EXTENSION OF UNIFORMLY CONTINUOUS
TRANSFORMATIONS AND HYPERCONVEX
METRIC SPACES

N. ARONSZAJN AND P. PANITCHPAKDI

Introduction. The results of the present paper combine the research
done by the first author mainly in 1929-1930 (which was never published)
and the results of the thesis presented by the second author at the
University of Kansas, 1955.

The principal topic of the first two sections is the following: can a
uniformly continuous transformation 7' of a metric space & into a metric
space . be extended with conservation of modulus of continuity to any
larger metric space & containing < metrically so that the range is still
contained in % ? In §1 we show (Theorem 2) that for the possibility
of such unlimited extension of 7' it is necessary that the minimal modulus
of continuity of 7 satisfy a condition which is proved in Theorem 1 to
be necessary and sufficient for the existence of a subadditive modulus
of continuity for 7. In §2 the transformations 7' are restricted to be
those with a subadditive modulus of continuity. The main result of this
section is that a necessary and sufficient condition that there exist an
unlimited extension of any transformation 7' into a space .& with con-
servation of a subadditive modulus of continuity é(¢) is that .o be
hyperconvex' (see Definition 1 of §2). The m-hyperconvexity is intro-
duced for any cardinal m_>>38, which is a weaker property than hyper-
convexity.

In §3 the properties of hyperconvex (or m-hyperconvex) spaces and
subsets of metric spaces are investigated. As a useful tool the notion
of almost m-hyperconvexity is introduced; it is slightly weakar than
m-hyperconvexity. The main results of this section are the following:
m-hyperconvexity implies completeness for m >, (Theorem 1’) ; almost
m-hyperconvexity and completeness imply m-hyperconvexity for m=> &,
(Theorem 4). In any complete metric space the class of all m-hyper-
convex subsets is considered as a subset of the class of all closed subsets
provided with the well known metric introduced by Hausdorff. It is
proved that m-hyperconvex subsets form a closed set in the class of all
closed subsets (Theorem 5). The topological properties of hyperconvex
spaces are then investigated. It is proved that every hyperconvex space
is a generalized absolute retract.

In §4 the hyperconvex Banach spaces are considered and a direct
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1 This suggestive term “ hyperconvex ” was proposed to the authors by A. H. Kruse.
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proof is given of a conjecture of L. Nachbin that the closed unit sphere
of a hyperconvex Banach space possesses extreme points®.

In §5 the Banach spaces < (2#7) of continuous real functions on
compact Hausdorff spaces 57 are considered from the point of view of
m-hyperconvexity. In Theorem 2 a necessary and sufficient topological
condition (Qm) for the space 2%~ is given in order that < (2#°) be m-
hyperconvex.

In the final § 6 relevant examples are given illustrating the develop-
ments of previous sections. Also several unsolved problems are stated.

1. Moduli of uniform continuity. We shall call an extended valued
nonnegative function d(e), 0<e< oo, a modulus of uniform continuity,
or briefly a modulus of continuity, if it is nondecreasing and converges
to 0 as ¢ goes to 0.

If T is a transformation of a metric space <7 into a metric space
7, we call 8(e) a modulus of continuity of T if, for =, y in < and
P, y) <e,

(1.1 - piT(@), T()=0(e)

where p and p, denote the metrics of < and & respectively.

If a transformation 7' has some modulus of continuity, it is uniformly
continuous.

For each uniformly continuous transformation 7' there exists a
minimal modulus of continuity 6,(c) defined as follows:

(1.2) ox(e)=sup [p,(T(x), T(v)); x, ye =, p(x, y) <¢] .

Every other modulus of continuity of T satisfies the obvious relation
3:(e) < 8(e) for all e>0.
A modulus of continuity is called subadditive if

(1.3) (e 4 &) = 9(er) + (&)
for any ¢, >0 and ¢, >0.
THEOREM 1. In order that there exist a subadditive modulus of conti-

nuity magorating o given modulus of continuity d(c), it is necessary and
sufficient that

(1.4) lim sup o(e) Lo,

£—>00

2 Thlé cbnjecture was already indirectly proved by J. L. Kelley [11]. Numbers in
square brackets refer to the references at the end of the paper.
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Proof. If o,¢) is a subadditive modulus of continuity majorating
d(¢), then for some e, >0 such that Jy(s,)< oo and all ¢>>¢, we have

0 L)
limsupr—("'f)—g__limsup - < :

g0 & g0 15

S|

<limsup~ ® d(z,)
e

g0

=f3.(€9,),<oo ,
&
where [a] denotes the greatest integer in a. Hence the condition is
necessary.
To prove the sufficiency of the condition we observe first that since
o0 satisfies (1.4), there exist positive numbers ¢, and M such that 6(c) < Me
for ¢e—>¢, and hence, for every a with 0<a g,

(1.5) 8(e) < 6(a) + ZMS for all ¢>>0.

This is easy to check, by considering e separately in the intervals (0; a],
(a; e, and (e;; ).
Define now the funection Jy(e) for all eZ=0 by

(1.6) 3e)= inf [6(04)4— El—Me].
0<w<leg o

This funetion is obviously finite, nonnegative, nondecreasing, and
satisfies 0(e)<<dy(e). Furthermore, for e<lef, 0,(e)0(1V e)+a M/ ¢,
hence liin 0o(e)=10,(0)=0. Finally, since d,(¢) is the inf. of linear functions
it is coenéave (that is, 0’ +p"e")=p0u()+"0(e”) for all ¢, &', [,
and B” nonnegative with '+ /5”=1). From this it follows that d,(¢) is
continuous and subadditive’.

A metric space & is called convex* if for any two of its points =,
Y, =%y, and for some a, f with p(z, y)=a+p, « >0, >0, there exists
a point z in & with p(z, 2)=«a and p(z, y)=pF. If such a point z exists
for any decomposition p(z, y)=a+f, a >0, >0, then & is called ¢otally
convex’.

REMARK 1. If the domain <~ of a transformation 7' is a totally
convex space, then the minimal modulus of continuity is subadditive.

5 See, for example, E. Hille [9].
* See K. Menger [13].
5 See K. Menger [13].
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In fact, for some given & >0, & >0 and for every arbitrarily small
number 7 >0, there exist points @, y in <7 such that p(z, y) e, +¢, and
pT(x), T(y)) > 0r(e;+e)—%. For x and y we can choose a point z such

that

pa,2)=" p(@,y)<e
+e,

&
and

—px <€
,y —Cy .
( )_. 2

&1 &y

oz, y)=

From this we get
8r(ei+ &) =7 < pT(x), T(y)) ZpT(), T(?)) +o(T(2), T(9))
< 07(e)) 4+ 02(e,) -

Since 7 is arbitrary, our assertion follows.

We will say that a transformation T of a metric space & into a
metric space . has the unlimited uniform extension property with respect
to 7 if for any metric space & containing <7 metrically’, there exists
a uniformly continuous extension of 7' to the whole of & with range
in 7. Clearly if T has this property, then it must be itself uniformly
continuous.

THEOREM 2. In order that a transformation T of & into & have
the unlimited uniform extension property with respect to 5 it is necessary
that its minimal modulus of continuity 6,(c) satisfy the property (1.4)
of Theorem 1.

Proof. Suppose that the property (1.4) is not true for 6,(¢). Then

there exists a sequence of real numbers {¢,} such that ¢, >n and 9x(en) >n,
eﬂ

n=1,2, ---. Therefore by the definition of ¢,(c), there exist «,, ¥, in
< such that a,=p(z,, v)<e, and py(T(z,), T(y,)>ne, .

Form a space & from the points of <7 and the points of the form
(n, &), 0<&,<a,, n=1,2, ---. Define the metric p’ on & in the fol-
lowing way :

(1) z,yin &, p(x, y)=px,y) .
(2) zin &, y=(n,&,),
p'(x, y)=p'(y, x)=min [p(x, T,) +&,, P, Yu) +—E,] ,

6 & is contained in & metrically if it is a subset of & and the metric of &, for the
points of &, coincides with the original metric of &.
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(3) x=(n,&), y=®,7.), P, v)=pY, )=|8—7.l,

(4) z=(m, &), y=(n,7.), P’ @, y)=p'(y, @)
= min [0 (@, Y)+Ems 0’ Ym> Y) + X —En]
= min [Pf(xm w)+77nr P'(ym x)'*'an—"?n] .
The last equality in (4) can easily be checked, and also there is no
difficulty in verifying that p’ satisfies all conditions for a metric in the
space & .

Suppose that there exists a uniformly continuous extension 7' of T
to the whole of Z with range in .%. Then let 6(¢) be a modulus of

continuity for 7, and let ¢ be a positive number such that 8(e') < oo.

Denote [e’j]+1 by m,. Consider now the points of & of the following
&
type:

a, . .
(n," % %>=wn,i’ ?f=1y 2, "'s7nn—19 Lpo=oy
m,

and

Tnm, =Yn -

n

By definitions (2) and (3), we have

[0 €
O (@ns, xn,i+1)=—£~_§__n:€’ .
€

’

n

™

Therefore
mn—l
pT(z,), T(y.) < ZO ol T(2,.5), T(@p,541)) <mad(e’) .
On the other hand, this means that

nenémﬁ(e')éa(e/)( o 1) ’
&€

and so for n— o,

ol ol 1+ 1),

n

which is impossible.

2. Hyperconvex spaces. Extension of uniformly continuous trans-
formations. The main purpose of this section will be the study of
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extension of uniformly eontinuous transformations with conservation of
moduli of continuity ; in particular, we shall be interested in the property
of the space & which guarantees that every uniformly continuous
transformation 7' with range in & has the unlimited extension property
with respect to &, the extension conserving a given modulus of conti-
nuity 6(e) of 7.

Theorem 2 of the previous section shows that if this requirement
is satisfied, the minimal modulus of continuity of 7' must fulfill condition
(1.4). Then Theorem 1 says that we can choose for 7' a subadditive
modulus of continuity. We should therefore correct the statement of
our problem by restricting it to any transfomation with range in &
which admits a subadditive modulus of continuity &(¢). We wish all
such transformations to have the unlimited extension property with
respect to &, their extensions admitting the same modulus 6(¢). In
order to formulate the necessary and sufficient condition for & so that
our requirements be satisfied, we are going to introduce some definitions.

In the following definitions, we denote by m any fixed cardinal
number >>3.

DEFINITION 1. A metric space & will be called Ayperconvexr (or

m-hyperconvex) if for any indexed class of closed spheres in & S(z;, ),
eI (or for any such eclass with card (I)<'m), satisfying the condition

that p(zx;, z,)<r;+r; for all 4, j in I, the intersection N\ S(z;, 7;) is not
el

empty.

It is clear that hyperconvexity is stronger than m-hyperconvexity,
which is stronger than n-hyperconvexity if n<'m. For m=3, it is easy
to see that 3-hyperconvexity is equivalent to total convexity. (In fact,
if the space is totally convex and if p(x;, 2.) <7+, then the point z

which realizes the distances p(x,z)= - f‘—dp(xl,mz) and p(acz,z):wf2 — play,,),
1+ 7y T o

will lie in S(z;, 7)) N\S(z, 7). On the other hand, if the space is 3-

hyperconvex, then for the decomposition p(z, z)=a+5, a>0, >0,

we take any z in Sz, a) [\ S(x,, f), and therefore p(z;,2) <a, p(,,2)<j,

which are in fact equalities because of p(x,, )+ p(., 2) =p(@,, z.)=a+p.)

This is the justification of the term hyperconvexity.

DEFINITION 2. A metric space is called m-separable if it contains a
dense subset of cardinal < m.

It is obvious that m-separability is weaker than n-separability if
n<"m, and 3,-separability coincides with the usual separability. &
separability means that the metric space is a finite set, and m-separability
for a finite cardinal m means that the space contains at most m—1
points.
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We shall prove first a few statements about spaces having the above
properties.

THEOREM 1. If the space & is m-hyperconvex and at the same time
m-separable, then it is hyperconvex.

Proof. Consider an arbitrary indexed family of spheres S(z;, r,),
i€ I, satisfying the requirements of Definition 1, that is, p(x;, ) < r,+7,
for ¢,7el. Let {p,}, ke K with card (K)<m, be an indexed set of
points, which is dense in &. Put

(2.1) 7,=the infimum of all » >0 such that there exists ¢el with
S(p, ) DS, 7).

The class of spheres S(p., ri), ke K, satisfies the requirement for m-
hyperconvexity. In fact, card (K)<'m. Take any two indices %k, [ in
K and an arbitrary ¢>0. By (2.1) there exist i€ 1, jeI such that

S, r+) > S@;, )
and
S'_(ply 7‘;+5)>’§th /rj) .

The two spheres S(x, r;) and S(z,, », satisfy the requirement of m-
hyperconvexity. Therefore there exists a point ¢ in

Sz, ) NSy, ) 5
a fortiori, ¢ is in
S(px, Ti+e) N\ S(py, i +e)
That means
P(Dir D)= P01y O+ 0Dy, Q) S +17+25 .

Since ¢ is arbitrary, we obtain the requirement for m-hyperconvexity
for {S(p:, 1)}, ke K. It follows that there is a point = in /\ S(px, 77)-
kEK

What remains to be proved is that for every ¢ in I, z e S(x;, 7;), that is,
ole, )< r,. For this purpose take an arbitrary ¢ >0. By density of
the set {p,}, k€ K, there exists a point p, for each z, such that

p(;, pr)<e .

Hence

S_'(plcy ri+e) D_S'(x,, ) .
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Therefore
e rite,
and
(@, ) < (@, i)+ P(Dry @) <7+ e 1+ 2e .

Since ¢ is arbitrary, the proof is complete.

REMARK 1. The above theorem means that for m-separable spaces,
m-hyperconvexity is equivalent to hyperconvexity. For m<, the
theorem is completely trivial since m-separability means then that the
space has a finite number of points, whereas m-hyperconvexity implies
total convexity, which is impossible in a finite set except when the set
is reduced to a single point. For such a set clearly all our properties
are trivially satisfied.

REMARK 2. Since every space ¢ is m-separable for m >ecard (&),
it follows that hyperconvexity of & is equivalent to m-hyperconvexity
of & for any m >card ().

We give now a simple and almost obvious lemma, which we shall
need later.

LEMMA. If a metric space is (m+ 1)-separable, m =1, then any proper
subset of it is m-separable.

Proof. In fact, take first m to be finite. Then (m+1)-separability
means that the space has at most m points and any of its proper subsets
has at most m—1 points. Therefore it is m-separable. If m>3,, then
m+1=m. Let {p}, i€l, be an indexed set dense in & with card
(I)<m. For each i in I, consider in a proper subset <7 of & a sequence
{p; .}, n € N=the set of positive integers, such that lim p(p;, p; »)=p(p;, ZY.

It is easily checked that the set {p;.}, (¢, n) € Ix N, is dense in & and
card (I x N)<m-&y=m.

We can now consider our problem of unlimited extension of a uni-
formly continuous transformation with range in a given metric space
% with metric p,. Among the subadditive moduli of continuity, especially
important is the one given by d(e)=e. If a transformation admits of
this modulus of continuity, we will call it a contraction. The condition
we shall give in what follows will turn out to be necessary already if
we restrict the transformations to contractions, and suflicient if we
accept a transformation with arbitrary subadditive modulus of continuity.

7 o(ps, D) is the shortest distance between p; and 9 and may be zero.
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Therefore it will be convenient to give the two types of theorems
separately.

We use the notation T< T, or T>-T, for two transformations T
and 7 if T is an extension of 7.

THEOREM 2. Let & be a metric space and m be a cardinal number
=>8. If for every contraction T with some domain Z and range T(Z)
n F, and for any (m+1)-separable® metric space & containing 2
metrically, there exists a contraction T of & into F such that T>T,
then the space F is m-hyperconvex.

Proof. We start by proving that .& is totally convex, that is, 3-
hyperconvex. In fact, consider two spheres S(x,, ) and S(x,, r,) with
oz, ) <r+r,. We may assume a7, otherwise there is nothing to
prove). Let T be the identity transformation defined on & =(z, ,).
As the space & consider 2\ (y), ¥ being a point not in .7, and define
the metric p on & by putting

p(x'zr xl)zp(xl, {UZ)=P1(Q71, xz) )
‘0(1'1, 061)=p(x2, x2)=0 ’ P(y’ y) =0 s

(@, Y)=p(y, ©)=—"2
r+

1 2

Pl(xl’ xz) s

7y
ri+7r,

P2y Y)=p(y, 22)= Py, ) .
It is clear that & is a metric space and that it is certainly (m+1)-

separable. By hypothesis, there exists an extension 7 > T, which is a
contraction of & into &#. That means

e T (), ©)=p(T(v), T(@)) < p(y, )= ’j;r iy, @) <y

and similarly

p(T(w), 2) <2 p(@, )<y,
7,

which shows that S(z,, r,) /\ S(a,, 7,)540.

Take now an indexed class of spheres in &% S(x;, #;), 1€, card
(Iy<<m, with p(x;, x)<r,+7r, for 4,jel. We want to prove that

i,’\l S(x;, ,)5%0. Consider therefore the set & ={a;}, i€I; card (2)<
€

8 m+-1=m if m is an infinite cardinal.
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card (I)<m. We take in &7 the metric p, and consider as T the identity
transformation on <. Itis then a contraction. We shall form a space
& =2\J (&) by adjoining to & a single points € not in .7, and define
the metric p on & as follows :

p@, y)=p(x,y) if z,y in Z,

p(é =0,

oz, &)=p(&, x)=r'(z) for © in &7, where »'(x)=inf », for all »>0
such that for some ie I, S(z, ») > S(w;, 7).

To prove that the so defined p is a metric, we have only to prove the
following inequalities :

(1)  p,&)+py, ) =plx,y), @,yin 7,

(2) ol y)+oy, §)=p(x, ), @,yin 7.

Proof of (1). For every e>0, there exist 4,j€ I such that
S, () +¢) D8, ;)
and
Sy, r'(m)+) >S(z;, )

Since
oz, 2) Zr+ry,

by the total convexity,
S(a;, 7)) N\ S(z,, 7,)F£0 .

Hence the two spheres S(z, »(x)+¢) and S(y, »'(y)+e¢) intersect, and
i@, y) (@) + 1 (y) + 2¢ .

The first inequality is then proved because ¢ is arbitrary.

Proof of (2). Take an arbitrary ¢>0. There exists 4 ¢eI such that
S(y, ' (y)+¢)>S(x;, ;). Because

S(z, e, ) +7'(y) +) DSy, ' @)+ ) DSy, 74)
we have
pla, &)=r'(@) < pi@, Y)+r'(Y)+e .
Since ¢ is arbitrary, p(x, &) <p(x, y)+p(y, §). Clearly card (&)<m+1.
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By our hypothesis there exists an extension 77T of & into .& which
is a contraction. It follows, therefore, that

ol T(8), z)=pu(T(E), T(a)) < p(&, w)=r'(x) <7, .
Hence 1@ S(x;, 7)) 0.

THEOREM 3. Let & be an m-hyperconvex metric space, and T be a
tramsformation of @ metric space < into F with a subadditive modulus
of continuity 6(c). Let & be an (m+1)-separable space containing <
metrically. Then there exists an extension T >>T to the whole of & with
range in # with the same modulus of continuity o(e).

Proof. If we have a transfinite sequence of transformations {7} ,-.
such that 7,< T, for a«< fp and if all these transformations have the
same modulus of continuity &(¢), and their ranges in &, then their
common extension to the union of their domains has obviously also the
modulus of continuity d(¢) and its range in .&. It follows by a classical
argument that for the given transformation 7' there exists a maximal
extension T >>T with modulus of continuity 8(¢) with domain g &
and range in .&. We shall prove that <7 must then necessarily be &
and hence 7 will be the required extension of our theorem.

In fact, suppose that <& is a proper subset of &. Then there exists
a point ¥y in % — <. By our lemma, & is m-separable. Therefore
there is in <7 a dense subset {p:}, 1e1, card (I)<m. Consider in &

the family of spheres .—S'—(T(pi), o(o(ps, y))). Clearly we have
e T(p:), T(0)) < 3(p(py, 2,)) < (001> ) + (Y, D))
< d(e(psr ¥)) + 0(p(ps, v)) -

By m-hyperconvexity, there exists a point ze % such that for every 4
in I

(2.2) o(T(py), )< 3(p(ps, ) -

Define a transformation 7" with domain {p}.e;\/(¥) and such that
T (p)=T(p;) and T'(y)=z2. On the set {(D}ser, T'=T, and so 71" has the
same modulus d(¢). On its complete domain 7" has also the modulus §(¢)
in view of (2.2). Hence it is a uniformly continuous transformation with
modulus é(¢) and domain {p;}.,e;\J(%). Therefore it has a unique extension
to the closure of its domain with the same modulus of continuity. Since

the closure of its domain clearly contains <7\ (y)and on <& it coincides
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with 7', then the extension of 7" to the closure of its domain is a proper

extension of 7. This is a contradiction to the maximality of 7. Hence
our theorem is proved.

As an immediate corollary of Theorems 2 and 3 we obtain the fol-
lowing theorem.

THEOREM 4. Let 7 be a metric space. In order that any trans-
SJormation T of any metric space 7 into F with some subadditive
modulus of continuity 0(c) possess, for any space & containing Z metri-
cally, an extension to the whole of & with the same modulus 6(¢) and
with range contained in F, it s necessary and sufficient that 7 be
hyperconvex.

Proof. The sufficiency follows from Theorem 3, since every metric
space & is (m+1)-separable for some cardinal m, and .#, being hyper-
convex, is m-hyperconvex.

The necessity follows from Theorem 2, since & is m-separable for
some cardinal m, and therefore must be m-hyperconvex if we restrict

even the space & to be (m+ 1)-separable.

3. Properties of hyperconvex spaces; hyperconvex subsets of metric
spaces. In the present section we shall compare the hyperconvexity or
m-hyperconvexity with other properties of metric spaces, and also study
the class of all hyperconvex subsets of a given metric space. We intro-
duce first the following properties of metric spaces.

DEFINITION 1. A metric space is said to have the property (P) (or

(Pm), m=>3) if for any class of closed spheres S(x;, 7), i€, where I is
an arbitrary class of indices (or card (I)< m), such that every couple
of these spheres intersect, all the spheres intersect.

It is immediately seen that the property (P) (or (Pm)) is weaker
than hyperconvexity (or m-hyperconvexity). In fact, if any two spheres

S(x,, ) and S(x,, »,) intersect, then the relation p(z;, ;) <»;+; holds.

THEOREM 1. Property (P) (or (Pm) for m>&,) ‘mplies the com-
pleteness of the space &.

Proof. Take any Cauchy sequence {x,} in &. Put r,= sup p(x;,2;).
>k

Since {x;} is a Cauchy sequence, 7, converges to 0. Consider then the

class of spheres S(xy, ), k=1,2, ---. It satisfies clearly the require-
ment of property (P) (or (Pm) for m> ). Therefore there exists a

point & common to all S(x,, »,). It follows that
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lim sup p(x, ;) < lim sup 7,=0 .
k—> o0 k—>o0

Hence lim x,=®, which proves our theorem.

koo

As an immediate corollary we obtain

THEOREM 1. Hyperconvexity (or m-hyperconvexity for m > &) tm-
plies completeness of the space.

THEOREM 2. Hyperconvexity (or m-hyperconvexity) is equivalent to
the property (P) (or (Pm)) and total convexity.

Proof. In view of a previous remark it remains only to prove that
the property (P) (or (Pw)) and total convexity imply hyperconvexity (or
m-hyperconvexity). But this follows immediately upon inspection of the
definition or the relevant properties, and because of the fact that by

total convexity if two spheres S(x;, ;) and S(z;, r,) satisfy the relation
p(a;, ;) <7;+7r, they must intersect.

REMARK 1. In Theorem 2, we can replace total convexity by con-
vexity if we consider the property (P) (or (Pw) for m>&,). This is
due to the fact that by Theorem 1 the space satisfying the property
(P) (or (Pm), m>3&,) is already complete, and in complete spaces con-
vexity implies total convexity. (See K. Menger [12] and N. Aronszajn
[21)

We introduce now an auxiliary notion, which will be helpful in the
development of the present considerations.

DEFINITION 2. A metric space & is said to be almost hyperconvex

(or almost m-hyperconvex for m>>3) if for any class of spheres S(x;,, 7;),

1€ I (or for any such class with card (I)<m), satisfying p(z;, @;) < r;+7;,

i,jel, and for any ¢>0, the intersection /\ S(x;, r,+¢) is not empty.
i€1

It is clear that almost hyperconvexity (or almost m-hyperconvexity)
is weaker than hyperconvexity (or m-hyperconvexity). For m=3 the
notion of almost 3-hyperconvexity was first introduced under the name
of almost convexity (N. Aronszajn [1]).

When we consider the different properties which we introduced for
a subset of a metric space, we shall treat the subset as a space in itself
with the metric induced by the metric of the space in which it lies.

THEOREM 3. Consider two subsets A and B of a metric space &

with equal closures in & :A=B. If A is almost hyperconvex (or almost
m-hyperconvex), then so is B.
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Proof. Consider in B a class of spheres S(y;, 7;), ;e B, iel (I is
any class of indices or card (I)<m depending on what hypothesis we
accept), with p(y,, y,) <r;+7r;, for ¢,5¢el.

Since B 4, there is a point z; in A such that p(x,, yi)<—2— for any
e>0. Consider then the class of spheres §<xi, ri+»2>, tel. Here we

have

(s, ) < P, ¥) + p(Ysr Y5) + oY xz)gfl-m +r,+§ :

which shows that {g (xi, 7+ Z)} satisfies the condition of almost hy-
i€T
perconvexity (or almost m-hyperconvexity). Therefore N g(xi, 7+ -2) NA
1€l

is not empty. Let & be a point in the intersection. Since A< B, there

exists a point y in B such that p(z, y) < Z It follows that for ie I,

e ¥) Z oY )+ o2, ) + p(z, Y= "Z‘{' 7+ ;+ i‘:"?‘r]*e .

Hence the proof is complete.

THEOREM 4. If a space & is complete and almost (m+ 1)-hyperconvex,
then it 4s m-hyperconvex®.

Proof. Consider a class of spheres S(z;, r;), 1€ I, card (I)<n1, with
o, x) r;+7ry, 9,7€I. We shall construct by induction a sequence of
points {p,} in &, k=1,2, ---, such that

(3.1) peeS(piss '-1—~+-21;>f\ f\S’(mi,frﬁ—%), k=23, -

k-1 ier

Once the sequence {p,} is constructed, it is easy to see that it is a

Cauchy sequence. In faet, p(vi-1, D)< 3 kl_l

sequence. For its limit p we have then

+%, hence {p,} isa Cauchy

9 Qur original theorem was as follows: if a space & is complete and almost m-hyper-
convex for m= ¥y, then it is m-hyperconvex. We are indebted to the referee for the
remark, that by a slight change in the proof (which actually simplified it) one can prove
the present statement. Obviously the two statements are equivalent for m = 3, but the
present one adds to our information about the case with m < $to.
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T . 1
p(@;, p)= lim o(@;, )= lim( »; +'2k =7,
k—>o00 k—co

which means that N\ S(z;, 7;)540.
i€r
It remains to show that a sequence {p,} with property (3.1) exists.

By almost m-hyperconvexity, there exists a point p, in N S(%ﬂ‘ﬁ-%)-
1€T

Suppose that the point p, is already defined satisfying p.€
(xi,u 21> If we adjoint to the spheres S(z;, ;) the sphere
i€

S (p,c, 51;>, the condition in almost (m+ 1)-hyperconvexity is obviously
satisfied and hence we can choose a point p,,, in the intersection

S<p’“’““1 2“1)/\ L (x“ * 2k1+1>'

The last theorem together with Theorem 1’ gives immediately

COROLLARY 1. For m > &, m-hyperconvexity is equivalent to almost
m-hyperconvexity and completeness.

COROLLARY 2. Let & be a complete space, m—=>3&,, and A a dense
subset of & . Then the almost m-hyperconvexity of A 1is equivalent to
the m-hyperconvexity of &

This follows immediately from Theorems 3 and 4.
Theorems 3 and 4 give

COROLLARY 3. If & is almost (m+ 1)-hyperconvex, then the com-
pletion of & is m-hyperconvex.

Let & be an arbitrary metric space. We shall denote by (&)
the class of all nonempty closed subsets of &. We can consider in this
class the metric which was introduced by F. Hausdorff [7], and is defined
as follows: for 4, Be (&)

p(4, B)= max [sup p(z, B), sup p(y, 4)] .
x€4 YEB

The distance here may be infinite for some sets, (for example, if one
of the sets 4, B is unbounded). Since in any case all the properties of
a metric are satisfied, except that the value 4o may be taken, we
shall call the space in general an extended metric space. It is easily
proved that in such a space we have a natural decomposition of it into
mutually disjoint metric components. Any two elements belong to the
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same component if the distance between them is finite, otherwise they
belong to different components. The topology induced by the extended
metric is introduced like that by a usual metric. Therefore all metric
components are mutually disjoint, open and closed subsets, each of which
forms a usual metric space.

Denote by Um( <) the subclass of A( <) of all sets which are almost
m-hyperconvex.

THEOREM 5. (&) is a closed subset of (&) in the Hausdorff
metric.

Proof. In fact, let {4,} be a sequence in (&), converging to 4
in A(&). We have to prove that A4 is in Aw(&'). Consider any class
of spheres S(z;, 7;), i<, card (I)<n1, with ;€ 4 and p(x;, ,) < r+7y,
4,5€l. For any >0 consider then a positive integer n such that

o(4,, A)<fZ». Therefore for each x; there exists y,€ 4, such that

o2, ‘%)<Z' Clearly the class of spheres S (%, 7@+Z) satisfies the

condition of almost m-hyperconvexity in 4,. Hence if we add 2 to all

radii, there exists a point y in 4, [\ N S (yi, 7-i+~;—>. Since p(4,, A)<—if ,
i€r

there is a point = in A such that p(x, y)<—2. That = belongs to

N S(a;, 7;+¢) follows from the inequalities :
ter

ple, 2) < p@, ¥)+ e, ¥)+ (Y, ) = 'Z‘*‘ 7 + ; +‘Z =71;t+e.
Hence the theorem is proved.

REMARK 2. If & is complete and m> R, then clearly all sets in
A( &) are complete as metric spaces in themselves, and hence all sets
in () are m-hyperconvex by Theorem 4.

Even if the space & is not hyperconvex (or ni-hyperconvex) itself,
it may contain a large class of hyperconvex subsets, for example, all
isometric images of segments of the real line. If ¢ itself is hyper-
convex, then it contains always a large class of hyperconvex subsets,
which even satisfy a stronger property, which we shall call the external
hyperconvexity relative to ', and which is defined as follows:
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DEFINITION 3. A set A contained in & is externally hyperconvesx,
in short eaxt. hyperconvex, relative to & if for any class of spheres

S(@;, ) in & (x; not necessarily in A) satisfying p(a;, ;) <r»;+7,; and
o, A)<r, for i,5€I, A N N S(x;, r;) is not empty.
ier
Similar definitions can be given for ext. m-hyperconvexity. The

following theorem with some changes will also be valid for the case of
ext. m-hyperconvexity.

THEOREM 6. Any nonempty intersection of a class of spheres,
N S(@y, px), K being an arbitrary class of indices, of a hyperconvex space
kKEK

& 18 externally hyperconver relative to & .

Proof. Let
A= kQKg(ak’ 0r) 70 .

Consider an arbitrary class of spheres {S(a;, 7:)}ier With p(a;, 2,) <r;+ 7,
and p(x,, A)<r, for i,jeI. The class of all spheres S(a,, p) and S(x;, ;)
satisfies the requirements of hyperconvexity in ¢. For if k,le K, we
have clearly p(ay, a,) < p.+p, by hypothesis. The case where ¢,jel is
obvious. Finally for ke K, 7el, we have, for ¢>0 and some point

v, € A4, p(w;, y;)<ri+e (since p(x;, A)<r;), and therefore
(@ ) < (@ Yi) + (X3 Y) S P+ T+

Since ¢ is arbitrary, p(a, x;) <p,+7;. Therefore there is a point in the
intersection

ie[\l§(wi,m) f\kg{g(ak, p)=AN QIQ%”) _

There are several interesting properties of ext. hyperconvex subsets
of &. We shall mention here only one, and that is the following.

THEOREM 7. If A is ext. hyperconvex relatively to &, then for
every point x wn & there exists o point a tn A realizing the minimum
distance from x to A.

Proof. Consider for r=p(z, A), the sphere S(z,r). Clearly it satisfies
the requirements of ext. hyperconvexity. Therefore A N S(w,r)z40.
Let a be a point in the intersection. It follows that « is on the boundary
of S(z,r) and p(a, x)=p(x, A).

We shall pass now to purely topological properties in order to show
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that hyperconvex sets form a very restricted class from a topological
point of view. We shall recall that a subset 4 of & is called a retract
of & if there is a continuous transformation 7', called retraction, of &
onto A such that T'(x)=« for « in A. A metrizable space A is called
an absolute retract (See K. Borsuk [5]) if for any metrizable space &,
in which A4 is topologically embedded, A is a retract of &. Absolute
retracts are compact, connected, locally connected, and all their homology
groups and homotopy groups are the same as those of a single point.
A metrizable space A will be called a generalized absolute retract if for
every metrizable space %, in which A is topologically embedded and
closed, A is a retract of &. The generalized absolute retracts have
many properties similar to those of the absolute retracts. However, a
generalized absolute retract is not always compact ; instead of compact-
ness it has the property of being an absolute Gs°. A generalized absolute
retract is an absolute retract if and only if it is compact.

If T is a retraction of a metric space & onto its subset A, we shall
call it contracting retraction if it is also a contraction.

THEOREM 8. If A is hyperconvex, and is contained metrically in a
space &, then there exists a contracting retraction on & onto A.

Proof. In fact, consider the identity as a transformation of A onto
A. By the extension property of a hyperconvex space, Theorem 4, §2,
we can extend this transformation with conservation of modulus d(e)=¢
to the whole of 2 and with range in A; the extension is clearly a
contracting retraction of Z onto A.

COROLLARY 4. If A is hyperconvex, then it is a generalized absolute
retract.

Proof. In fact, if A is contained topologically in & and is closed
in ¢, then by a theorem of F. Hausdorff (F. Hausdorff [8]), we can
change the metric of & into a topologically equivalent metric, which
coincides with the hyperconvex metric of A on A. We then apply the
preceding theorem and obtain a retraction of & onto A.

COROLLARY 5. If A is hyperconvex and compact, it s an absolute
retract.

Proof. This follows immediately from Corollary 4 and the definition.

1 This means that it can be metrized with a complete metric.
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THEOREM 9. If % is a hyperconvex space, then a subset A of & s
hyperconvex if and only if it is a retract of & by a contracting retraction.

Proof. If A is hyperconvex, then the existence of a contracting
retraction is given by Theorem 8.
Conversely, if T is a contracting retraction of ¢ onto A, consider

any class of spheres S(x;,7;), ;€ A and p(x;, ) <r +7; for 4,5el.

Because & is hyperconvex, there exists a point » in N\ S(x;, ;). Then
ier

it follows that

(T (p), ) =p(T(p), T(x:)) < p(p, ) =7, .
Hence T(p)e Q ANS(;, 7).

4. Hyperconvex real Banach spaces. Hyperconvex real Banach
spaces were recently considered by L. Nachbin [14]. He introduced
them by using the property (P) of §3, which clearly is sufficient since
linear normed spaces are always totally convex. His results are of two
kinds. TFirst, he considers the extension of a linear transformation T
from a real Banach space & into a real Banach space .o and proves
that the hyperconvexity of & is necessary and sufficient for the possi-

bility of extending 7' to a linear transformation 7' of the whole of &

into .7, with conservation of bound, ||T||=||Tl|, for any & and 7.
This result was obtained by N. Aronszajn in 1929, but was never
published”. The second kind of Nachbin’s results concerns the charac-
terization of hyperconvex real Banach spaces as spaces (%) of all
real continuous functions on extremally disconnected compact Hausdorff
spaces . This interesting result was obtained by Nachbin under the
assumption that the closed unit sphere in a hyperconvex real Banach
space possesses an extreme point. J. L. Kelley [11] proved this result
of Nachbin without assuming the existence of extreme points of the
unit sphere. He used a characterization of hyperconvex Banach spaces
introduced by D. B. Goodner [6]%, and constructed explicitly the space
27 by using the extreme points of the unit sphere in the conjugate
space. Kelley’s proof clearly settles in the affirmative Nachbin’s con-
jecture that the unit sphere in a hyperconvex real Banach space always
has an extreme point. We are going to prove here in a more direct

11 This result is not exactly a special case of our general theorem from §2, since it
adds to the hypothesis the linearity of T' and to the thesis the linearity of the extension

T. But this additional point can be arranged in a similar way as in the classical proof of

the Hahn-Banach theorem, and we shall not give here the arrangement since it was done

by Nachbin. We shall remark, however, that by using the idea of our proof of necessity

in Theorem 2, §2 (introduction of #'(x)) Nachbin’s proof of necessity could be simplified.
12 This characterization is akin to our Theorem 8, §3.
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way Nachbin’s conjecture without going out of the original Banach space,
and we shall use only its hyperconvexity and some general theorems
about convex sets.

We start by introducing the general notions and properties con-
cerning abstract convex sets®, which we shall need*. For the sake of
completeness we introduce also some standard notations. In an abstract
real vector space 7 x,ye ¥, x4y, « and B reals, we call

> &
zy=yr= E[w=ax+ By, a+L=1]
the straight line through z and v,

= &

vy=yx= E[w=ax+fy, F=0, a+p=1]

the half line from z through y,
[x; y]=ly; z]= E[w=ax+ Py, « =0, F =0, a+[=1]

the segment joining « and y,
(@; y]=ly; 2)= Elw=az+py, a =0, f >0, a +p=1]
the half open segment from y to =z,

(x;y)=(y; 217)———— g[’w=aw+ﬂy7 a>0, 13>07 a+ﬁ=1]

the open segment joining « and y.
If x=y, we extend the definitions of segments in the following way:

(s yl=[z; v)=(v; €]=(@)=(v) ,
and
(z;9)=0 .
A subset V' of 277 is called a linear variety if with any two points

x,y £y, it contains the whole straight line Z/ Every linear subspace
is a linear variety. Every linear variety is obtained from one and only
one linear subspace by translation. The dimension of the linear variety
is the same as that of the linear subspace. In the case of finite dimen-
sion, it has therefore the natural topology of finite dimensional vector
spaces.

A set K contained in % is convex if with any two points z, y it

13 Convexity means here the usual convexity in vector spaces as distinguished from
metrical convexity; the latter means that the set is provided with a convex metric.
1¢ These general notions about convex sets were introduced by N. Aronszajn.
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contains the whole segment [x;y]. A convex set K is linearly closed if
its intersection with any finite dimensional linear variety is closed in
the natural topology of the linear variety. It is well known that K is
linearly closed if and only if its intersection with any straight line is
closed on the straight line.

Let K 77" be a convex set. There exists the smallest linear variety
containing it, that is, the linear variety generated by K. Every linear
variety is linearly closed. For every convex set K there exists the

smallest linearly closed convex set K containing K. K is called the
linear closure of K.
A point x in K is an nner point of K if and only if for every y

in K, y7*«, xy N K contains = in its interior (relative to zxy).
A point « in K is a border point of K if and only if for some y in

PR &
K, y=*z, xzy N\ K has x on its boundary (relative to wy).
A point = in K is an extreme point of K if and only if for every

y in K, y=£u, ;g/) N K has « on its boundary (relative to ?y).

For any convex set K containing more than one point the extreme
points are at the same time border points, and the set of inner points
and the set of border points form a disjoint decomposition of K. When
K is reduced to a single point a, the usual logical interpretation of our
definitions would be that x is an inner point and also an extreme point,
without being a border point. We shall agree, however, in this special
case still to consider « as a border point. This is the only case in which
an inner point is also an extreme point or a border point. It is well
known that for any convex set K the set of its inner points is convex,
but it may be empty.

LEMMA 1. Let « in K be an inner point of K. Then the linear
closure K of K can be obtained as follows :

K= [z; ) K.
yecy

Proof. Denote the right-hand side of the equation by K,. Clearly
K is contained in K,. For any y in K,, y belongs to the closure of

[xz;y), and therefore is in K.

On the other hand, K; is convex and linearly closed. In fact, for
any y, 2 in K, consider ay+pfz, «=>0, =0, a+pS=1. Since [z;ay+
Bz)=E[w=rr+dé(ay+pz),r>0,0=0,7r+06=1], and 7ra+ d(ay+ fz)=
a(yz+o0y)+ B(rax+6z) belongs to K for all «, f#, r, and & as prescribed

above, then ay+ Bz belongs to K, for all >0, >0, a+#=1. To prove
that K, is linearly closed, we have to show that if (y;2)CK,, then y
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(or z) belongs to K;. Since (y;2)= E[w=ay+pz, a>0,>0, a+p=1],
then E[v=7x+dé(ay+Pz), r >0,8 =0, y+J=1] is contained in K. Because

x is an inner point of K, we have for some «, >0, £,>0, a,+ f,=1 and
some ¢ >0,

(1+ e)x—e(agy+ B,2) belongs to K.

To prove [x;y) C K, we have to prove that uxr+.y belongs to K for
p>0, v>0, p4+v=1. To this effect consider the following convex com-
bination:

P Gaaay )+ (14 o elag+82)

efy+ 0 B+ 0B
_ B+ (L+)of | efida—eadf
efy+0p efy+df

It is easy to check that for every 0< p¢<1 we can choose £ and ¢ with

0<B<1 and 0<6<1 such that i ;(}_Eg)aﬂ -=p, which completes the
€
proof.
Let K be a convex set. We introduce for points , y in K an

equivalence relation x~y as follows:
if x=y then z~y;
if 254y, then x~y if and only if QZK\K contains x and ¥ in
its interior (relative to :z}/).

It is easy to prove that the relation a~y is actually an equivalence
relation. Hence K is decomposed into mutually disjoint equivalence
classes. Any of these equivalence classes will be called a cell of K.
Then to each = in K there exists one and only one cell C, such that
xeC,.

We shall list now a series of properties of cells of a linearly closed
convex set K ; their proofs are easy and will be omitted here.

A cell C is a convex set and every point of C is an inner point of

C. The linear closure C of a cell C is a union of cells, and can be de-
termined by the formula of Lemma 1. The inner points of C are the
points of C. C always has border points and therefore border cells,

unless C=C. This last case presents itself only if C is a linear variety ;
that includes also the case when C is reduced to a single point « (variety
of dimension 0). The single point « is then an extreme point of K. If =

is a border point of C, then C, is composed of border points of C. For
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any cell C an extreme point of C is at the same time an extreme point
of K.

As usual we shall denote, for AC ¥ and «a real, by a4 the set of
all elements of the form axz,xe A. For any two subsets 4 and B of
%, A+ B denotes the set of all elements representable in the form
x+y, ve A, ye B. These notations will also be used when one of the
sets is reduced to a single element.

THEOREM 1. Let x be an element of a linearly closed convex subset
K of a vector space . Then for every a >0

(4.1) KN[—aK i (1+a)@]=C,N[—aC,+ (1+a)z] .

Proof. That the left-hand side of (4.1) contains the right-hand side
is obvious. To prove the converse take an element y in KN[—aK+
(1+a)x]. It follows that y belongs to K and there exists z in K such
that y=—az+(1+a)z. This gives w=—1—_l-1a~zy+ l»»i‘fzx-z. Since a«>0,
belongs to (y;2). Therefore the whole open interval (y;z) is contained
in C,. Hence [x;9)CC,, and by Lemma 1, y is in C,. Similarly, z is
in C,. Therefore y=—az+(1+a)x belongs to C,N\[—aC,+ (1+a)z].

REMARK. If in the vector space " we have a topology agreeing
with the linear structure of 7 (for example, locally convex or normed
topology), then a convex set closed in this topology is, & fortiori, linearly
closed. But the converse is not necessarily true. Even if K is closed
in the topology, the linear closure C of a cell C of K may not be closed
in the topology. In view of this fact the result of Theorem 1 may seem

somehow surprising, since it shows that if K is closed but C, is not
closed, then still (j”,c[\[——oc(j‘mir (1+a)x] is closed.

LEMMA 2. If S is the closed unit sphere of a normed vector space
&, then for any x in ¥ and o >0,

—aSi (1+a)x=S((1+a), a) .

In fact, if ¥ is an element in % such that |ly—(1+a)z||<«, then

there exists an element z in S satisfying —az=y—(1+a)z. Therefore
y=—az+(1+a)z. The converse is also true by reversing the above
argument.

Let <% be a hyperconvex real Banach space, the metric being given
by the norm, p(x, y)=|lz—y||. To prove Nachbin’s conjecture that the
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closed unit sphere S possesses an extreme point, we shall prove first
the following lemma.

LEMMA 8. Let xe S and a>1. Then there exists a border point y
of C, such that

C,CC,N[—aC,+ 1+a)] .
Proof. Consider first the case when
C.=C,N[—aCi (1 +a)u] .

Then we can take for y any border point of Q. Such a point exists

since C, is contained in 'S, and hence cannot be a linear variety, unless
it is of dimension 0, that is, a single point. But then the same single

point is a border point of C,.
Now consider the case when C,=C,N\[—aC,+ (1+a)s]. We put

AT 2
4.2 A= ( 2.
(4.2) SNS (= 1+a>
For every z in A consider the spheres

S(“gii i1)

The class of all these spheres together with S=5(0, 1) satisfies the re-
quirements in the condition of hyperconvexity, since for any z, z' in 4
we have

ety ot e -2 A< 2 L~ + fo—ah <22

and

+1

“a+1 0H<a+£___ 2
a—1 «a-—1

Therefore there exists a point y such that

(4.3) yeS[\[\S(a+1, 2 )

2€4 a—1 a-1

We shall prove that C'yC C‘,f\[—a@ir(1+a)x]. Since « belongs to
A, then by applying Lemma 2 and Theorem 1, we have
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yesﬂs(fi 2 dz:i‘):m[‘az_i‘m fﬁ |

A 2 ~.a~-j—>1
-e.nl-.2 (G0t

It follows that y belongs to C, and C’,,C C,. We still have to show

that (t‘,,C [—aC,+ (1+a)z]. Suppose this is not true. Then there exists
an element » such that

(4.4) ne Cy—[—alC,+ (1+a)] .

Since u belongs to Cycé’m u is in C,, and since xe[—-—aC;-L(1+a)x],
e

we have u%x. Consider the straight line ux and its intersection with

S. Because S is linearly closed and bounded, there exist »’ and ' in S

<~ —
such that ux N\ S=[u’; 2]. We can choose the notations so that » belongs
to [w'; ], and x belongs to [u;x']; » may be equal to «’, but x must be

different from 2’. In faet, by Lemma 1, since ueC‘yCC’x, (u; ] CC,.
Therefore x and any point in (#; ] are equivalent, and x must be in the
interior of [w';«']. This implies that xz=~z’. It follows that all points

in (w';2') belong to C,. Hence z’ belongs to C,—C,. Introduce the
point v by equation u=—av+(a+1)xz. Hence, by (4.4), véC, and

4.5) V= ———l—wu+ﬁjll<w , wz—i-—u % .

It follows that xe(u;v)(z?c. Since [u;m’]CziZc, [u; x’]CC’z and v¢6’,,
we have 2z’ € (u;v). Therefore by (4.5), we have |lo/—u||<|lv—u|l=

1+“||x—u|| and |jz—ul|> ,A_&,nxf—un. It follows that

o' —a||=Ilz"—ul| —|lo—ul|

a , 1 , 2
(=% e —ull < el + < 2

This shows that x’ € A. Following (4.3),

e 2 . a+1 2 ~ . a+1
eS [— g o |= [ ., ]
veSN| = S+ Cen a—1 " a=1”

Therefore y belongs to C,. Hence ue @CC‘,&, and zelu;2]CC,,
which is impossible because it was shown above that «’ e C,—C, and
therefore C,. CC,—C,. Consequently QC[——aC‘,J} 1+ a)z].
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To show that v is a border point of C~'z we observe that otherwise

C~'y=6~',,, and so CZG:(:‘xﬂ[—aé’x + (1+a)x], against our assumption.
Hence the lemma is proved.

THEOREM 2. Let S be the closed unit sphere of a hyperconvex real

Banach space &%. For any point @ in S, C, contains an extreme point
of S.

Proof. For y, z in S define a partial order relation, y<z, as fol-
lows :

if y==z, then y<z,
if y=£z, then y<z if and only if y is a border ponit of C, and
C,cC,N[-2C,} 32].
It is immediately verified that the relation < is in faet a partial order
relation.
Consider now an ordered subset A of S. We claim that there exists
a point y in S such that y<z for all z in A. We notice first that

C,N[-2C,: 82]=SNS(32,2). Consider then the class of all spheres

S=5(0,1) and S(32,2) for ze A. For any z and 2’54z in A we can
suppose that 2<z’ (A being ordered) and hence

2e S NSz, 2)=C, N[-2C,+ 321 CC,CC,. N[—2C. + 3]
=SNS5@32,2) .

It follows that SN\ S(8z, 2) \S(8z,2)%0. We can therefore apply the
hyperconvexity to this class of spheres and find a point

Yo € QA{S— NSz, 2))} = QA{@ NI[—2C,+ 3]} .

If the ordered set A has a smallest point we can take it as y. If,
however, there is no smallest point in A, for each ze A there exists

2'e A with 27<2. Then y,eC,. Hence y, is together with 2’ a border
point of C, and C~'yoC C,CC,NI-2C, 32]. Thus y,<z and we can put

Y=Y,
By a classical argument it follows now that there exists a minimal

element 2, in S which is smaller than an arbitrarily chosen element
in S. We are going to prove that x, is an extreme point of S. In fact,
by Lemma 8, there exists a point y, which is a border point of (ia and
satisfies @C@O/’\[—2é’xo; 3x.]. This means that y<x,. Since =z, is
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minimal, we have y=x,. But y is a border point of C;J, and z, is an
inner point of C’xa; y=u, can happen only if C~’% is reduced to a single
point #,. Hence @, is an extreme point of S, contained in C,.

5. The spaces & (7°) for compact Hausdorff spaces 57°. Nachbin’s
theorem shows that the space & (&2”) of all continuous real functions
on an extremally disconnected compact Hausdorff space &7 with the usual
norm, ||¢||= sup [|¢(x)], x€ 5#7] is hyperconvex, and every hyperconvex
real Banach space is a space & (&£°) for some extremally disconnected
compact Hausdorff space &2 (Theorem of Nachbin-Kelley). This suggests
an investigation from the point of view of m-hyperconvexity of the
spaces & (57°) for general compact Hausdorff spaces &#. We prove
first

THEOREM 1. Ewvery space & (57) is &hyperconvexs™.

Proof. Suppose that we have a finite number of spheres S (¢, 74),
k=1,2, ---,n, such that |lg,—¢,|| <7, +7, for 1<k, I<n. By definition

of the norm in % (5#) we see that ¢ belongs to S(¢s, ;) if and only if
(6.1) Pu(@) =7 S P(@) S i(@) + 1

for all = in 57.
Since any two of these spheres intersect, it follows that ¢, (z)—r, <

¢ @)+, for all # in &7, and 1<k, I[<n. Therefore max[¢,(x)—r]<
k
min [¢ x)+7,] for all z in &7, Let ¢(x)= max [¢,(x)—r,]. Clearly ¢(x)
l

is continuous and satisfies (5.1) for every k. Hence & (57) is &
hyperconvex.

In order to characterize the space 7 for which ¢~(57°) is m-
hyperconvex (m>,), we shall introduce the following property Qum:

DEFINITION 1. A Hausdorff space 57 is said to satisfy the property
(Qm), where m is a cardinal>0, if for any two classes of open subsets
of 57, {Z,}ier and {27} ser, such that card (I) and card (J)<m,

Z,C\J 7 and F5C Y 7 forany iie 1, gie 7, and (\J 70) (U, 7)=0,
ier jers er jer
we have U 7, U 7;=0.

ier JET
REMARK 1. It is of interest to connect the property (Qum) with some

15 Problem 2 of Nachbin’s Paper [14] requires essentially the proof of a converse of
this theorem. It seems, therefore, that the theorem was known to Nachbin.
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well known properties. Consider for instance a totally disconnected
compact Hausdorff space 72 It is well known (Stone’s Theorem [16])
that such a space corresponds to a Boolean algebra. Actually it is de-
termined by the Boolean algebra of its subsets which are open and
closed. Consider the notion of m-completeness™ for this Boolean algebra.
The m-completeness of this Boolean algebra is equivalent to the fact

that \J/G; is open for any class {G;}:.; of open and closed subsets of
(1= ¢

&7 with card (I)<m. We can state now that the m-completeness of
the Boolean algebra implies the property (Qm) for the corresponding
totally disconnected compact Hausdorff space 57. In fact, if the classes
{Z}ier and { 77} ;e satisfy the requirements of the property (Qm), and
% is totally disconnected, we can replace every set 7; by an open

and closed set 7 so that ‘/ZIC 7, C\J 2. We find similarly an
i€1

open and closed set 77y with 7 C 77 C U 7 Clearly \EJI #i=\J 7
J i i€
and \JU 7= \J ;. Furthermore U #;N\U 77;=0. But by our hypo-

JET Jes i€l JET

thesis U %/ is open and closed. Hence we have U 77; "\ U 7 ;=0.
k3 K2 J

REMARK 2. If a compact Hausdorff space &7 has the property (Qm)
for m greater than the cardinal of a basis of open sets in &7 then &7
is extremally disconnected. In fact, if G is any open set in .%7; consider

G,=57 —G. In a basis of open sets in &7 of cardinal <m, consider all
those sets % such that % C @, and all those sets 7 such that 77" CG..
Clearly card ({Z'}) and card ({ 7}) are less than m. Also the classes
{77} and {77} satisfy all the requirements of the property (Qm) since
U % =G and \ 7"=G,. Therefore by property (Qm), U 7 =G is disjoint
from \J 7' =G,. It follows that G,C .57 —G=G,. Hence G,=G,, and
so G=257—G, is open and closed.

We shall need later the following general lemma about compact
Hausdorff spaces.

LeMMA 1. Let ¢ and ¢ be two real finite valued functions defined
on o compact Housdorf space 57 In order that there exist a continuous
Sunction f defined on 2 such that ¢(x) < f(x) < ¢(x) for every x in Z;
ot 18 mecessary and sufficient that

(5.2) lim sup ¢(z’) <lim inf ¢(a') .

x>z z'>x
16 We call here a Boolean algebra m-complete, if for any class of its elements with
cardinal less than m there exists a least upper bound. This is not the usual notion of m-
completeness, where all subsets of cardinal << m are accepted. See G. Birkhoff [3].
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(lin} sup ¢(«’) can be defined, by cosidering the class 11, of all neighbor-

hoods of @, as inf sup ¢(x’). Similarly, liminf ¢(z')= sup inf ¢(x').)
Vel 2'eU o Uell. v'eU

REMARK 3. The essential part of this lemma is well known in the
case of metric spaces (See F. Hausdorff [7]), and was proved recently
in the case of normal spaces (which include compact Hausdorff spaces)
by M. Katétov [10], and separately by H. Tong [17]. This essential
part is the following theorem: if ¢ is upper semicontinuous, ¢ is lower
semicontinuous, and ¢ <¢, then there exists a continuous function f
with ¢ < f<<¢. Our lemma results immediately from this, since (5.2)
is clearly necessary for the existence of a continuous f with ¢ < ¢
On the other hand, denote linp sup ¢(') by ¢(z), and H?,l_)ixnf ¢(') by ().

It follows that ¢ is upper semicontinuous, and ¢ is lower semicontinuous.
Hence the above theorem gives the sufficiency.

THEOREM 2. In order that the space & (27) for compact Hausdorff
space 7 be m-hyperconvex, it is necessary and sufficient that the space
S satisfy the property (Qu).

Proof. For m< &, there is nothing to prove, since Theorem 1
shows that & (5#°) is always m-hyperconvex, and it is obvious that the
property (Qu) is satisfied by every Hausdorff space.

We shall therefore consider only m > .

Necessity. Suppose that the property (Qm) is not satisfied. Then
there exist two classes { %/} ,e; and { 7} jes, satisfying the requirements

of the property (Qu), such that there exists a point p in U % N\\U 7.
K J
Pot 2=\ w;,, 2=\ 7,, and F=2¢ —(Z\J ¥°). For every iel
y S

and je./ we construct a continuous function ¢,(x) satisfying the pro-
perties :

¢i(x) =0, re 74 ;
og,wz-xx)g; . ze
1 )
50“(;1;).—_— 2 ’ (L'GF,

;gsa“(x)gl, ve 7
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o@=1, =ze 7.

Consider now the class of spheres in & (57): S <90“, %), 2el and

jed. Clearly card (IxJ)<m. These spheres satisfy the requirements
of m-hyperconvexity, because

l¢:5(@) — ¢i5 ()| =0 for xe F',

<l forze %,
-2
_ﬁ_rl for xe 77,
- 2
1 1,1 .
and hence [Iga“—goiljlllg»2—=z— i By m-hyperconvexity, there should

exist a continuous function ¢ belonging to all the spheres S ((pu, —i‘—)

This means that |¢(x)—¢.,(@)] gi_ for all (i,5) e IxJ and z€ 97, There-
fore for xe 73, le(x)| < i, and for we 7, lgo(x)—llgi—. This being
true for all 4 and j, |¢(w)1g_}f for xe 7, and lgo(x)—llg»i for z in 77

Since ¢ is continuous, the former inequality still holds for z in %} and

the latter for # in %, That means the two inequalities hold for the
same point p, which clearly is impossible. Hence &7, for an m-hyper-
convex space & (%), satisfies the property (Qm).

Sufficiency. We consider a class of spheres S(y;, 1), x:€ € (57),
1€ l, card (I)<m, such that

(5.3) llxs—xll= sup [lx(@) —x @), v e 2 1< r+ry

for any 4,7€l. We want to prove that there exists a function y in
& (7)) such that ||y —yx.||<»; for 1€ I, or equivalently y;(z)—r, < y(x) <
(@) +7;, for all ze 527 From (5.3) we have y;(x)—r, <y;(@)+r; for all
i,7€l, and ze o7 It follows that the functions

¢(@)=sup [x(x)—r] and (@)= inf [1,z) +7)]

satisfy
(5.4) o(x) < ¢(x) for we 22”.
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Clearly both ¢(x) and ¢(x) are finite-valued. Define ¢(x)= lin} sup ¢(@),
and J(x)= liminf ¢(z'). Itis easy to check that ¢(x) <¢(x) for all x in

x>

& if and only if for any real numbers «, 3, such that a<7p,
(5.5) E [¢(@)> 1N E [#(z) <a]=0 .

Furthermore,

E[7@>¢]-UEB[e@)>p+ 1],

and

UE[se)<a=1],

n

E|#()<al-
On the other hand, we have
Ele@)>f+ 1 |- UE[r@)-r>p+ =y 7.,
T ) m 1€l = m i€I
and

El¢@<a-L]- VE[z@+n<a-l]-y 7.

i€l

Since y;+r, are continuous functions for ie I, the sets #;, and 7,,
are open, and so are U #:m and \J 7;,. Moreover, card (I x N)<m,

Jjer
where N={1 }. It is also clear that

%il,MXCE[xil(x)—m?m | < Zmn € i

z m,

and similarly, 7, . C 7 2 C U 75, We claim that . N 7,;.,=0
Jjn

for every ¢,5€I and m, ne N. Suppose this is not true. Then let =z
be a point in «;,, N\ 7, for some 4,7, m and n. It follows that

@)+ <a— L <a<B<pal <y

But this contradicts (5.3). Therefore we have iU ‘Z/i,mf\jU Z 52=0.

Hence the two classes { 2 m} .merxy a0d { 7, 1} ;.werxn Satisfy the require-
ments of property (Qm), and so we obtain \U %/ .. N U 73 .=0. Since

im

E[?(w)>ﬁ]~UU//mCU Y my and E[s"(x)<a] UU //anU .

m= im

then (5.5) is true, and hence ¢(x) <¢(x) for every x€ <». By Lemma
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1, there exists a continuous function y such that ¢ <y < ¢, which implies
2i(@) =7, <y@) < y:(x)+7; for all x in 54 Hence the theorem is proved.

REMARK 4. In Remarks 1 and 2 we consider in particular totally
disconnected compact Hausdorff spaces &7, which therefore correspond
to Boolean algebras. In connection with Theorem 2 it is of interest to
find the property of the Boolean algebra equivalent to the property
(Qm) of the corresponding Hausdorff space 7. As we have already
noticed in the previous Remarks, we can limit the classes {4/} and
{ 77} ses in property (Qu) to those composed of only open and closed
sets. The thesis of property (@m) means then that there exists an open
and closed subset G of 27 such that every 24 CG and every 7;C
&7 —G. That allows immediate translation into a property (@'m) of the
corresponding Boolean algebra .

Property (@w). For any two subsets U’ and A" of U satisfying
1) card (A)<m, card (A")<m and
2) if /e and o’ e A"’ then o’ Ta”,

there exists an element b e 9 such that o/ CbCa” foralla’ e ', a”’ e A7
Here elements of 9’ correspond to 7;, elements of 9’ correspond
to &7 — /;, and b corresponds to G.

6. Examples and problems. By using the theorems of § 5, we are
able to construct examples of Banach spaces which are m-hyperconvex,
m=>s%,, but not m’-hyperconvex for m’>m. The simplest example of
this kind will be the following.

Consider in an abstract set X with card (X)=m=>3&, the Boolean
algebra 9 of all subsets A of X such that either ecard (4)<m or card
(X—A)<m. This Boolean algebra is m-complete, but it is not m’-complete
for any m’>m. By Remark 1 of §5, the compact Hausdorff space &7
corresponding to this Boolean algebra satisfies the property (Qu), and
therefore & (57°) is m-hyperconvex. On the other hand, Sz~ does not
satisfy the property (Quw’) for any m’'>m. To see this we go back to
our Boolean algebra 2(, and check on the property (Qw’) given in Remark
4 of §5, which is equivalent to property (Quw’) for 227 In order to see
that the property (@'w’) is not satisfied in 2, we choose any two dis-
joint subsets B and C of X such that card (B)=card (C)=m. We
consider the two classes A’ and 9’ defined as follows:

W=E[A'=@), be B]; A= E[4'=X—(0), ceC].

17 This kind of property for general lattices or partially ordered sets has already been
encountered in other considerations. See F. Riesz [15], and G. Birkhoff [4].
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Clearly card (A')=card (A" )=m<m’. Moreover, () CX—(c) for
every (b)e ', and X—(¢c)e A”. However, there is no De A with (b) C
D X—(c) for all be B, ce C. In fact, we would have then BC D and
CCX—-D, hence card (D)=mt, card (X—D)=m contrary to the definition
of algebra .

For m<(&,, it is easy to find a 3-hyperconvex space, which is not
4-hyperconvex. Take, for instance, the Euclidean plane with the natural
metric. The following problem is as yet unsolved.

Problem 1. Construct m-hyperconvex spaces (in particular Banach
spaces), which are not (m+1)-hyperconvex for 4 <m < &,.

In connection with the property (Q'm) of the Boolean algebra, which
is equivalent to the property (@m) for the corresponding compact Hausdorft
space, we proved, in Remark 1 of §5, what essentially amounts to the
fact that the property (Qw) is implied by the m-completeness of the
Boolean algebra. The following problem arises.

Problem 2. Are there Boolean algebras which satisfy the property
(@m) for some m> 3, and which are not m-complete ?

We do not know of any such example.

Till now we were able to construct compact Hausdorff spaces with
property (Quw) only among those which correspond to Boolean algebras,
that is, those which are totally disconnected. Therefore there arises
another problem.

Problem 3. Is a compact Hausdorff space, satisfying the property
(Qm) for m > &, necessarily totally disconnected ?

It is easy to prove that this is so if the space 7 satisfies the first
axiom of countability.

L. Nachbin states the following problem :

Is every X -hyperconver Banmach space whose unit sphere has an
extreme point mecessarily isomorphic to a space & (5%7), with o compact
Hausdorff &7 ¢

If the answer to this problem were affirmative, then Theorem 2 of
§5 would imply the following statement: in order that a Banach space
with an extreme point in its unit sphere be m-hyperconvex with m_= Xy,
it 1s necessary and sufficient that it be isomorphic to the space & ()
for a compact Hausdorff space 57 satisfying property (Qm).

Theorem 1’ of §3 states that m-hyperconvexity for m >, implies
completeness. One may ask if the restriction “m>$&,” is necessary.
A counter-example for m=3, is provided by the linear normed space
of all bounded sequences, é={&,}, such that only a finite number of &,
are different from zero, with the usual norm, ||&||= sup |&,]. This space
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is obviously not complete, and it is easy to check that it is &,-hyper-
convex'.

Theorem 4 of §3 leads to another question: is the almost (in+1)-
hyperconvexity in its hypothesis necessary or could it be replaced by
almost m-hyperconvexity. We could obviously replace it for m=> &, but
for m<_$, it cannot be done in general. A relevant counter-example
for m=3 is the following:

Consider? in the plane the points p=(0, 0), ¢=(2, 0), and snz(l, 1 ),
n

n=1,2, ---. The space & is then \j (Iv; 8,1\U[s,;¢]). On this space,
=1

which is not closed in the Euclidean plane, we consider first the Euclidean
metric, and then the resulting geodesic metric p®. It is easy to check
that in our present space & the geodesic metric p exists, and is com-
plete. Therefore the space ¢ with the metric p is complete and almost
3-hyperconvex®. That it is not 3-hyperconvex results from the con-
sideration of the two points p and ¢, for which there exists no point z
in &, x#p, xr#q, such that o(p, 2)+p(x, @)=p(p, ¢). The following
problem however, remains unsolved.

Problem 4. Is there an almost m-hyperconvex metric space &, for
3<m<&,, which is complete and not ni-hyperconvex?

Following Theorem 4 §3, an example for this problem with 4 <7
m<_, would at the same time give an example for problem 1 and
cardinal m—1.

At the end of §3 we saw that every hyperconvex space is a gener-
alized absolute retract, and if the space is compact, then it is an absolute
retract (Corollaries 4 and 5). Here an interesting metrization problem
arises.

s

Problem 5. If a metrizable space & is a generalized absolute retract,

(ed

is it possible to define a metric in ¢, which induces the given topology
on <, and makes it into a hyperconvex space?

This problem is of interest even when we restrict ourselves to
compact spaces, that is, to absolute retracts.

18 This example was mentioned by L. Nachbin [14].

19 This example was given by N. Aronszajn [1].

20 In a metric space & where every two points are connected by an arc of finite length,
the geodesic distance between two points «, ¥ is defined to be the infimum of the lengths
of all arcs joining = and y. Whenever the geodesic metric exists in a space &, the space
with this metric is almost 3-hyperconvex.



EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS 439

REFERENCES

1. N. Aronszajn, On metric and metrization, Thesis, University of Warsaw, 1930 (un-
published).

2. ————, Neuer Beweis der Streckenverbundenheit wvollstindiger konvever Rdume,
Ergebnisse eines mathematischen Kolloquiums, (Wien), Heft 6 (1935), 45-46.

3. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, 25 (1948).

4. —— | Lattice ordered groups, Ann. of Math. 43 (1942), 298-331.

5. K. Borsuk, Sur les rétractes, Fund. Math. 17 (1931), 152-170.

6. D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69
(1950), 89-108.

7. F. Hausdorff, Mengenlehre, 2d. ed., Berlin and Leipzig, 1927.

8, — , Erweiterung einer Homdoomorphie, Fund. Math. 16 (1930), 353-360.

9. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publi-
cations, 31 (1948).

10. M. Katétov, On real-valued functions in topological spaces, Fund. Math. 38 (1951),
85-91.

11. J. L. Kelley, Banach spaces with the cxiension property, Trans. Amer. Math. Soc.
72 (1952), 323-326.

12. K. Menger, Untersuchungen wiber allegemeine Metrik, 1, 1I, III, Math. Ann. 100
(1928), 75-163.

13. —————, Metrische Untersuchungen, Ergebnisse eines mathematischen Kolloquiums,
(Wien), Heft 1 (1931), 20-27.

14. L. Nachbin, A Theorem of the Hahn-Banach lype, Trans. Amer. Math. Soc. 68
(1950), 28-46.

15. F. Riesz, Sur la théorie générale des opérations linéaires, Ann. of Math. 41 (1940),
174-206.

16. M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans.
Amer. Math. Soc. 41 (1937), 375-481.

17. H. Tong, Some characterization of normal and perfectly normal spaces, Duke
Math. J. 19 (1952), 289-292.

UNIVERSITY OF KANSAS








