A CONVERGENCE THEOREM FOR A CERTAIN CLASS
OF MARKOFF PROCESSES

MAURICE KENNEDY

1. Introduction. The object of this paper is to generalize, by
means of an approach due to S. Karlin [9], a theorem originally obtain-
ed by Bellman, Harris and Shapiro [1] which may be stated in the fol-
lowing way:

A system is considered whose state may be described by a point ¢
in the interval [0, 1]. A probability measure g is given for the initial
state of the system. At the end of each unit interval of time, one of
the transformations A4,, A4; is applied to the state ¢ with probabilities
bu(t), ¢i(t) respectively, where ¢ (t)+ ¢(¢)=1. The transformations are
defined by

(1.1) At=At, Ai=it+1—-2), 02, 4, <1.
The assumption is made that
(1.2) put)=1-¢, ¢’1(t)=t .

It is clear that (1.1) and (1.2) ensure that the end-points of the interval
[0, 1] are absorbing, that is, if the state of the system is either 0 or 1,
it remains so. Let Tu be the probability measure at the end of the
first unit interval. It is then proved that as n — o, 7™y (that is, the
probability distribution for the state of the system at time n) converges
in distribution to a distribution concentrated at the points 0, 1 and the
form of this limiting distribution which depends on p is obtained.

The motivation for the consideration of such a system arose from
certain learning models introduced by Bush and Mosteller. These are
deseribed in detail in their recent book [2]. (Condition (1.2) means that
the state of the system may be identified with the probability of ap-
plying 4,).

The methods used in [1] to obtain the convergence of 7™u are pro-
babilistic. Karlin [9] considers the space of continuous functions on the
unit interval and obtains a bounded operator U on this space whose ad-
joint is T. A convergence theorem is obtained for U" and the result
is translated into the adjoint space (that is, the space of measures) to
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1 Karlin also considers boundary cases where 4;, 4; may be 1.
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obtain the required result.

Karlin [9] also considers cases where (1.2) no longer holds and
obtains for a wide class of non-absorbing models the convergence of
T"u to a distribution which is independent of x#. These do not concern
us here as the object is to consider only a class of absorbing pro-
blems, where of course the final distribution depends on the initial dis-
tribution.

We conclude this section by stating a well-known theorem [8].

THEOREM 1.1. Let Q be a compact Hausdorff space and let €(Q)
denote the Banach space of real-valued continuous functions x(t) defined
on 2 with

(1.3) llel| =max f(2)] .

Let M(Q) denote the space of all real-valued completely additive re-
gular set functions p(E) defined for all Borel sets E of 2, with

(1.4) Ilﬂll=igg #(E)—;gg UE) .

Then M(Q2) is isometric (and lattice isomorphic) to the conjugate space
of €(9), the correspondence being given by

(15) @, = a®dut).

2. Description of the process. Let 2 be a compact metric space
with metric p. Since Q satisfies the second axiom of countability, the
concepts of Baire and Borel measures coincide, and thus since the
former are always regular [5], we have that the set M(2) of Theorem
1.1 consists of all the completely-additive (finite) set functions defined
on the Borel sets of Q.

Let {z;} be a countable sets of points in 2 and {4;} a correspond-
ing set of continuous transformations of 2 into itself with the follow-
ing properties

(2'1) AZS,: C Si ’Z:l, 2’ se e
where S, is any open sphere with centre r;,, and

(2.2) lim Art=r, i=1, 2, ...

n~»o0

for each te Q;

that is, repeated applications of the transformation A, transforms ¢ in
the limit into 7z, and moreover every open sphere with centre r; is
mapped by 4, into itself. The points {r;} will be referred to as boundary
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points. It follows from (2.2) and the continuity of A;, that
(2.3) A=t . =1, 2,---.

Consider a system whose state may be described by a point ¢ in Q.
Let {¢(t)} be a countable family of continuous functions defined on £
with the property that

(2.4) 0< <1, i=1, 2, e
and
(2.5) S pi(t)=1.

Let ¢#(E) be a probability measure defined on the Borel sets of 0,
giving the probability distribution of the initial state of the system.
Our process consists in applying at every unit interval of time one of
the transformations {4,}, A4, being applied with probability ¢,(¢), where
t € 2 represents the state of the system.

Let

(2.6) TWE) =5 | etdn) .

It is easily seen that Tu(FE) is a Borel measure. It represents the
probability measure for the state of the system after unit time. 7y is
defined by (2.6) for any Borel measure g and

2.7) NTpll=Tr(Q)=p(@)=|lpl .
More generally, if
peMQ), p=pt—p,
(2.6) defines T'¢ and
2.8) Tp=Tu*—Tp .

T is a linear transformation of Q) into itself and

Thus we obtain

LEMMA 2.1. T 4s a positive linear transformation of W(2) into
itself of norm 1.

Now consider z(t) € €(2) (ef. Theorem 1.1). A function Uz(t) is
defined on 2 by
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(2.9) Us(t)= ii’; bi(O)r(At) .*

Each term of this series is continuous on 2 and |x(4,t)| <|lx|l.

Since >¢p(t)=1 the convergence being uniform (by Dini’s theorem),
the series (2.9) is uniformly convergent and hence Ux(t) e €(2). Clear-
ly U is a linear transformation of €(Q) into itself and ||Uxz||<||x||. Thus,
since the functions which are constant on 2, are fixed points of U, we
have the following.

LEMMA 2.2. U is a bounded positive linear transformation of €(2)
into itself, for which the constant functions are fived points. Moreover
|U™|=1 for all positive integers n.

Theorem 1.1 connects €(2) and W(2). We now prove

LEMMA 2.3. T s the adjoint of U, that is,
(2.10) Uz, p)y=(x, Ty), for each xeC(2) and pe M(Q).

Since p=p*—p~, it is clearly sufficient to prove (2.10) for the case #=>0.
Let

W(E)=| Yt
It is easy to see that
Tp= 2; v AT,
the convergence being in the sense of I(LQ). Hence

@, T=5 @, A7) =S (adar@)
—S[eadau

= S{ovatanine

=(Ux’ ,u)

since the series (2.9) converges uniformly®.

2 Operators of the type U have been considered, and both convergence and €—1 con-
vergence theorems for the iterates U» obtained by Ocinescu, Mihoc, Doeblin, Fortet,
JTonescu Tulcea and Marinescu [10, 3, 4, 6, 7].

3 This adjointness lemma expresses the fact that if ¢, %, --- represents the process
then E{E{w(ty)|ti}} = E{x(t)}.
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3. Absorption assumptions.! The first additional assumption to be
made is that each of a finite number of the boundary points is an ab-
sorbing point, that is, we assume

(3'1) ¢i(Ti)==1 2"=1) 2) cec, M.

This together with (2.3) ensure that z, (¢=1, 2, ---, m) are absorbing
points. (Since X.¢,(t)=1 and 2 is compact, it is not possible to extend
the assumption (3.1) to an infinite number of the boundary points z,).
The assumption (3.1) is strengthened as follows :

We assume that about each absorbing point z, (1 <4< m), an open
sphere 3, may be drawn with centre r, on which the infinite product

(3.2) PP AiL)- - - pi(ATE)-

converges uniformly (the convergence being in the sense of infinite pro-
ducts that is, the limit is nonzero).
Clearly assumption (3.2) together with (2.2) imply (3.1). Finally,

the assumption is made that for each te Q——O > there is a finite se-
1
quence of transformations

AJI, Ajgy"‘, Ajn (1 =<7 <)

where n, 71, 75 *++, j» depend on ¢, such that AjnAJn_l---Ajlt is in
one of the spheres 3, (1 <7=<m) and such that each term of the
sequence

(3-3) qul(t): ¢’12(A11t)» Ty ¢jn(AJn_1' ° 'Ajlt)

is greater than zero.

Assumptions (3.2) and (8.3) imply that no matter what the initial state
of the system there is always positive probability of reaching an absorb-
ing point after an infinite number of steps. We conclude this section
with the following lemma which is a consequence of (3.1).

LEMMA 3.1. U preserves the values at the absorbing points, that is,
(3‘4) Um(ri)=w(ri) ’ 7:21, 27 e, M
where () € €(2).

Proof. Since

Sgut)=1 and $(H)=0

¢ Cf. discussion Bush and Mosteller, [2, pp. 167-169].
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for each /, we have by assumption (3.1) that
(3.5) u(r)=0 10, 1<i<m, 1 <1< oo.
The result follows by (2.3) from the definition (2.9) of U.

4. Examples.

ExaMPLE 4.1. Let {4,} be a countable set of transformations of
Q into itself with the property that

(4.1) p(At, As)< Ip(t, s) i=1, 2, .-+

for all pairs of points ¢, se 2, where 2 is a constant such that 0 <2
< 1.

It follows from (4.1) that the transformations {A4;} are continuous
and moreover there exist points {r;} such that (2.1) and (2.2) are
satisfied.

Let {¢;(t)} be a family of continuous functions on £ satisfying
the conditions (2.4), (2.5) and the first absorption assumption (3.1).
Suppose also for each ¢ (1 <<¢=Um) that there exists an open sphere
>, with centre z; and radius »;, on which ¢,(¢()>> 0 and satisfies a uni-
form Lipschitz condition® that is,

(4.2) leu(t) — pul() < Kp(2, ) t,se 3,

Finally the assumption is made that one of the probability functions,
say ¢(t), satisfies

(4.8) () >0 except at the points z; (217 < m).

LEMMA 4.1. The process just described satisfies the absorption as-
sumptions of § 3.

Proof. We first observe that (3.1) is satisfied by hypothesis. To
establish (8.2), let te 3, (1 <i<m) and ¢,()=1—¢,(t).

dy(Ait)=1—¢;(A)
=¢(Air;)—¢i(A5t) by (2.3) and (3.1)
S kp(Ajn, AfY) by (4.2)
< k2"o(z;, t) by (4.1)
< (kr;)A".

Since 0 <<1<(1, 34" converges and hence, by a theorem on infinite

5 These assumptions link up with those given by other authors [10, 3, 4, 6, 7].
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products go(l-—glri(A;‘t)) converges uniformly on 3),. Thus 7f=[0¢i(AZ‘t)
converges uniformly on 3, and the assumption (3.2) is verified.

It remains to verify (3.3). Let te 2—\)S,. Since At—»>z, there
exists n, such that AXte >,. By (4.3), ¢,1(t3> 0. Hence we take A4, as
our first transformation. If Ajite \?Zi, then (8.3) is already verified.

If not ¢,(A4;)>0 and we take A, as our second transformation. Pro-
ceeding in this manner a finite sequence of A;’s (of length < n,) is
obtained which satisfies the assumption (3.3). Hence the lemma is
proved.

EXAMPLE 4.2. The example described in § 1 is a particular case of
the example just given.

ExAMPLE 4.3. We now consider a generalization from 1 to N di-
mensions of the learning model considered by Karlin (cf. Bush and
Mosteller [2]).

Let 2 be a simplex in E, (Euclidean space of N dimensions). Any
point of 2 is given by its barycentric coordinates t=(¢,, t,, +- -, ty+;) Where

+1
t, >0 and NZ t;=1. The vertices ¢ (¢=1, ---, N+1) have coordinates
1

ei=0% (Kronecker delta). Let I denote the (N+1)x(N+1) unit matrix,
and B, 1 <¢< N+1) denote the (N+1)x(N+1) projection matrix
where each element of the ¢th row is unity and all other elements are
zero. Clearly Bit=¢' for each € 2. Consider the family {4;} of trans-
formations on 2 into itself defined as follows

(4.4) A,=21+(1-2)B,, 0L 1<1, =1, 2,.---, N+1,
that is, for te 2
Alt=(izt1, Zitz, ey, Zzt,; +1""'lz“ Riti'(-l‘ e XitN+l)

Clearly A, represents a transformation which carries a point P into a
point P’ on the line PV, where V, is the vertex ¢ and

PV,=2(PV,) .

The transformations {4,} are continuous and satisfy the conditions
(2.1) and (2-2) where 7;=¢’. For the probabilities ¢,(t) we take

(4.5) Pi(t)=t; t=1, ---, N+1.

The conditions (2.4) and (2.5) are clearly satisfied. It remains to verify
the absorption assumptions of §3. Since ¢;(¢)=¢=1, the condition (3.1)
is satisfied., To verify (3.2) we first note that since Bi=B,
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Ar= I+ (1—27)B,
so that
¢i(t)=tm ¢’i(A?t) = i?ti + (1 - ll‘)

If t,>>¢, it is easily seen that the infinite product ﬁ b, (Art) converges
0

uvniformly.

Condition (3.3) is seen to be satisfied by noting that for any point
t, one at least of the coordinates is nonzero, say f,, and hence the ith
coordinate of A7t (n=1, 2, ---) is also nonzero.

5. Returning to the general absorption process described in §§2
and 3, we establish by means of the assumption (3.2), the equicontinui-
ty of the family of functions {U"x(t)} at each of the absorbing points
7, (1=1, 2, -+, m).

LEMMA 5.1. Let z(t) e €(2) be such that it vanishes at one of the
absorbing points v, (1 <@ m), then for each ¢ >0, there exists a sphere
S(e) with centre r,, such that

|Ura(t) < e n=1, 2, +--
for ¢ e Si(e).

Proof. Without loss of generality we consider the case where 1=1.
Let

Ja®)=d:i(t)pi(Ait)- - - P (A7) .

{f.(t)} form a nonincreasing sequence of functions which by assumption
(3.2) converges uniformly on > to a function f(¢). It follows that f(¢)
is continuous, and thus since f,(z,)=1 (by (2.3) and (3.1)) and therefore
flr)=1, we have that given any positive number ¢ (0 <d <(1), there
exists a neighbourhood V of z; (contained in >);) on which f(¢)> 4,
which implies f,,(¢)> ¢ for all n.

Choose 8 > 1—¢/||z]| and let ¢ be a positive integer such that

(.1) i;ia> 1—e/ler] -

Since x(r;)=0 by hypothesis, there exists a neighbourhood V' of ¢
such that for te V’

(5.2) lw(t)lg—;—llwll.
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Let Si(¢) be an open sphere with centre r; and such that Si(e)
cvVNnv.

By (2.1) if te Si(e), A%t e Si(e) for all positive integers n. Hence
for te Si(e)

(5.3) Ix(A?t)lgéllwll : n=1,2, -,
and

(5.4) Fut)> 06 n=1,2, ---
Now

U"x(t)=i iZ’, ¢i1(t)¢i2(Ai1t)' . '¢in(Ain_1. : ’Azlt)x(Az'n‘ . 'Ailt) ,

(D) < ()bl Art)- - - b AL~ 0) (ATt
2| () (Ai)e s (As = Aut),
where 3’ denotes the summation omitting the term corresponding to
=1, 4,=1, ---, i,=1.
Replacing |z(A47%)| by — (x|l — |z(A7E)]) + ||lz]| we obtain
U] < —Fule)llal — ( 428))
el S (Oo(Ait) s (A -+ Ai),
or
(5.5) |Uma(8)) < — ekl — o Aze)) + [l

since ¢, (t)=1. Now let te S(e). Then

[T 2 () < \ll| — o(llael] — | (Art)]) by (5.4)
< el ~o( lell— - I by (5.3)
— _g-1
=lizl(1-722)
<e. by (5.1)

Hence the lemma is proved.
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THEOREM 5.1. If wx(t) e €(Q), then {U x(t)} form an equicontinuous
Samily of functions at each of the absorbing points {z;} (i=1, 2, ---, m).

Proof. Without loss of generality, we prove the theorem for the
point z,. It is required to prove that given e >0, there exists a sphere
Si(¢) with centre r, such that for te Si(e)

|U"a(t) — Ura(c)| < e n=0,1,2,---,
or equivalently by Lemma 3.1
(5.5) |U"a(t) —a(r,)| < e n=0,1,2,.--,

for te Si(e).
Let 2(t)=x(t)—a(r1). 2(t)e€(2) and 2(r;)=0. Hence Lemma 5.1
may be applied to obtain a sphere Si(¢) with centre r; on which

|U"2(t)| < ¢ n=0,1,2,---,
but since U preserves constant functions (by Lemma 2.2)
Urz(t)=Ura(t) — (7)) .
Hence (5.5) is established and the theorem is proved.
6. The convergence theorem in ©(2). In this section, the assump-

tion (8.3) is applied in conjunction with Theorem 5.1 to obtain the con-
vergence of U"a(t) in €(£2).

LEMMA 6.1. Let {S;} be spheres with centres {r,} such that S; 3,
(t=1, 2, ---, m). Then there exists a positive integer n, and o number
6, (0<C6<1) such that for each tef, there exists a sequence of n,
transformations A, A;, -, Aino (depending on t) which, when applied

consecutively, transform t into a point in \J S,, and such that the pro-
i=1

bability of the application of each transformation of the sequence is =9,
that is, each term in the finite sequence

¢i1(t)’ ¢iz(Ailt)’ Tty ¢'in0(Aino_1’ ) Azlt)
is = 0.
Proof. By assumption (3.2), it is clear that
(6.1) ¢(t)>0 on 3, (and hence on S,) i=1,2,---, m.

and thus by the continuity of ¢,(¢), there exists J, such that 0 <5, <1
and
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(6.2) $)=0, for teS, i=1,2, -, m

Let te. If te 2~ \73 S;, we have by the assumption (8.3) together

with (2.1), (2.2) and (6.1)1that there exists a finite chain of transfor-
mations A4,, A4;,, +--, Ajn, which when applied consecutively, transform
¢t into a point in one of the spheres, say S, 1<71<m). Moreover
each term in the sequence ¢, (t), ¢,,(4,1%), -, ¢,n(A,n_1- -+ A;t) is > 0.
If te C} S,, the same result holds for then ¢eS, 1<7<m) and

thus by (2.1) and (6.1), it is sufficient to take a chain consisting of the
single transformation A,.

Consider Aj7'S,. This is an open set containing Ajn ER
” -

Since ¢, (4, ---4,1)>0, there exists an open set U, such that

At

A; oA te UnC 4SS, .

and on which ¢; (¢) > 0. By the regularity of £, there exists an open
set V, such that

Ay - Ate V,CV,CU,C A4S, .

V., is compact and therefore there exists a positive number ¢, such that
qb,n(t)g 8, on V, and hence in particular on V,.

Now consider A;y:_an. Proceeding as above, we obtain an open
set V,.,, such that

AJ. .. -Ajlt € Vn—l - Vﬂ‘l CA};;_IVn

n-2

and a positive number 6,-,, such that ¢,-n_1(t)__>: On-1 on V,_;. Proceed-
ing in this manner, we arrive at an open set V, which is such that

te ViC V,C 4;'V,

and such that ¢, (¢)=0, on V;, where ¢, > 0.
Hence, the open set V, containing ¢ has the property that each
point in it is transformed by the sequence 4,, 4;, ---, Ajn into a point

of S, (CGSO and the conditional probabilities of each of the successive
1

transformations being applied are > ¢, 0,, ---, 8, respectively.

This process is repeated for every te 2. For each ¢ an open set
corresponding to V, is obtained. By the compactness of 2, we have
that Q is covered by a finite number of open sets 2, (I=1, 2, ---, k),
where each set 2, has the property that there is a finite chain of trans-
formations of length #, (that is, n,=the number of transformations in
the chain) which when applied successively transform each point of 2,
into one of the sphere S; (i=1, 2, ---, m) say S;, and which has the
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property that the conditional probabilities of applying the transforma-
tions of the chain are respectively =>4,, d,, -, 6,n , where each of
these numbers is greater than zero. !

Let my=max n,. The length of the chain n, for each 2, may be

1si=sk

extended to n, preserving the above properties. For if e S, (A <1< m),
Aite S, by (2.1) and ¢,(¢) = 0, by (6.2).
Let

6=

1
1

n (aliy 60) .
1

n
k

IATA 5

lLMII\ B

With these values of n, and &, the lemma is established.

LEMMA 6.2. Let {z,(t)} be a sequence of functions in €(Q) with the
Sollowing properties

(6.3) ol < H p=0,1, 2,---
where H is a constant.

(6.4) Z,(z;)=0 for all p =1, 2, .-, m
and

(6.5) the family of functions {Urx,(t)} (n, p=0, 1, 2, ---) is equicontinu-
ous at each of the absorbing points =, (=1, 2, ---, m).
Then, under these conditions

lim [|Urz,||=0
N—>00
where the convergence is uniform with respect to p.

Proof. Given e >0, there exist by (6.5) spheres S,(¢) with centres
7, (=1, 2, .-+, m) such that for ¢e S(e)

| U, (t) — Ura,(r)| < €/2 all », p.
Hence by (6.4) and Lemma (3.1)

(6.6) |Un(8)| < ¢/2, te ('J S,(e), all n, p.

There is no loss in generality in assuming the spheres S;(¢) so chosen
that
(6'7) ‘-STi—(é)C Zt ?’=1’ 2’ cee, M.

Thus the spheres Si(e) (=1, 2, -+, m) satisfy the hypothesis of
Lemma 6.1. The positive integer n, and the positive number é obtained
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in the lemma depend here on . Let

(6.8) lx=1——%»6"o .

Sinece 0 <9 <1, it follows that 0< a <1. We now show that for
all p

(6'9) “Uknﬂxpué Hr k=09 1’ 2’ M

where g, =max (a*H, e).
We prove (6.9) by induction. Clearly by (6.3) it is true for k=0.
Suppose it is true for k.

(6.10) U+dmog, (t)
= . Zz ¢ix(t)¢’il(Ailt)' * '¢’inu(Ai,,0_1' ° 'Ailt)
2 79

!

x U ""nxz,(Aino‘ - At .
Consider ¢ fixed. By Lemma 6.1, there is associated with ¢ a finite
sequence of n, transformations 4,, 4,, ---, Ajno (depending on t) which
when applied consecutively transform ¢ into Cj S;(¢) and such that
i=1

each term of the finite sequence ¢, (), ¢;(4,1), ---, qb,no(Ajno_]- <A, t) is
=4, that is,

(6.11) A, A, --Agte V) S(e)
0 0~ 1
and
(6.12) ¢35, (), (AsE)- - °¢;n0(A;,,o_; <A t)= 0™

In (6.10) we take inequalities with absolute values and separate
out the term corresponding to the above sequence and proceed as in § 5
(between the relations (5.4) and (5.5)) to obtain by the induction
hypothesis

(6.13) |UE* D%, (8)]
= =05, (05 (As0) - 85(4,, -+ A1)
X (= Um0z, (Ay + < As D)) + e
(6.6), (6.11) and (6.12) give
[UE D 0, () < — 01— e[ 2) + p2r.

Since g, =>¢, we have p,—¢/2>1/2¢,. Hence
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U ma ()< (1= -3m) = et by (6.8).

Therefore
NO® D || < ap, < max (@ H, &)=t .

Hence (6.9) is established. Clearly there exists k, sufficiently large such
that g, <_e. Then, since [|U"||=1, all = (Lemma 2.2), we have that
for n = nk,

U@, || < e all p.
Hence the lemma is proved.

THEOREM 6.1. U™ converges strongly on C(82), that s, there exists
a continuous transformation U. of norm 1 of &(Q) into itself (which
preserves constant function) such that

(6.14) lim || Uz — U.z||=0

for each function xe €(2).
Proof. Given x(t) e €(2), let
(6.15) ,(t)=U"x(t)—a(t) p=0,1, 2, .- .,

Clearly z,(t) e €(2) and ||z,||< 2||z]|. Moreover by Lemma 3.1, x,(z;)=0
(?=1, 2, ---, m). Hence the hypothesis (6.3) and (6.4) of Lemma (6.2)
are verified for the family {z,(¢)}. It remains to verify (6.5).

Given ¢ >0, we have by Theorem 5.1 that there exists spheres
S,(e) with centres r, (i=1, 2, ---, m) such that for n=0,1,2, .- we
have

U a(t)—2(z)| < e/2,  teSe), i=1,2, .-+, m.
Hence for teS(e) (1 <7=<m) and all n, p
|U+235(t) — Urae(t)| < e
or

(6.16) U, (8)| < e all n, p, te ) S,(e).
1

Since z,(r;)=0, Ux,(z;)=0 (Lemma 3.1) and thus it is clear from
(6.16) that the hypothesis (6.5) of Lemma (6.2) is verified.

Hence applying Lemma 6.2 to the family «,(¢) as defined by (6.15)
we have that given e > 0, there exists n such that

HUnpo<5 p:(), 1, 2; Tty
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or
|U?+2p—Urx||< e for all positive integers p.

Hence since the space €(Q) is complete, there exists an element
U.x e €(f2) such that

lim ||U"x— U.x||=0 .

U. is clearly a linear transformation of €(£) into itself. Since

U l|= lim |7 || < [l]],

it follows that U, is continuous and ||U.||<1. However since U pre-
serves the constant functions on £, it is clear that U, does likewise
and hence ||U.||=1. Hence the theorem is proved.

7. The form of U.x. The following lemma is a direct consequence
of Lemma 3.1 and Theorem 6.1.

LeEMMA 7.1. U. preserves the values at the absorbing points, that is,
U.a(z;)=a(z;) =1, 2,+--,m
where x(t) e €(2).

LEMMA 7.2. If x(t) is a fized point of U in C(Q) having the value
zero at each of the absorbing points =, (i=1, 2, ---, m), then x(t)=0.
Two continuous fixed points of U which are equal at each t, (i=1, 2,
-+, m) are identical.

Proof. Let x(t) be a fixed point of U with a(r,)=0 (i=1, 2, ---, m).
We apply Lemma 6.2 to the family of functions consisting of the single
function «(¢). Since Urx=« all n, the conditions of the lemma are
trivially satisfied and hence lim ||U”x||=0, that is, llz||=0. Therefore

N—>roco

the first part of the lemma is proved.

If «(t), y(t) are two fixed points in €(2) such that w(z;)=y(z;)
(i=1, 2, - -+, m) then, applying the first part of the lemma to the funec-
tion z(t)=xz(t)—wy(t), we obtain 2(¢)=0. Hence the lemma is proved.

LEMMA 7.3. Let ¢(t)=U.¢(t) A1 <7< o0). Then ¢(t) is a fized
point of U in €(2). If i >m, ¢()=0. If i< m, ¢t) is the unique
JSized point of U having the value 1 at r, and the value zero at each of
the other absorbing points t, (j F#%14, 1 <j < m). Moreover ‘

(7.1) Sed-1.
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Proof. Ud=UUop=U.p;=9; (1=1i<)

since UU.=U., by Theorem 6.1. Hence ¢, is a fixed point of U. For
@ >m, ¢,(t) has the value zero at each of the absorbing points, (1 <j
< m) (by 3.5) and hence by Lemma 7.1 ¢,(¢f) has the same property
and thus, by Lemma 7.2, is identically zero. If 1 <7 <m, then since
¢:(f) has the value 1 at r, (by (8.1)) and the value zero at each r,
(G #1, 1 <7< m) by (8.5), we have by Lemma 7.1 that ¢, has the same
properties and hence since ¢, is a fixed point of U, by Lemma 7.2 it is
the unique fixed point with these values at the vertices.

By (2.5) §:¢‘z(t)=1~ By Dini’s theorem, the convergence is uniform
1
so that we have in the sense of €(Q), i ¢;=1. Hence since U.. is con-
tinuous f:. ¢;=1, and since ¢,(t)=0 (z > m), }_‘W:, ¢,t)=1 and the lemma
1 1
is established.
THEOREM 7.1. If ze @(Q) then

U= i (=) .

Proof. Let

Yt)= 3 290 -

Clearly by Lemma 7.3, y is a fixed point of U such that y(r,)=2(z)
(¢=1, ---, m). By Theorem 6.1, U,x is a fixed point of U and by
Lemma 7.1 U.a(r;)=x(c;) (¢=1, ---, m). Hence by Lemma 7.2, y=U.x
and the theorem is proved.

8. The convergence theorem in Q).

THEOREM 8.1. Let
re @),
then
e —T.p
where the half-arrow denotes weak-star convergence, that is,
(8.1) }LI_)I’B (x, T"p)=(x, T.p), ze Q)

where T.. is a positive continuous linear tranformation of norm 1 of
NUL) into itself. T. is the adjoint of U, and
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5.2) 7.u=5({ o0an®)s,

where 0, 18 the probability measure with all its measure concentrated at
the point .

Proof. Theorem 6.1 gives that for x e €(2), we have lim Urx=U_x,

n~»o0

the convergence being in the sense of €(2). It follows that lim (U™z, r)

Nn~->c0

=(U.x, p) for pe M(R). Let T. be the adjoint of U.. that is, (U.z, 1)
=(x, T.r). Hence by (2.10) lim (z, T"¢)=(x, T..¢) and (8.1) is establish-
ed. T. being the adjoint of U. is a continuous linear transformation
of M(N) into itself of norm 1 and it is clearly positive. By Theorem

7.1 U,,x==§] z(r,)¢;. Hence for pe WM(RQ), (U.x, ,U)=§j (e ) (¢, ). Let
1 1

T//t=§](¢i, 2)0,. T'p is an element of M(2) and it is clear that
1

(U.z, )=(x, T'p) for all xe Q). Hence T"=U%=T.. Thus T.p=

i(g{}i, #)0, and the theorem is proved.

1

9. Probability interpretation of ¢,(t). It is easy to see from the
definition (2.9) of U, that U”¢,(t) represents the probability, that given
the initial state of the system is ¢, that at the end of the (n-+1)st unit
time interval the transformation A, is applied. ¢,(¢)=Ilim U"¢p,(f) thus
represents the limiting probability of applying A,, given that initially
the state of the system is ¢.

Another point of view is obtained from (8.2). If o, is the pro-
bability measure concentrated at the single point ¢,, then T,b‘t0=i &i(6o)o;,
1

so that ¢,(¢,) gives the probability that if the initial state is ¢, the
limiting state is z,.
To sum up, we have two probability interpretations for ¢,(¢):
(1) Limiting probability as # — oo that at the nth step in the process,
the transformation A, is applied, given that the initial state is ¢.
(2) Probability that the limiting state is r,, given that the initial state
is ¢.

I wish to express my thanks to the referee for some useful
comments.
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