditions of the existence of higher moments of / to secure some resul ts about

the rate at which uit) converges.

THEOREM 10. // Xι are independent identically distributed non-lattice

random variables with density function a(t)dt such that a € L2 and

| ί | n + 2 a(t)dt <co

and

ta(t)dt =m > 0, u ( ^ ) = 2 2 P r i ^ < s ; < ^ +h
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where

i-l

then

lim tn\u(t) - - | = lim tn u(t) = 0.

Proof. This is an immediate consequence of Theorem 8.

4. Abstract renewal equation. The purpose of the subsequent analysis is

to present an abstract approach to some of the fundamental ideas involved in the

analysis of the renewal equation. Although some of the results are formal and

simple, it is felt that this study sheds some light on the real nature of the re-

newal equation.

Let Ί denote a linear operator which can be viewed as a bounded operator

from (m) into (m) or from (I) into (/). The spaces (m) and (Z) designate the

Banach spaces of bounded sequences and absolutely convergent series re-

spectively. Suppose furthermore that the operator T is of norm one viewed in

either space. Let aΓ >^ 0, Σ α r = 1 (r = 0, ± 1, ) and we assume that the

g.c.d. of the indices r for which ar > 0 is 1. Suppose also that Σ,\n | an exists

with Δ*nan - m =/ 0. If ar — 0 for r < 0, then automatically <L,nan is not zero

provided aγ £ 1. In this case we consider the operator Σ Γ = 0 aτ Tr where T° = /.

This operator is linear and has norm bounded by 1 as 11 Tr 11 < 1 and 2^ar = 1.

If T" exists and is of norm 1, then we can deal with the general case where

ar is given not necessarily zero for both r positive and negative. We consider

then the operator Ίl n=-oo anT
n. As a generalization of the renewal equation,

we set

= \l - ^ anTn\u =v.

It is given that the operator S applied to u produces the element v. In many

examples, w is a bounded sequence, that is, an element of (m) while v is an

element in (/). Put,

^ ai f°Γ n 5l 0 a n c ^ rn = ~~
i=n+l
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then Σ | rn\ < oo as Σ | nan | < oo It is important to note on account of Σ | rn \ < oo,

the series

defines a bounded linear operator which can be viewed acting either on (m) or

{I) into itself. By a summation by parts, we obtain that

Since Σ Λ = - O O rns
n with \s | = 1 has an absolute convergent reciprocal (Wiener's

theorem is used here analogously to the analysis of section 1), we secure that

(Σ rnT
n)"1 exists as a bounded operator over (m) and (I) and that

(I-T)u=(ΣrnT
nYιv.

S i n c e v G (I) w e c o n c l u d e t h a t ( / - T ) u £ ( / ) a l t h o u g h u i t s e l f m i g h t o n l y b e a n

element of (m). This represents the basic abstract conclusion obtained from

( + ). Further results are obtained by specializing T, A particular example is

obtained by (m) = the set of all bounded sequences u = ί un \ n = 0, ± 1 , ± 2, ,

where T is the shift operator which moves each component one unit to the right.

Whence, (+) reduces to

[
= \un - 21 an-kuk

I
If a l l the h y p o t h e s i s on an a re met a n d vn G ( Z ) , t h e n the a b s t r a c t theorem t e l l s

us t h a t ( / - T)u e(l) or

Σ, \un " M l I < °°

This implies that both lim^^oo un and limn_>_oo un exist. Similar results are

valid for the circumstance where T" does not exist. Then we deal only with

the case where an ~ 0 for n < 0. Considering the same shift operator leads to

u - Σ,α"T" )u = Un" Σ α
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and we deduce as above that l im^^oo un ex i s t s .

We turn now to examine some continuous analogues of ( + ) . Let Tit) denote

for oo >. t >_ 0 a strongly continuous semi-group of operators acting either on

the space of bounded functions (M) or integrable functions ( L ) with | | Γ ( ί ) . | | < 1.

Let A denote the infinitesimal generator of Tit) and let df it) define a non-

latt ice distribution with finite first moment on [0, col. If u belongs to iU) we

consider

u ( t ) - \ (°° T ( t ) d f ( t ) ] u = v
L J o J

where v belongs to ( L ). The linear operator

ί°° Tit)dfit)
Jo

is well defined either over iM) or ( L ) into itself. Put rit) = 1 - f it), then

r G L and the Fourier transform of r never vanishes . Since r is monotonic de-

creasing and in L it can be easi ly shown that

\j°° rit)Tit)dt\u

belongs to the domain of the infinitesimal generator A and

ί°°
A I rit)T it)dt u = t > .

Jo

Formally, we also obtain upon commutating A and the integral operator

We note that if

ί°° rit)Tit)dt
Jo

is multiplied by any other operator of the form

sit)Tit)dt9j
Jo
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we obtain the operator

ί°° p(t)T(t)dt
Jo

where

Since the Fourier transform of r does not vanish, then Wiener's theorem in a

formal sense, furnishes an inverse to

Jo
r(t)T(t)dt

which takes v £ L into L. Thus, Au belongs to L. Specializing T (t) to the

translation semi-group T(t) u(x) = u(x — t)9 then Au = du(x)/dx whenever the

derivative exists and belongs to the proper space . The fact that Au G L yields

f\du/dx I exis ts from which we infer that l i m ^ o o u(t) ex i s t s . Thus we obtain

the limit behavior of Theorem 5 for the one-sided case . The justification of

these last formal considerations is very difficult and can only be carried through

in certain cases as is shown in ^ 2. The full renewal equation is generalized

by taking Tit) a group and proceeding as above.
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