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1. Introduction* A function f(x), 0<1#<CXD, is said to be com-
pletely mono tonic on 0 < ^ < o o if ( — l)nf(-n\x)^0 for 0<><oo and
/(0)=/(0 +). A similar and equivalent definition involving differences
is available. A fundamental theorem regarding such functions, proved
(independently) by Hausdorff, Bernstein and Widder, states that they
are the class of Laplace-Stieltjes transforms of bounded monotone func-
tions. Several of the many known proofs are given in Widder [3],
which also gives references for other proofs. The corresponding theo-
rem for two dimensions has been proved by Schoenberg [2], It is not
difficult to construct a proof for ^-dimensions along the lines of the
original proof of Hausdorff and in the process establish the equivalence
of the corresponding derivative and difference criteria.

In this note we wish to introduce a class of functions, defined on
^-dimensional polyhedral cones with vertex at the origin, which we call
completely monotonic (A), and, in analogy with the theorem of Haus-
dorff-Bernstein-Widder, show that they are the Laplace-Stieltjes trans-
forms of bounded monotone functions on the "conjugate space" t=(tl9

n

•••,£») with Σ ffΛ^O We then show that a function completely
{

monotonic (A) on each of a set of overlapping cones may be represented
by a single integral, which may then be used to extend the function to
the convex closure of the set of cones. Lastly, we show by an example
that a function may be completely monotonic along every line with
nonnegative slope in the first quadrant without being completely mono-
tonic as a function of two variables.

2 Functions completely monotonic on cones We commence with
some notations and definitions. We shall write x in place of (xιy , xn),
xΐ in place of (xj^Λ— -\-xntn), and where these appear in integrands
we shall use a single integral sign to denote a multiple integral.

For a given convex cone D, D* will be the set of all t such that
n

Σ ^ A i ^ O for all x in D. By an %-cone we shall mean a convex cone

in En spanned by n linearly independent vectors xi=(x{, •••,#»)> and
such that there is a hyperplane having only the origin in common with
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the cone. We shall say that {Dσ}, σeS, is a collection of overlapping
n-cones if it is impossible to divide the index set S into subsets S' and
S", S=S'VJS", so that \JDσ and \J Dσ as point sets in En have only

the origin in common.
Let f(x) be defined on an n-cone D and be continuous on the

boundary. Then f(x) will be said to be completely monotonic (A) on
D if

Σ Σ ίmiV fm")(-i) h + * ' +i»f(χ+iAχ1+
l-0 V ° ^ l ' \ ί n /

for any a? in Z) and a n y ^ ^ O . If D is the positive orthant, a function
completely monotonic (A) on J9 is completely monotonic in the ordinary
sense.

For reference purposes we now state the ordinary form of the
Hausdorff-Bernstein-Widder Theorem for several variables. A proof
paralleling the proof given for one dimension in Widder [3], p. 162, is
not difficult.

THEOREM 2.1. A necessary and sufficient condition that f(x) be
completely monotonic on 0 < ^ < ^ ° o , i = l , 2, •••, n, is that

where <p(t) is bounded and monotone (in the sense of [1]) and the integral

is convergent for §<Lxu i=l, 2, •••, n. ψ(t) is essentially unique.

From this we proceed to the corresponding theorem for w-cones.

THEOREM 2.2. Let D be an n-cone. Then a necessary and sufficient
condition that a function f(x) be completely monotonic (A) on D is that

( I ) f(x)

where ψ(t) is bounded and monotone in £>*, and the integral is convergent
for x in D. φ(t) is essentially unique.

Proof. Suppose that f(x) is completely monotonic (̂ 4) on an w-cone
D. Let T be a linear transformation which carries D into the positive
orthant P. Let g(x)==f[T-1(x)]. Then g(x) is completely monotonic,
since the differences taken along lines parallel to the edges of the cone
are transformed into differences taken parallel to the axes. Then
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where ψ is bounded and monotone, by Theorem 2.1. Let U be the linear
n n

transformation on t such that Σ &A — Σ x?t°, where x°=T(x) and

t° = U(t). For any set S in the t domain let^(S) = if[C/'-1(S)]. p(ί) is
clearly monotone and so (I) holds.

Suppose, on the other hand, that we have (I) with ψ(t) bounded
and monotone in D*. We use a linear transformation T to carry D
onto the positive orthant and a £7, defined as above, to carry D* onto
P*. We then have a function g(x) defined on P and equal there to

[°°e-χt'dφ{t)
Jo

for a bounded monotone Ψ{t). The function g(x) is thus completely
monotonic, from Theorem 2.1, and this property will carry over into
complete monotonicity (A) for f(x) when we apply T~ι. This completes
the proof of the theorem.

We now consider functions which are completely monotonic (A) on
each of a collection of overlapping %-cones.

THEOREM 2.3. Suppose that f(x) is completely monotonic (A) on each
of a collection {Dσ}, a e S, of overlapping n-cones. Suppose also that if
the intersection of any two cones in {Dσ} contains a point other than the
origin it contains an open set. Then all of the <pσ(t) as defined in Theo-
rem 2.2 are equal, and are zero outside (\JZ)σ)*.

s

Proof. We note that always (\J£)σ)*=f\D*. To begin with, suppose
that D consists of two cones, A and D2. Consider a point x in their
intersection. From Theorem 2.2

This may be extended to an integral over D?\JD? by defining
for t in Df — Df. At the same time

and <p2(t) can likewise be defined to be zero outside Df. Since both of
these representations are valid in an w-cone contained in A/Λ A> ψλ{t)=
ψι(t) by the uniqueness condition.

Consider the general case, and suppose the theorem to be false.
Then there are two cones, Dτ and D2, say, such that φ2(t) is not zero
somewhere outside Df. Let the collection of cones {Dσ}, σβS', be those
for which ψσ is zero outside Df; let the other cones form {Dσ}, aeS".
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Neither S' nor S" is empty, S'\JS"=S, and S'f\S"=φ. Thus \JDσ and
8'

\JDσ have a point other than the origin in common, and there is a Z)σ,,
8"

</e£', and a Z>σ./, σ"eS", whose intersection contains an open set. By
the first part of the theorem φσ'(t) = φσ,,(t), and this is a contradiction.

It is known that D** is the convex closure of D, where D is any
(possibly non-convex, non-polyhedral) cone. Also,

for any x in Z)**. Thus we may use the integral representation to ex-
tend a function of the sort described in Theorem 2.3 to the convex
closure of \JDσ. We state this as a corollary.

s

COROLLARY. Suppose f(x) is completely monotonic (A) on each of a
set {Dσ} of n-cones as in Theorem 2.3. Then f(x) may be continued to
the convex closure K of \J Dσ in such a fashion that it will be completely

s

monotonic (A) on any n-cone in K.

3 Functions completely monotonic on lines* Using Theorem 2.3
we can deduce complete monotonicity (A) on large cones from complete
monotonicity (̂ 4) on small cones. The conclusion is false, however, if
the small cones are replaced by lines. In fact we can exhibit a function
completely monotonic along any line with suitable slope, through the
origin or not, which fails to be completely monotonic in several vari-
ables. For the sake of simplicity we will discuss an example in two
dimensions. Consider the function

1 for ( O ^ ί ^ δ , 0<:£2<:3) except for ( l ^ ί ^

- 1 for ( __

0 otherwise.

Let

By Theorem 2.1 f(xu x2) cannot be completely monotonic. Let

gθ(w'i9 %d==f(χΊ c o s θ — %2 sin θ, x2 cos θ + x[ sin θ)

that is, rotate the axes through an angle θ. We will now show that
gθ(xΊ, x2) is completely monotonic on 0<^ί<C°o for any fixed value of
x2 and any O^^^τr/2. To this end let

u1==t1 cos θ +12 sin 0 and u2= — tλ sin θ +12 cos θ ,
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SO that

gθ(x'lf x2)= \ \e-χιu

where ψ(ulf u2) is zero outside a rotated square. We can replace the
multiple integral by a repeated integral:

3 cos 0 + 3 sin 0

Now the inner integral will always be positive, because any line which
intersects the square on which ψ is not zero will have a greater length
in the positive region than in the negative, and can thus make only a
positive contribution to the integral. Since the inner integral is positive,
gθ(x[, x2) must be completely monotonic from the one dimensional version
of Theorem 2.1.

If θ is allowed outside the interval 0<l#<i7r/2? the inner integral
will remain positive but the range of the outer integral will extend
outside 0 ^ ^ X < O D . The function gθ(a + b, c + d) will then be a "kernel
of positive type" in a and b for fixed c and d (and vice versa), as dis-
cussed in Chapter VI, §§ 20-21 of Widder [3]. If the square upon which
ψ(tl9 t2) is nonzero is moved sufficiently far from the origin along the
line tλ=t2 the corresponding gθ(%Ί, x'2) maybe made completely monotonic
for 0 < ^ ί < o o for — 7r/4-f<5<l#<:37r/4 — 3 for any small positive δ and
any fixed x"2.
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