ON CERTAIN SUMS GENERATING THE DEDEKIND
SUMS AND THEIR RECIPROCITY LAWS

M. MIKOLAS

1. Introduction. Let {u}=u—[u] denote the fractional part of
and let ((u))={u} —%. Dedekind sums are defined for example, by

@) CLI1(69)(€)

where % and k are relatively prime positive integers. These sums which
were studied by Dedekind [7], and more recently by Rademacher and
Whiteman [9], [12] in connection with the theory of the modular function
7(r), occur also in the theory of partitions and in a great number of
special papers. (Cf. for example [1]-[13].) The most important property
of s,(h, k) is the reciprocity law

(1.2) sk, k) +s,(k, h)y=(h*+3hk +k*+1)[(12hk) .

A few years ago, Apostol [1] (for r=y) and Carlitz [3] introduced
and investigated the so-called generalized Dedekind sums

(1.3) $O(h, T)= ;;:Pl( 2 )P(*]f) 0<r<,+1,

P, denoting the well-known Bernoulli function defined by the expansion
26" (¢ —1)= iop,,(u)zn Jn! o] < 2

for 0<u <1 and by PJ(u)=P,({u}) for u arbitrary real. They found
the corresponding extensions of (1.2) too.

Now, we shall continue to develop these results in two directions.
Next we give a systematic treatment of certain exponential sums (2.1),
(2.8) generating

) ErLE) mann

with (a, ¢)=(b, ¢)=1, ¢>0. We obtain (among others) a three-term
relation of new type (Theorem 1) which implies (in extended form) all
the above reciprocity theorems (see (5.1)~(5.10)). Let us remark that
the sum function (2.5) with other notations is also used in [6]. On the
other hand, we get a functional equation for
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(1.5) Der(uw, z)=§((w, {&g})c(z {ib_})

c
where ¢(s, #) is the Hurwitz zeta function (Theorem 2). By
(1 —n, u)=— Py(u)/n 0<u<l; n=1,2,---,
(1.5) can be regarded substantially as a (transcendental) generalization
of (1.4).
2. Preliminaries on S(z, ¥), 8., (acb>. In what follows, =z, v,

w, z denote complex variables, a, b and ¢ are integers and ¢ >0; for
brevity we write, as usual, e(z)=e*,
Let us put

@.1) Se(z, y)= 3 e({@ }x+ {&}y)

A(mod ¢) C c

with (a, ¢)=(b, ¢)=1, the summation extending over a complete residue
system modulo ¢. It is obvious that (2.1) is independent of the choice
of this residue system' and for a=b or ¢=1, 2 it is independent of a, b.
The function S**(x, y¥) remains unaltered if we change a, b or x, y by
multiplies of ¢. By this periodicity, it is no restriction to suppose for
example, that 0 < R(x) <e, —e<<R(y) L0.

We have S**(x, y)=S*(y, ) and

(2.2) S (@, y)=e(@)SP(—x, y)+1—e(2),

since {—u}=0 or 1— {u#} according as u is an integer or not.
The funetion

(2'3) @g,b(a’, y)=[€($)'—1]"1[6(y)—1]_1Sg’b((17, y) x, Y # 0’ =+ 1, e
has corresponding trivial properties; in particular, (2.2) implies
(2.4) S; v, y)=—S(—z, y)—le(y) —11" .

By the definition of Bernoulli functions and (1.4) we obtain

(2:5) @22, yi2ri)= 3 2L 5, (0 0) el i <2x.

mu=0 m!n!

Here

! Hence we see that S%3(w, y)=SL¥(x, ) for a suitable integer b’; however, the above
symmetric notation seems the most convenient.
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(2.6) su(® =SSP (L)=eB =01,
c 1=0 c

B,=P,(0) denoting the Bernoullian numbers.
Note that Qm,n<acb> =8, m <b a) and ém,n(a a) does not depend on «a;
¢ c

especially we have Qm,n(l b>=§>f{“"‘”(b, ¢), furthermore
c

(2.7) gm,n(“l b) —B,B, , gm,n(“zb) — B, B,[1+(1—21-m)(1—21-")]

m, n=0,1, -

3. Representation by cotangents and Eulerian numbers respectively.

Let ¢>1. The identity

o St [o ()T

yields after multiplication by e(—ﬁi> (»=0,1, ---, ¢—1) and summa-
¢

tion

(3.2) o ﬂ)— [e(a)—1] Z[ (22)- 1]“1 e(—-%’i)

lu=07 1’ ) V—]-;

(3.1) and (3.2) hold clearly provided that (z+r)/c is not an integer
(v=0,1, ---, c—1). Hence by putting pg=c{ai/c}, a and ¢ being coprime
we get

69 ool Lo ST ().

Furthermore, by using the corresponding expression for e(y{bi/c}),
b, ¢)=1,

Ser(a, y)=;12~ le(@) —1[e(y)—1] 3 [e(””T”)A]“l[e(m)—l]’l

»,9(mod c) (4

xS o -HenthD)

If we consider the complete residue systems (mod c): p=—br, g=ap
(r, p=0,1, +--, c—1) and take into account that 6—21 e(— 1M>
c

A=0
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vanishes except for p=1 when it has the value ¢, it follows simply that
(3.4) Sz, y) =1 I [ ln 1] [ y+m~ 1]4 ’
C r(modce)

holds for all =, y5£0, +1, --- and, because of the definition (2.3), in
the case ¢=1 too. By [1——e(z)] '=1(1+4 ctg 7z) and

c=1
> etg z(z +ﬁ) =c-ctgcnz ,
u=0 C

we have the equivalent formula:

(3.5) S04, y) — i [1+i(cte na+ ctg 71)]
_1 ) ctgfrx br ctg”y—i-afr ;
4¢ r(modo) c c

(3.4) or (3.5) expresses the sum (2.3) by means of periodic elementary
funections, without using the arithmetical function {u}.

(8.4) leads immediately to corresponding representations of ém,n<acb>

by means of the so-called Eulerian numbers H,(7*), defined for a root

of unity 77’°=e<£>, ¢c>1, ctk by
c

(3:6) A== =S H(P2n! el <2n{kfc} .
In fact, after expanding the right-hand members of
wySe(w/2ni, y/2ri)=(xy/c)(e”*—1)7(e*/* 1)
+(@le) S5 (g = e = 1)

we find

3.7 xyS»Y(x/2mi, y[2ni)= c+2 B, 2" +y")

]nl

oo

{vmyn L B Ll — 1(77 )ﬁn 1(77 ):| »277
m,m=1 m!n!cm'l'"-—l |:B +mn2 (bar_l)(v—br 1) |x|’ Iyl< c

so that comparison with (2.5) gives in addition to (2.6)

68 sn(*) e BB ST ]

m, fn=1’ 2’ cee,
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a formula implying a result of Carlitz [3, (6.5)]. In particular, for
m=n=1 (3.8) becomes

(39) Sy ((ch> 4 = 2(77["_‘1)—1(77_1”—-1)’

1

4c
1, Z‘ mw_' ctg mbr ’
4 de =1 c

which contains two equivalent representations due to Rademacher and
Rédei (for a=1; cf. for example, [4], (2.2) and [2], (5) respectively).

4. The main property of & (z, y). Our next purpose is to deduce
a peculiar symmetry relation relating to the sums in question, by ap-
plying the calculus of residues.

THEOREM 1. We have for a, b, ¢ positive, mutually coprime, and
Jor 0 < R(zx) <1, —1<<R(y) <0 the relation

4.1) Sy(ax+by, —cx)+ S2(cx, cy)+Sh(—cy, ax+by)
=[1—e(ax+by)]",

provided that ax+by, cx and cy are not integers.
Proof. We consider the integral

(4.2) %“”‘“S [e(2)—1]- [(x—-gz)—lr[e(w Zz)—qldz

the path of integration being a rectangle whose vertices are the points
—e+ i, c—e+ti with

> max | 13, S130) |
and
0 < e< mind ¢ (1-R()), ~9A(1+%ﬁ(y))} '
;) a

taken in positive direction. A straight-forward calculation shows that
only singularities of the integrand inside @ are at the points:

2=2 1=0,1, -+, c—1;

:(c)([l"l’ﬂ?) F““Oa 1’ ] b_l;

=% -y v=0,1, -+-,a—1;
a
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by our assumptions, these are all distinct and poles of order 1 only of
the first, second, and third factor respectively. Since

Tes [e(z)—1]*=1/271
res [e(x—bz/c)—1]"'= —c/2mib ,

z2=(c[b)(p+x)

res [e(y+az/c)—1]"'=c/2ria ,

z=(c/mV-y)

the residue theorem yields
2ni-%=§[e(w—%~)—1]_1[e(y+z:)—l]—l
= Ele(Grrurft) 1] 1e(Ga )]
wo Sleler quey) 1] Le(=up) 1]

and therefore, by (3.4), we obtain

v}

(4.3) ©&2%cx, cy)—CoYax +by, cx)+ S (ax+by, —cy)=(2mi[c)F .
Now, if we write
c~-e+1t —g+1td —e—~1i c—e—ti
e M ORS BE
Q c—e—ti c—€+ii —e+ti —g—ti
with the integrand of (4.2) and straight-line paths, the sum of the first

and third member on the right vanishes because of the periodicity (with
period ¢) of

le(z) — 1] [e(x—bz/c)— 1] [e(y +az]c)—1]" .

On the other hand, using the estimate |e(w+iv)—1|=>le"*™—1| (u, v
arbitrary real), we find at once that the integrals along the horizontal
segments tend to zero as ¢t —> . Hence (4.3) implies for ¢ — «

(4.4) Seax+by, —cy)—So~*(ax+ by, cx)+ S (cx, cy)=0
which is, by (2.4), equivalent to (4.1).

5. Applications; extension of the well-known reciprocity theorems.
(1) If we write

(5.1) Tot(z, ) =L S ctg A0 etg YT
C r(modc) C C

and use (3.5), then (4.1) becomes
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(5.2) Ty(ax+by, —ex)+ TH"(cx, cy) + TU(—cy, ax+by)=1.

By (3.9), this may be regarded as a generalization of the reciprocity
theorem of Dedekind sums. For, by putting y=—=2 in (5.2) and making
x — 0, we obtain on the basis of the Laurent expansion ctg z=z"!'—1z—---

6.3 g“<bac> o <Cba> s “(a’c b>: ; * 112<b02 +cba * acb> ’

a remarkably symmetric three-term relation which for a=1 reduces to
(1.2) with A=b, k=c. (Cf. also a result of Rademacher in [11].)

(2) Let us replace in (4.1) =, ¥y by «/2zi and y/2xi respectively,
multiply both sides by cazy(ax+by) and expand every member by ap-
plying (2.5), (2.6) and the power series of z/(e?*—1). We obtain

e (az+by)"(—ca)y ) (cx)"(cy)"y (a b
v 2 ] Sl (cchrby)m%J1 o] C)

+cx S‘ ( Cy)m('a'a:—l-by)n m n<b C) = C‘lxy [1 + ”(CL:JC +by) }
mn 1 min: a /=1 IJ

—e 3 jg [(az+byy -+ (—cay+ c(an+by) 5 7 @)

§=1 Co (=)' +(az +by)'T,

this holding identically for |z|, ly|<2x. If one uses still the binomial
theorem and arranges our absolutely convergent series in terms of z,
¥ (v=1, 2, ---), then comparison of the corresponding coefficients leads
without difficulty to the following system of relations :

(54) a"-(u+1)b’c gLv(b C)_,__byi (_1)[J.+1<’/+1>cua~/+1—-}l«§v4 _ <C (l)
7] =1 yZ b

e (vt 1)ab” g(“ b) =B, (@7 b7+ (—¢)* ) — (v +1)B,(ab)e
C

y=1,2, -+,
furthermore, by (;)(;):<;>q:z>,
(5.5) @ (; 1)?:1( 1),”1(19:1) S Lg‘“”‘“<bac)

1 +1— ca
(T E e (e (7))
+ » ) & ( 1) P ca Syl-pp b
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v (P FLN e ab +1\ e
+¢ ~[<p+1>a" R/) pgv—p,pﬂ( c >+(pp )CL b+l pgwl—pm (acb)

_B,ﬂ[(” ; 1)av+1 + ;j: i)b] o l)By( ; )abye

1I<p<yv—-1.

The results can be written briefly in symbolic form as follows

(5.6) v+ 1)|:00/V§1,y (bac) + c*ad,, <ac b)] — (a8— c3)**! (C ba)

=vB,,b—(+1)B,ac v=1,2 .-+,

(5.7) (V+1>(bg °)1’*‘1(b§)" v, <Cab)

( )(a@ c3)+1- p(a@)f’( )

—e [ ”“ a§+ v+ 1>b§](a§) (bg)v”’(“cb)

-(p+1)<”:’_i)3va”b”c p=1,2, -+ v=p+1,p+2, .-+,

where for example
: AR\ D+l v_p € b
(b8 — ¢3) 7+ (b9) ( ! )

means that, after formal application of the binomial theorem to the

first factor and formal multiplication by b”“’~§”‘1°-<cab ), every product

Q”‘E"(cab) is replaced by Q,,,,n<cab> .

(8) We remark at once that (5.4), (5.6) go over for r=1 to the
reciprocity relation (5.3) and for v >1 odd, b=1 to the formula (cf.

(1.3), (2.7))
(5.8) v+ Dleav+s$(e, a)+c*a, s$(a, ¢)]=(Bc—Ba)**'+vB,,,

with 2

(Be—Ba)'= 3, (- 1)%(”+1)c-*av+1-“BuBm_u;

2 The factor (—1)* may plainly be suppressed in the last summand, that is,
(Bc—Ba)v*1=(Bc+ Ba)**1 .
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therefore (5.4), (5.6) generalize (5.3) and Apostol’s reciprocity theorem
[1, Theorem 1].
On the other hand, putting »=3,5,7, --- in (5.7), we get for ¢=1

+1

(a4

(5.9) (;+ 1)(1""”(3"’) —b)P+(b, a)— (V + 1) b2(s* —a)**1="(a, b)

while the case b=1 yields

(5.10) c’[(zjii)as?)p(a c)+(”+ 1)s<v>1 @, c)]

_ (u-i— 1)(s(v) — )" (as™ ) ~*(c, a) + ( v+ 1>(aB—c§)””"”B” ,
p+1 D

the symbolic notations being understood in similar sense as above. (5.9)
and (5.10) express the first and second reciprocity law of Carlitz respee-
tively [3, Theorems 1, 2%, so that we have in (5.5), (5.7) a common ex-
tension of them.

6. The sum D%(w, z). We now use the generalized zeta function,
defined by

Le, w)= 3 ()

for R(z) >1 and by analytic continuation for other values %1 of z, u
denoting a fixed number with 0<% <1. There holds the well-known
formula of Hurwitz :

(6.1) C(z, u)=2(2x)"'(1—2)
X (sm 5 Z n*-* cos 2nmu + cos 5 Z 7! sin 2n7ru) R(=z) <0 .

n=1 n=1

Next we establish a functional equation for the sum

(6.2) o, 9= Se(w {2he(= {2))

(4

with (a, ¢)=(, ¢)=1, ¢_>1, in observing that [cf. (1.4)]
(6.3) Dl —m, 1—m)=1 [@(a b)—BmBn:I m,n=1,2, -
mn c

3 In f()‘f}r;ula (3.2) of [3], the lack of the corresponding binomial coefficients before the
Bernoullian numbers appears to be a typographical error.
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and, by £(z, $)=(2°—1)%(z) where {(z)=((z, 1) is Riemann’s zeta function,

(6.4) De(w, 2)=(2"—1)(2°—1)-L(w)((?) -

THEOREM 2. For (a, ¢)=(b, ¢)=1, ¢>2 and for any w, z distinct
Srom 0 and 1 we have the relation

(6.5) DpYw, 2)=(c**—1)¢(w):(z) + 7~ 2en)*** "1 —w)['(1—2)

X {cos g (w—2)D(1—w, 1—z)—cos ‘;-(w-i—z)@’c’"“(l—w, 1—2) } .

Proof. 1° First let R(w) <0, RE) <0. We transform

69 e, 9= 2o {71 1)

c

by means of (6.1).
Since the series involved in Hurwitz’s formula are absolutely con-
vergent, one obtains after substitution into (6.6)

(6.7) DeYw, 2)=4(27) (1 —w)'(1—2)
x mg‘g,lmw“n’”(cbmm-sin %w sin ﬂ;-}-slfmn cos 7.”2”_ cos 712z ) ,
where

e, if c¢|am+bn,
(6.8) ¢m,n=§c] cos 2ma % cos 2n7ri19= 0 for ctam=+bn,

p=1 C .
¢/2 otherwise ,

¢/2, if ¢ | am—bn but

ctam+bn ,
(6.9) ¢m,n=§c] sin 2mz % sin 297,7rﬁé = —¢/2, if ¢ | am+bn and
wet ¢ ¢ ctam—bn ,

0 otherwise .

Hence it follows easily that

(6.10) D¥(w, 2)=2¢(27)***"(1 —w)['(1 —7) .{2 sin ’1’;‘_’- sin™ 3 mu-ips

cim,cin

T _
+cos © (w—2) m¥~'n*"t—cos _ (w+2) me-Ipt }
2 am=bn(mod c¢) 2 am=~ bngmod )

cym,cxn cxm,bkn

Now, by the functional equation of ¢(s) we have
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(6.11) 4e(2m)** 2" (1—w) (1 —2) sin Zzﬁ sin ”2” S metiget
cim,cin

="t

Furthermore, ar (r=0,1, -+, ¢c—1) and br (r=0,1, ---, ¢—1) being
complete systems of residues mod ¢, we can write

c—=1
(6.12) Z mw—l,nz—l i Z( Z m’w—l)( Z nz—l)
gri_bcn}zxod ¢) r=1 \m=rb(mod ¢) n=ra(mod ¢)

eS8 (e T (o)
e {20 7))

and similarly

c-1
6.13 meoipe-i= 5 =) )
( ) g:rrn: ;%"‘(‘mod ) 72:{ mErb(zn‘xod ) n=- r%mod )

mere Bt (HE(-= 7))

(6.10)—(6.13) yield together
(6.14) De(w, 2)=cv**"(w)E(2) + 7~ (2er) = I'(1—w) (1 —2)

X {cos %(w—z).‘b’c""(l-—w, 1—2) — cos ‘Z’ w+2)Dr*1—-w, 1 -—z)} .

2° Finally, (6.5) follows immediately from (6.14), in view of
DN w, 2)=DN(w, 2) — (W) (2) R(w) <0, R(x) <O

and by analytic continuation.

7. Some remarks. In [2], Apostol finds certain finite sum repre-

sentations for s{’(k, k), involving cotangents, ¢(z, u), I(2)/I'(z) and he
uses these expressions to give a short analytic proof of (5.8) [Theorems
1, 2]. It may be noted that the above Theorem 2 implies the results
in question, arising as limiting cases for w—0, and z2—0, z=-1,
-2, ..,
The form of &z, y), D (w, z) suggests applications in connection
with certain Lambert series, generalizing those investigated by Rade-
macher, Apostol and Carlitz. I hope to return on this problem in an-
other paper.
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