REMARK ON THE USE OF FORMS IN VARIATIONAL CALCULATIONS

Louis Auslander

In [1] we introduced in equation (2.2) the form

$$\omega = \sum \frac{\partial F}{\partial q_i'} dq_i - \left(\sum q_i' \frac{\partial F}{\partial q_i'} - F\right) dt$$
.

The purpose of this note is to explain the reason for introducing precisely this form.

We considered the integral

$$I = \int_a^b F(q_1, \dots, q_n; q'_1, \dots, q'_n; t) dt$$
.

Now let S be the set of all forms η such that if X denotes the vector field to a curve C with equations

$$q_{i} = q_{i}(t)$$

$$q'_{i} = \frac{dq_{i}}{dt}$$

$$t = t$$

Then $\langle X, \eta \rangle = F$ or $I = \int_a^b \langle X, \eta \rangle dt$. The set S is certainly not void since $F(q_1, \dots, q_n; q'_1, \dots, q_n; t) dt$ and ω are contained in it. We will prove the following.

THEOREM. There exists one and only one form ω in S such that along every curve of the above type ω and $d\omega$ give rise to forms in the space (q_1, \dots, q_n, t) .

Proof. The hypotheses of this theorem are equivalent to the following two analytic conditions:

- 1. $\langle \partial/\partial q_i', \omega \rangle = 0$
- 2. $\langle \partial/\partial q'_i \wedge \partial/\partial x, d\omega \rangle = 0$ when $q'_i dt = dq_i$ where x is any of the coordinates $(q_i, q'_i, t), i=1, \dots, n$.

Condition 1. implies that $\omega = \sum a_i dq_i + b dt$. Now since $\omega \in S$ we must have

Received February 17, 1956. This paper was written while the author was a National Science Foundation Postdoctoral Fellow.

$$\sum a_i \frac{dq_i}{dt} + b = F$$
 or $\omega = \sum a_i dq_i + (F - \sum a_i q_i) dt$.

By computing $d\omega$ and replacing q_idt by dq_i we get

$$\frac{\partial F}{\partial q_i'} = a_i$$
.

This proves that $\omega = \sum \frac{F}{q_i'} dq_i - \left(\sum \frac{F}{q_i'} q_i' - F\right) dt$ is the only form which satisfies the theorem.

REFERENCE

 Auslander, L., The use of forms in variational calculations, Pacific J. Math., 5 (1955), 853-859.

THE INSTITUTE FOR ADVANCED STUDY