COLLECTIONS AND SEQUENCES OF CONTINUA IN THE PLANE

C. E. BurcEss

1. An inversion of the plane with respect to a closed circular disc. The

inversion described here will be used in proving Theorem 5.

DEFINITION. Let S denote the plane, let K be a closed circular disc, and
let T be a one-to-one transformation of S onto itself satisfying the following

conditions:
(1) T is continuous over X, and T(K) =K;
(2) T is continuous over S—K, and T(S—-K) =S~K; and

(3) if H is an unbounded subset of S~K which does not have a limit point
in K, then T (H) is bounded and has a limit point in K.

The transformation T will be called an inversion of S with respect to K.

NotaTioN., If T is an inversion of the plane with respect to a closed
circular disc K, and M is a continuum in S — K, then M’ will denote the closure
of T(M). If G is a collection of continua in S ~ K, then G’ will denote the
collection of all continua X’ such that X is a continuum of G. This notation

will be used in the statement of Theorem 1 and in the proof of Theorem 5.

THEOREM 1. If K is a closed circular disc and G is a finite collection of
mutually exclusive unbounded continua not intersecting K, then there is an
inversion T of the plane with respect to K such that the continua of G’ are

bounded and mutually exclusive.

Indication of proof. U the plane S is inverted about the boundary of K with
respect to the center o of K, then the continua of G are carried onto mutually
exclusive bounded connected sets each of which has o as a limit point and is
closed relative to S — 0. Hence it will be sufficient to show that if M, My, -,

M, (n > 1) are bounded continua such that

' am indebted to the referee for some very helpful suggestions which enabled me to
obtain a simplified proof of this theorem.
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M; + M; = o for each i and j (5,7 <n) (i #j),

and M; — o is connected, then there is a homeomorphism Z of S — 0 onto S - K
such that the closures of

Z{My =0)y Z{My=0),ees,Z(M, -0)

are mutually exclusive bounded continua, By using a theorem proved by Lubben
[4, Theorem 18], it can be shown that there exist n — 1 simple closed curves
Ji, 12500y ], 1 such that

(1) J; +Jj =o for eachiandj(i,j <n)(i#j) and

(2) each of the n complementary domains of J, +J2 + +++ + J,.1 contains
one of the sets My ~o, Mz ~0,+++, M, — 0. Furthermore, it can be shown that
there exist n — 1 simple closed curves Hy, H,, ++, H,., satisfying the conditions
required above for Ji,Jz,+++,Jp-1 such that J; - Hj =0 for each i and j (;,
j < n), and the connected domain having J; + H; as its boundary does not inter-
sect My + My + +++ + M,. There is a homeomorphism T, of S onto itself leaving
o fixed such that for each i (i < n), T;(J;) and T,(H;) are polygons. There
is no loss of generality in assuming that K has radius 1 and that T;(K) =K.
Consider a polar coordinate system with origin o, and let T, be a transformation
that carries (p, 6) into (p +1,60), where p > O, Then T,T; is the desired
homeomorphism Z.

2. Some properties of continua with respect to point sets which intersect
them.

Notation and definitions. If G is a collection of point sets, then G* denotes
the sum of the sets of G.

If G is a collection of point sets and M is a continuum intersecting every
set of G such that no proper subcontinuum of } intersects every set of G, then

M is said to be irreducible among the sets of G.

If G is a collection of mutually exclusive closed point sets and ¥ is a con-
tinuum intersecting every set of G such that for some two sets K and K; of G
the set M — M « (K, + K,) is connected, then M is said to have property X with
respect to G.

If p is a point of the continuum ¥, the sum of all proper subcontinua of ¥

containing p is called a composant of M.

A proper subset H of the continuum ¥ is said to be a set of condensation of
M if every point of H is a limit point of ¥ — H.
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THEOREM 2. If M is a compact indecomposable metric continuum and G is
a countable collection of closed subsets of M such that no set of G intersects

every composant of M, then uncountably many composants of M lie in M - G*,

LEmMma 2.1, If
(1) M is a compact indecomposable metric continuum,

(2) His a closed subset of M such that some composant K of M does not
intersect H,

(3) D is a domain intersecting K but not H, and

(4) W is the collection of all components of M =M « D that intersect H,
then W* is closed and each of its points is a limit point of M - W*,

Proof of Lemma 2.1. Suppose that W* is not closed. Since W* contains H,
then some point p of M — (D + H + W*) is a limit point of W*. There exists a
sequence of continua L, L,, L3, +++ converging to a continuum L containing p
such that for each n, L, is an element of W, Since each L, intersects the closed
set H, then L intersects H. This means that L is a subset of some element of
W. Hence W* is closed. Since each element of W intersects H and is a proper
subcontinuum of the indecomposable continuum M, then W* does not intersect
K. Since K is dense in M, then every point of W* is a limit point of ¥ ~ W¥*,

Proof of Theorem 2. Let X be an element of G. By applying Lemma 2.1 to
each element of a sequence of domains in M — X closing down on a point of a
composant of M not intersecting X, it can be seen that the sum of all com-
posants of # intersecting X is the sum of a countable number of closed sets of
condensation of M. Since G is countable, the sum of all composants of M inter-
secting G* is the sum of a countable number of closed sets of condensation
of M. Hence by Baire’s theorem [6, Theorem 15, p.11], some composant of M
does not intersect G*. Since each composant of M is the sum of a countable
number of continua of condensation of #, it follows, upon again applying Baire’s
theorem, that uncountably may composants of M lie in M ~ G*.

THEOREM 3. If G is a finite collection consisting of at least two mutually
exclusive closed point sets and M is a compact metric continuum irreducible
among the sets of G, then there exist two sets K, and K, of G such that M ~
M. (K, +K;) is connected; that is, M has property X with respect to G.

LEmMA 3.1. Suppose

(1) G is a finite collection of mutually exclusive closed point sets,
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(2) M is a compact metric continuum irreducible among the sets of G,
(3) Ky, Kj, and K3 are three sets of G, and
(4) M, and M, are subcontinua of M such that

(1) for each i (i < 2), M; intersects every set of the collection G —K;
and does not intersect K,

(2) the set My ~ M, « (K, + K3) is connected, and
(3) M, intersects My. Then M has property X with respect to G.

Proof of Lemma 3.1. There is a subcontinuum M, of M, irreducible from
K, to M;. Since the connected sets M; — M, + K, and M, - M)+ K, have a point
in common, their sum is connected. Since ¥, + M, is a subcontinuum of M inter-
secting every set of G, then M; + M, = M. But

(Ml '_Ml -K2)+(M2'-M2‘ 'K1)=(M1 +M2')’-(Ml +M2’) . (K1 +K2)

=M-M. (Kl +K2)-
Hence M has property X with respect to G.
LEMMA 3.2, Theorem 3 holds true if M is decomposable.

Proof of Lemma 3.2. Suppose that for any nondegenerate proper subcollection
G, of G there is a subcontinuum of M having property X with respect to G;.
It will be shown that if this condition is satisfied, then M has property X with
respect to G. Then Lemma 3.2 will follow by induction from the following well

known facts:

(1) Theorem 3 holds true if G consists of two closed sets and

(2) if W is a finite collection of mutually exclusive closed sets and K is a
compact metric continuum intersecting every set of W, then some subcontinuum

of K is irreducible among the sets of W.

In addition to the above supposition, suppose that M does not have property
X with respect to G. Then there exist three subcontinua M, M,, and M3 of M
and three sets K;, K,, and K3 of G such that

(1) for each ¢ (i < 3), M; has property X with respect to the collection
G - K; and does not intersect K; and

(2) the set My —M; « (K, + K5) is connected. By Lemma 3.1, neither of
the sets M, and M3 intersects M;. Hence M, + M3 is a proper subset of M
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intersecting every set of G. Then M, and M; have no point in common. For
each i (i < 3), let p, be a point of M;. Since M is decomposable, some proper
subcontinuum M’ of M contains some two of the points p,, p,, and p, [2, The-
orem 4], As the three cases are quite similar, consider the case in which
p, +p, is a subset of M" Since M” +M; + M, is a continuum intersecting
every set of G, then M’ + M; + M, = M. Hence M3 is a subset of ¥" It follows,
in the same manner, that each of the sets M; and M, is a subset of % Then
M’ intersects every set of G. This is contradiction since ¥ is irreducible among
the sets of G.

Proof of Theorem 3. If M is decomposable, then Theorem 3 follows from
Lemma 3.2. Suppose that ¥ is indecomposable. Then no composant of M inter-
sects every set of G. Let L| be a set of G such that some composant of ¥ does
not intersect L;. There is a set L, of G such that some composant of M inter-
sects L; but not L,. Let G’ be the collection consisting of all elements of G
that do not intersect every composant of M, By Theorem 2, some composant of
M lies in M =M « G”*. Since this composant is connected and dense in M, then
M-M.G** is connected. As it was shown above that G’ consists of at least
two closed sets, then M has property X with respect to G Hence M also has
property X with respect to G.

THEOREM 4. If, in the plane, K, and K, are mutually exclusive bounded
continua, K3 is a closed circular disc not intersecting K| + K,, and M, M5, and
M3 are mutually exclusive bounded continua each intersecting each of the sets
Ky, K3, and K3 such that M; = M; « (K, + K3) is connected for each i (i < 3),
then one of the continua My, M;, and M3 intersects the interior of Ks.

Proof of Theorem 4. F.B. Jones [3, Theorem 28] has proved that if J is
the boundary of a simple domain D in the plane, H is connected set lying in
D +], and K is a continuum lying in (D +J) — H, then no two points of H + J
separate two points of K . J from each other on /. Repeated use of this result

will be made in the following argument.

Suppose that no one of the continua M, M,, and M; intersects the interior
of K3. Let J3 denote the boundary of K3. There exists an arc of J; which inter-
sects two but not three of the continua M, M,, and M;. Consider the case
in which such an arc intersects both M, and M3. By [6, Theorem 17, p.189],
there exist two points @, and a, of J; and an arc @, a, lying, except for @, and
ay, in the exterior of /3 such that a; + a, separates J3 « M from J3 « (M, + M3)
on J; and @y a; does not intersect M; + M, + M;. Hence a, a, intersects K; + K,.
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Therefore a; a; contains two arcs a; by and a, b, irreducible from J; to K; + K,.
Since the set

K1+a1bl +(12b2 -(bl +b2)
does not intersect the connected set
K2 +M1 +M2 _(Ml 'Kl +M2 'Kl),

then one of the points b; and b, does not lie in K;. Similarly K, does not con-
tain both of these points. Hence one of the points b; and b, belongs to K; and
the other belongs to K. It follows from [6, Theorem 17, p.189] that there exist
two points c¢; and c; of J3 and an arc ¢, c; lying, except for ¢, and c,, in the
exterior of /3 such that ¢, -and c; belong to M, and M, respectively and ¢, c,
does not intersect K; + K + ay by +aj by. Let H be an arc in ¢y ¢, irreducible
from M; to M,. Since a, + a, separates J; + M, from J3 + M, on J3, then the
connected set

H+My +My —(My + M) - (Ky +K3)
intersects the continuum
K1 +K2 +M3 +albl +¢Zzb2.

Hence H intersects M3. Then there is an arc #’ in H intersecting both ¥, and
M5 but not M,. The connected set

H +My + M3 = (My +M3) « (K; +K,)
does not intersect the continuum
Ky +Ky +My +ay by +azb;.
This is contrary to [3, Theorem 28],

THEOREM 5. If, in the plane, W is a collection consisting of n mutually
exclusive bounded continua and G is a collection consisting of n® —n+1
mutually exclusive continua each intersecting every continuum of W, then some

continuum of G contains a bounded continuum which intersects every continuum

of W.

Proof of Theorem 5. Use the notation described in §1. Let K be a closed
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circular disc not intersecting G* + W*. By Theorem 1, there is an inversion T
of the plane with respect to K such that the continua of G’ are bounded and
mutually exclusive and no one of them intersects the interior of K. The continua
of W’ are mutually exclusive and bounded and no one of them intersects K.
Since Theorem 5 obviously holds true if n = 1, suppose that W’ consists of at
least two continua. Each continuum of G’ contains a continuum irreducible
among the sets of W’ Hence by Theorem 3, each continuum of G’ contains a
continuum which has property X with respect to W’. Since the number of con-
tinua of G’ is one more than twice the number of distinct pairs of elements of
elements of W ’, then there exist three mutually exclusive continua M/, M),
and M, and two continua K{ and K of W’ such that

(1) for each ; (i < 3), Mi' is a subset of a continuum of G’ and intersects

every continuum of W * and

(2) M- M (K{ +K,) is connected. Since no one of the continua M,
My, M; intersects the interior of K, it follows from Theorem 4 that some M].'
(j < 3) does not intersect K. Then T-'(M) is a bounded subcontinuum of some

continuum of G and intersects every continuum of W.

3. Convergent sequences of continua. The author has previously shown that
Theorem 6 holds true if M;, M,, M3, +++ are compactly connected [1, Theorem
5. As a consequence of Theorem 6, the requirement in the hypotheses of
Theorems 7 and 8 of [1] that the continua of o be compactly connected can
be omitted.

THEOREM 6. If My, My, M3,+++ is a sequence of mutually exclusive non-
degenerate continua in the plane converging to a continuum M, then there is a
sequence T,, Ty, T3,+++ of bounded continua converging to M such that for
each n, T, is a subset of My, and is irreducible between some two points.

With the aid of Theorem 5, this theorem can be proved by an argument quite
similar to the argument given to prove Theorem 5 of [1].

4. A property of a certain type of unbounded continuum. R.L. Moore [5] has
shown that the plane does not contain uncountably many mutually exclusive
triodic continua. N,E. Rutt [8] has shown that if ¥ is a continuum containing
two unbounded continua neither of which contains the other, and M does not
separate the plane, then the plane does not contain uncountably many mutually
exclusive continua such as M. There exist continua which satisfy both the
hypothesis of Rutt’s theorem and the hypothesis of Theorem 7. However, in
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Theorem 7 it is not required that ¥ should not separate the plane. It should
also be noted that there exist continua which satisfy the hypothesis of Rutt’s
theorem but do not satisfy the hypothesis of Theorem 7. (See [7, Example 11.)

THEOREM 7. Let M be a continuum having the property that for some posi-
tive integer n there exist n domains intersecting M such that no bounded sub-
continuum of M intersects each of these domains. The plane does not contain
uncountably many mutually exclusive continua such as M.

Proof of Theorem 7. Suppose that there exists a collection G consisting of
uncountably many mutually exclusive such continua in the plane. There exist
an uncountable subcollection G, of G and a positive integer r such that if Y is
a continuum of G; then there exist r domains each intersecting Y such that
no bounded subcontinuum of Y intersects each of these domains. Then there
exist a sequence M;, M,, M3,... of distinct continua of G; and a positive
number d such that

(1) for each j, there exist r points p; ,p,,,***,p; of M; and r mutually
exclusive circular domains Dy, Djs,«++, D;; having the points p,,p.,, ++,
p,, respectively as centers and having a diameter greater than d,

(2) for each j (j <r), the sequence Pijs PyjsP3js** converges to a point
Pjs and

(3) for each i, no bounded subcontinuum of ¥; intersects each of the do-
mains D;y, D;3,+++,D;;. There exist mutually exclusive circular discs K,
Ky, +++,K; such that for each j (j <r), Kj has p; as its center and has a
diameter less than d/2. There is a positive integer m such that for each j
(j <r) and each n (n > m), K; is a subset of Dyj. Since infinitely many of
the continua M, M5, M3, -+ . intersect each of the circular discs Ky, Ky, -+, K;,
then by Theorem 5, there is a positive integer n greater than m such that some
bounded subcontinuum H,, of M, intersects each of the circular discs K, K, ++,
K,. Hence H, also intersects each of the domains Dy, Dy2,+++,Dpr. This

involves a contradiction.
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