MINIMAL BASIS AND INESSENTIAL DISCRIMINANT
DIVISORS FOR A CUBIC FIELD

LEONARD TORNHEIM

In terms of the coefficients &, 3, y of a defining equation

(1) A =60 +ub*+B0+y=0

of a cubic field F over the rational number field Q, Albert [1] has given an ex-
plicit formula for a minimal basis, that is, a basis of the integers of Q(6)
over the rational integers. We solve this same problem with a shorter proof and
a simpler result. This basis is then used to {ind the maximal inessential dis-
criminant divisor, that is, the square root of the quotient of the g.c.d. of the
discriminants of all integers of Q( @) by the discriminant of Q(6). It is known

[31 that the only prime dividing it is 2; we determine the power as 2° or 21,

We first secure a normalized generating quantity.

LeEMMA 1. If K is any cubic field, then K = Q(0) with

(2) 0®+a6*+b=0,

where (1) a and b are rational integers, (ii) no factor of a has its cube dividing
b, and (iii) if 3||a, then the discriminant A =—b(4a® +27b) of 6 is not di-
visible by 3* unless 3 |b.

Here g" ||y means g" |y and g"*'}y.

Proof. The substitution 6”= 60 + ¢/3 is used to obtain an equation of form
(1) with o zero. Follow this by the substitution 6°=1/6 to obtain (2). For
Conditions (i) and (ii) it is obvious that a substitution 6’= k6 will be effective.
If (iii) does not hold apply the substitution 6”=ab ~3b0 +a® 6% then 67 +
¢0’% +d =0 where

c=—a(6b+a’), d=-~b3(4a®+27b)=0%A.
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Now 3%||c since (b,3) =1, Also 3*|d. If 3%|d, then the quantity 6°"= 6’/9s
satisfies the conditions of the lemma, where s is the largest integer for which

(5,3)=1, s|c, and s®|d. If 3%4d use 07’ = 6’/3s.
Essentially the following lemma is given by Sommer [2; p. 2611

LEMMA 2. The integers of Q(0), where 6 is described in Lemma 1, have a

basis over the integers given by

-B+0 B*+aB +(B +a)f+ 62
wp = 1’ Wy = y W3 =
D D?D,

with B, D, D rational integers satisfying

(3) 3B+a=0(D),

(4) 3B% +2aB=0(D?Dy),
(5) B®+aB?+b=0(D3D}),
(6) -A=b(4a*+27b) =0(D°D}),

and D, D, are maximal subject to these conditions.

Proof. We shall first prove that D = 1. Let p be a prime dividing B and D.
By (3), p also divides a. But then by (5), p®|b, contradicting the choice of
6. Hence (B, D) = 1.

From (3) and (4), we have aB = 0(D). Therefore D |a. But by (3), D=3

or 1.

If D =3, then 3}b because from (5) we would get D |B. But then (6) con-
tradicts (iii) of Lemma 1. Hence D = 1.

Therefore the problem is equivalent to determining the largest D for which
there is a solution B satisfying (4), (5), (6), when D =1, It is sufficient to
find solutions of these congruences with D; replaced by prime powers p” and
then Dy will be their product. A value of B can be found from solutions modulo

p" by using the Chinese remainder theorem.

Thus we wish to determine the maximal value e of r for which there exists

a solution B of the simultaneous congruences

(7) B(3B +24) =0 (p7),
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(8) B*+aB*+b=0(p?),

(9) ~A=b(4a®+27b)=0(p*).
The power p® exists because of (9); in fact if p*|[| A, then e < s, where
S =[u//2]-

Case 1. (p,3b) =1. Then e =s. For, let B be a solution of

L=3B+2a50(ps);

hence (7) is satisfied. By (9)
4a®=-27b (p?*).
Now
L®-3aL?=0(p2°).
This on expansion gives

27B%+21B%*a -4a® =0 (p*°),

which with the above formula shows that (8) is satisfied. Thus (7), (8), (9)

hold with r = s. Hence e > s. But since e < s we have e =s.
Case 1I. p|36.

Ili. (p,2a)=1. Then e =s. For, by (9), p*||b. Simply take B =0(p*)
to see that (7), (8), (9) hold with r = s.

lii. plb, pla. Then e =0 if p ||b and e=1=s~1 if p?||b. Notice that
p3kb by (ii) of Lemma 1. First, if p®|b, taking B =0(p) presents a solution
of the congruences with r =1; thus e > 1. On the other hand, if ¢ > 1, then
p|B by (8); so that p®|b again by (8). Finally, if e > 1 then p?|b by (8)
since p | B by the preceding sentence. This is a contradiction to (ii) of Lemma
1; hence e < 1. It is easy to see that if p#3, then s =1 when p||b and s =2
when p?||b. If p=3, thens = 2 unless p®||b, p?|a and then s = 3.

Iliii. p =3, pla, ptb. Notice that then s =1 by (9) and (iii) of Lemma 1.

Iiii (1). 3%|a. Then e =0 unless b=+1 (3%) in which case e = 1. Now
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e < s = 1. Furthermore, the fact that e =1 if and only if 5 = +1(3?) is a con-
sequence of (8) since only then does B3+5=0(3?) have a solution for (3,6)=1,
the solution being given by B =~ b (3); (7) and (9) always hold with r = 1.

iii (2). 3||a. Then e =0, unless b +a=+1(32), in which case e =1.
That e < 1 is a consequence of (9) and (iii) of Lemma 1. If r = 1, then (7) and
(9) always hold and (8) has a solution if and only if b+a=+1(3%). For,
if B satisfies (8) then 34B; hence B?=1(3), aB*+b=a+b(3%). But
B3=1+1(3?%) so that a +b=—B* =%1(32), Conversely, if a+b=%1(3?%),
take B=~-(a+b)=+1==b(3);thenB° +aB? +b=11+a+b=0(3%)

liv. p=2, 2|b, 24a. Define ¢ and ¢ by 2°|| b, b = 2%.

Iliv (1). ¢ odd. From (7), 2|B. In the expression on the left in (8), there
is only one term, either aB? or b, containing 2 to the lowest power. Hence
e < [t/2). But B =0(2") with r=[¢/2] does provide a solution of the three
congruences. Hence e =[¢/2]. Notice that e =s —1 since u=¢+1 if t=1
butu=¢t+2if¢ > 1.

Miv (2). ¢ =2, Let 4% ||(4a® + 27b), then w > 1. Set 4a> + 27b = 4*H. By
(9), e <w + 1. Now e > w simply by replacing s by w in the solution of Case
I. It remains to determine when e =w + 1. Then from (7), 2|B and from (8),
224B. Also from (7), 3B +2a =0 (2%); that is, 3B =-2a +2"S. Now the
product of 27 with the congruence (8) gives

4a% -3.2% g5? 4 23WS3 L 97p =0 (27%*2),
Hence
9w g3 L 92wy _3.22W 452 = 0 (22W12)
or

2wWS3 L I - 3aS% =0 (22).

If S=0(2), then H=0(4), an impossibility. Hence S is odd, S?=1(4),
§%=5(4), and

2¥S + H +a =0 (2?),

But since w > 1, we have 2S = 2% (22), Hence
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(10) 2¥ +H +a=0(4),

If w=1, then H=a> +27¢=0(2), a contradiction to (10), Hence w > 1.
Conversely, if (10) is true, then all the congruences in this paragraph are

satisfied by taking S odd; that is, by taking for B a solution of

3B +2a = 2W (2w*1),

Hence e =w + 1 if and only if (10) is satisfied; that is, # + a =0 (4). Notice
from the definition of w that u = 2 + 2w; hence s =w + 1.

Hiv(3), t=2v (v > 1). From (9), u =2v +2; hence e <s =v+1. Now
B =0(2") yields a solution of the congruences with r =v; hence e > v. We
determine when e = v + 1. Then from (7), B is even. Again from (7) either
2{|B or 2Y|B. In the first case v < 1 by (8) and this is a contradiction to
v > 1; hence B = 2YK. Now (7) holds while (8) implies

23UK3+a22UK2 +22vc50 (22v+2)’

which gives, since v > 1,

aK? + ¢ =0(4).
Thus K is odd and
a+c=01(4).

Conversely, if this last congruence is satisfied and B is taken as a solution

of B =2Y (2°*1), then B is a solution of (7), (8), and (9).

These deductions are summarized in the following theorem.

THEOREM 1. Let 0 satisfy the conditions of Lemma 1. A minimal basis

of Q(0) is

o=, wy =0, w3={By +aB +(B +a) 0+ 6* VD,

where U is a product of prime powers p® determined by the prime powers p**
for which (p?)S|| A as described below and B is a common solution of the con-
gruences given below:

(1) If (p,3b) =1, then e =s and 3B + 2a =0 (p®).

(2) If pla, pl|b, then e=0. Also e=s—1ifp#3 and e=s -2 if p=3.
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(3) If pla, p?||b, then e =1 and B=0 (p®). Also e =s —1 unless p=3
and p?|a and then e =s — 2.

(4) Ifp|3b, (p,2a) =1, thene =s and B =0 (p®).

(5) Ifp=3,3|a, 34b, thene <1 =s; and e =s if and only if b+a=+1(9)
and then B = - b(3).

(6) Ifp=2,(2,a) =1, 2°||b and
(a) iftis odd, then e =s — 1 and B =0 (2°);

(b) if t=2 then e =s — 1 unless H +a=0(4), where H=- A/45"b,
and then e = s. Also 3B + 2a = 257! (2%).

(c) ift > 2 and even, then e =s — 1 unless a+c=0 (4), where c=b/2",
and then e = 2. Also B = 2571 (2%).

The discriminant of Q(6) is A/D? It divides the discriminant A(x) of
every integer ¢t of Q(6) and hence their g.c.d. G. The largest inessential
discriminant divisor F is the square root of the quotient G/(A/D?),

THEOREM 2. The largest inessential discriminant divisor F is 1 except
it is 2 in Case 6b of Theorem 1 when

(11) H-3a+2%1=0(2%)
and in Case 6¢c when

(12) a+c+281=0(2%).

Proof. The discriminant A(a) of an integer & =c; w1 + ¢2 @3 + ¢3 @3 can

be found from the formula
Ale) = |a;; 12 AC0),
where the elements of the determinant |a;; | = |a;j(c) | are defined by
afl =g + a5 0+ a;; 0 (i=1,2,3),

Since the discriminant of ¢/ is unaltered by addition of a rational number, we

have
Ao) =A(C2 Wa +036L)3) = A(ﬁ),

where
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B=lcy +c3(B+a)/D10+(c3/D)62.

In computing ﬁ’2 use the fact that 0% = — 6% — b and 6* = 4?0 - b0 + ab. Also

since the first row of |q;;(B)] is 1,0,0, any rational terms can be ignored.

Hence,
(13) 033(33+a32+b) c,c2(3B%+2aB) clc, (3B +a) ,
laj| = - + 5 + el
D D D
Thus
(B +aB*+b)
(14‘) \al](w3)1= +a3 +
D
and
(3B +2aB) (3B +a)
(15) lajj(@; + @3) | = |azj(w3) | = @, M

D? D

Now, since GD?*/A is the quotient of the g.c.d G of laij |?A by A/D?, it
equals the g.c.d of [a;;| 2D?, Hence the inessential discriminant divisor F is
the g.c.d of |a;;|D.

To find F we determine for each prime p the highest power pf which remains
in all the denominators of the |a;;(c)| expressed in their lowest terms. Then
F is the quotient of D divided by the product of these prime powers and thus F
is the product of all pe'f.

In all cases of Theorem 1 except in 5 when a + b=+1 (32), in 6b when
H+a=0(2%), and in 6¢c when a +c=0(2%), B may be chosen to satisfy

either

B =0 (p3e)

or

3B+2a50(p26)-

In these cases (15) implies, since its first term is then integral, that e = f
when pta. But if p |a then p | b and since we need consider only e > 0 we have

Case 3 of Theorem 1. Then (14) with B =0 (p>®) shows that f = 1=e.
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Next, in Case 5 when b+a=+1 (3?), 3{B. If 3%|q, then (15) implies

that f=1 =e. But if 3||a then a = 3a; and a13+b #0(3) by (iii) of Lemma 1.

Were =0, then B + 2a; =0 (3) by (15), which implies B =a; (3). But then

Bs+a82+bzaf+b?§0(3),

a contradiction to (8). Hence again f =e.

In both Cases 6b and 6¢c, 2| B by (7). Now

2(3B + a)

laij(wz + @3) [ +[ajj(-wr + 03) | - 2[a;;(ws) | = D

Since 2]|2(3B +a), we have f >e - 1,

We now consider in particular Case 6b when H +a=0(4). Then 3B =
- 2a + 2°°1Q, where Q is odd. Thus

27(B® +aB? +b) =4a> + 27b — 3Q?a22¢°2 4 Q323¢3,
Hence if f = e — 1, then

H-3z+2¢1=0 (2%)

by (14), and if this is satisfied then f=e — 1. For, the first term in (13) has
numerator divisible by 22¢*!, and 2€ || (3B? + 2aB) and 2° || (3B +a) so that

2‘?“|[c2 c32(3B2 + 2aB) +Dc22c3(3B +a)l.

Hence in lowest terms |a;; | has a denominator divisible by no power of p greater
than e — 1.

We finally discuss Case 6¢ when a + ¢ =0 (4). Then B =2°"! + C2°, where

we may assume that 2¢*2 | C, and b = 22{e-1); Hence
B +aB®+b=2%" 1222 (a+c) (2%),
If f=e — 1, then by (14) this expression must be = 0 (22€*1) 50 that
2¢"! L a+c=0(8).

If this is satisfied then f=e — 1 because the first term of (13) has numerator

divisible by 22€¢*!, and 2 ||(3B? + 2aB) and 2°||(3B +a) so that
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get! l[c2 032(332 + 2aB) +Dc2203 (3B +a)l.
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