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l Introduction* In most of the self-ad joint differential eigenvalue
problems occurring in mathematical physics we are concerned with finding
the extremal values of the quotient of two integro-differential quadratic
forms in a certain space of admissible functions. By setting up a
suitable basis in this space the problem can be reduced to that of finding
the extremal values of a quotient of the form (aX, X)/(βX, X), where
a and β are infinite symmetric matrices and X is a vector. The ordinary
Rayleigh-Ritz method of approximating the solutions of the latter problem
is to replace the infinite matrices a = (aί})T and β=φίj)? by their finite
sections αn=(α ί J)? and βn=(bu)?. The extremal values of the quotient
(anXn, Xn)l(βnXn, Xn), where Xn is an n dimensional vector, are the
roots λ of the equation

(1) άet(an-λβn) = 0 ,

and these are taken as approximations to the first n solutions of the
original problem. If the roots of (1) are denoted by λl with Λ?I>Λ?^
"'^λl, then for any fixed k, λl increases monotonically with n and
its limit as n-+c& is the kth. eigenvalue of the original problem. It
should be stated here that the quotient of integro-differential quadratic
forms in the original problem is taken as the reciprocal of the usual
Rayleigh quotient so that the eigenvalues are all bounded.

If we let

(2) ; f c=limtf ,

then the problem arises of estimating the difference λk — λΐ.
We shall consider this problem under certain assumptions with re-

gard to the matrices a and β. These assumptions are that a and β are
both positive definite, that the matrix (&£J)£+1 has a positive lower bound
independent of n, that the matrix (αo)^+1 has an upper bound which
tends towards zero as n —• oo, and that

lim Σ Σ αί,=0 , lim Σ Σ &?,=0 .

2. The simplest case, which we take up first, is that in which β
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is the unit matrix. Let X("d be the orthonormal eigenvectors correspond-
ing to the eigenvalues λn

k as defined above. Let numbers εn and (>n be
defined by

( 3 ) ε)? >= ( Σ Σ ah ) ,

In general the exact values of the right-hand members of (3) and (4)
will not be available, and for this reason we define en and (>n as merely
upper bounds for these quantities. The more closely these upper bounds
can be estimated, the better will be the subsequent estimates of the
eigenvalues. For the effectiveness of the method it is necessary that
the values of εn and pn can be made arbitrarily small for n sufficiently
large. One method of defining f>n is to take it as an upper bound for
/ oo oo y/2

( Σ Σ ah) ^n those cases where the latter series converges. A
\ ί=»w + l j = n + l /

different method is given in the example of § 6.
We shall adopt the convention that, if X is a vector, (x.)?9 then

Xn stands for the ^-dimensional vector (#,•)?. Let k<,n<^ N. By the
minimax principle,

(5) ; , f = m i n m a x ( ^ \ ^ ) , (XN, Z7f) = O, i = l, 2, . . . , fc-t .

Choose the vector f/? so that its first n components are equal respec-
tively to those of X(ir> and its remaining components are zero. Let

Then

(n?NYN YN\
ηfκ '* > , (X", X?>) = 0, i==l, 2, •••, k-\

{A , Λ )

(flr"X", X») + 2 Σ £ a,nxlx,+ Σ Σ a^
> ~ 1 1 -- n + 1 / rr n + \ j - n +1

(X\ XSB))-fl, i - 1 , 2, -•-, k~l

< max ^"^ + 2εnVιΊh + WA»

The last step is justified by use of the maximum principle for the first
term of the numerator and the Schwarz inequality for the second term.

The quantity on the right side of this inequality is the larger root
λ of the equation
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Hence,

2

and, since the right side is independent of Ny

(e) xi <;,. < 3 +f*
2

If j>n<C.λl, this inequality gives the simpler, but less precise, one

(6a) λl^λh^λl+-β- .

The inequality (6) (or 6a) makes it possible to obtain arbitrarily close
bounds for λk by taking n sufficiently large.

Better estimates for λh can be obtained if one makes full use of
the available data, namely λl and X£n). With these it is possible to
transform a into an equivalent matrix (one having the same eigenvalues)
a^ίcίi)), where

«** = « (k=l, 2, . . . , n),

at1=0 (i9j=l9 2, •••, n;

, n + 2, •

( pin) Q

o ^
(X[n\ X?\ •••, X ? } ) and the vectors X^ are orthonormal.

Let

( 7 ) εnk^( Σ S^Y'2 ( fe-1, 2, ..-,77,).
\j = w + l /

If any one of the numbers en7c is equal to zero, then the corresponding
eigenvalue Γk of an is actually an eigenvalue of a and the kth. row and
column of a can be deleted before proceeding with any further calcu-
lations. We may therefore assume without loss of generality that all
the numbers εnk appearing in subsequent formulas are different from
zero.

Apply (5) with aN replaced by aN and with U, equal to the vector
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whose ίth component is 1 and whose remaining components are zero.
This gives, with y=(xl+ι + + x2

N)ίl*

1°;

n N N N

Λ A + ΛJ+A+i + 4- / Λ + 2 2 J 2-I &ij%i%jJt- 2a Za ci
i k i 1 l j

Krt + 2 Σ * n ί |α t 12/ + P«2/2

The maximum value of the quotient

can be attained when the variables xk, ••-, xn, y are restricted to non-
negative values. Hence λ* cannot exceed the largest root λ of the
equation

( 9 )

0

0

0

•λ ϋ

0

0

0 enl

0 0

}n — )An A

fcWfc CW,fc4

n ^ Π
= {pn-i) Π ( ^ - ^ ) - Σ - ^ -

If a number r appears m-fl times in the set λ%, λl+ι, ••-, ^ , then
this number is an m-f old root of (9). If μΎ > μ2 > > μτ are the
distinct values in the set λl, λn

k+1, , λ%, then (9) also has roots
Λ» 2̂» •* >^+i> where rL < / ^ < r 2 < ^ 2 < <//? < r ? + 1 . The latter
roots are all the roots of the equation

(9a)
2

3. As a simple example illustrating the estimates of the last section,
let us take the problem of finding the eigenvalues A defined by

y(0)=y(l) = 0 .
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The reciprocals of these will be the extremal values λ λ> λt > λ-λ > •
of the quotient

Q(y) = * dx

in the space J? consisting of all functions y(x) with sectionally continu-
ous first derivatives and with y(0)=y(l)^=0. As a basis for this space
we take

2 sin nπx

nπ

( r c = l , 2,

and let

Zu= 1 (l+x)φiφJdx=- >
Jo

,= l φ\φfjdx=(
Jo

if ΐ = ^ ,

i f i φ j

where a=(ait)Γ, β=φί1)T, X=(%i)Γ, so the problem is reduced to one
of the type for which the estimates of the last section apply.

Let n=3. The equation for $, λl, $ is

2πz

87Γ2 L

3 ~
0

The eigenvalues and eigenvectors are :

;?=.1527 0819 , Z f = (.99684, -.07935, .00192),

Λ|= .0377 8273 , X®=(.07869, .98480, -.15482),

^-.0163 7316 , X^=(.O1O4O, .15449, .98794) .
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We make the following estimates

< 6 4 Γ ! _ + 1 + 1 + y 1
7Γ8L15' 35 ι 6 3 ' ί=i (Sσ2

64Γ.1_+ l . + 1. + - 1-("^-1=1.389x10-,
τr8Ll5ι 351 63' 8lJi a? J

r . . + ....+ . . + f ^ l = .
7iBL211 45' 771 256Ji a;s J

7r8

1 + .1_+ l . + l ( - 4 ? 1=28.234x10-',
74 271 55' 81 Jί x8 J

^ _64 ^
2, o l j α j J — ~ Σ.t

6 4 Γ ! + ί . - H X + 1

π8Ll5 2 73 353 272 63J 552 81

Σ i A j Σ ^ 3 j ,

Σ.iah + aίj + άijX 29.991 xlθ"7=ε2 ,

128 y y 1.
8 ^ ί [ ( 2 2 ) 2 (- (2re +1)2]1

9 y l + 1 2 8 ( y y 1
Aπ1^ a' π* I ^ σ-o [4n(l + 2o

+ y y _ 1
»->«i[2(2re + l)(2<τ-l)]1

= 9 y l 8 y 1 J y 1_ y 1
4?r

1<,.4 σ 7Γ

s^(Γ+2<7)
1l»-2(2w)1 ώ ( 2 «f
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Σ - + " = 0 0 0 1 7 9117 = ^ f

^,-=.013 3835 .

If the matrix a is transformed into the equivalent matrix a in which
the upper left hand 3 x 3 matrix is diagonalized, the formulas for the
elements a.u are (for j I> 4) :

αu=.99684 au~.07935 α2, + .00192 aΛ) ,

ά2 j = .07869 α1; + .98480 a,,-. 15482 a31 ,

α,,-.01040 απ-h. 15449 tt^-f .98794 a-όJ .

Hence,

Σ αϊ,< 1.395 x l O - ' - ^ ,

Σ aij< 1.042 xl0-7-=4 ,

Σ α ^ < 27.630 x l 0 - 7 = 4 .

The first three extremal values of the quotient Q(y) can now be
estimated by either (6), (6a), or (9a). From (6) we get

.152 708<;i1<: .152 730 ,

.037 782<: 4S-.037 905 ,

.016 373 =<: Λ,<ς.O17 167

whereas (9a) yields the following more precise estimates :

.152 7081 < Λ < ; . 152 7092 ,

.037 7827 .<; ,<; .037 7871 ,

.016 3731 <U,:<.017 1139 .

4, Returning to the general problem, let us assume that, by a
preliminary transformation, the matrices a and β are already diagonalized
in the n x n upper left-hand corner that is, that

αi;-=&^ = 0 (i,j-=l, 2, •••, n; iφjl) .

Let the bounds μn and enk be defined by (4) and (7) (with akj replaced
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by akJ): In addition let bounds δnk and rn be defined by

(10) ^^{^blή (fc = l , 2, . . .

x. i = n + l j~7i + i I i = w + l

We assume that all these bounds exist, that

(12) rn>±Pnk,

and that enhj-\-δnkφ0 (k=l, 2, •••, n) (see remark following (7)).
By the minimax principle with k<^n<^N,

= min max ( ^ )=0, i = l , 2, . , fc-1 .

Proceeding as before, let UΊ be the vector whose ΐth component is 1
and whose remaining components are zero. Then

λn

kχl + 4- λn

nx
λ

n + 2 Σ . Σ aijXiXj + . Σ Σ dijXiXj

^ max
xi X2

*\ max

n

f + «+2Σ

N

c
^12/ + ^

N

Σ
i == ?i +1

.2

iV

Σ
j = w •

where y=(xl+ι-{-xl+,+ - β H-^)1/2. The condition (12) is equivalent to
the positive deίiniteness of the denominator of the last expression.
Hence, λζ and therefore λk, cannot exceed the largest root λ of the
equation

(13)
0

εnk 4- λδnk

0

^n ~ Λ ε w w 4- λόnn

which is the same thing as the largest root of the equation

(13a) ^»-^=Σ
Λ- r;
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To analyze the location of the largest root of (13a), let

Then

ψ>{λ)^ ± [2δnj(en]

h

φ'Ί X) = 9 V v w * ~*~1 °n

For Λ>ΛJ, ?>"(Λ)>0, and therefore in this range the graph of ψ(λ) can
intersect that of the function rnλ — pn in at most two points. Since

lim φ(λ)= + 00 and since, by (12), rnλ — p.n^>φ(λ) for all λ sufficiently

large, there must be exactly one point of intersection, that is, one root
of (13) or (13a), in the range λ^>λn

k. This root is the upper bound
which we obtain for λk.

Let us now assume that

(14) rnXt-~pn>,a>®

for all n sufficiently large, and that

n

Then, for any ε_>0, and for n sufficiently large, ψ{)'lΛ-e)<^rn(X%Λ-e)~pn

and so the largest root of (13) or (13a) is less than ^-f-e. Therefore,
(14) and (15) are sufficient to ensure that the method gives arbitrarily
close bounds on λk, for any k, by taking n sufficiently large.

5. To illustrate the method of the last section let us consider the
problem :

d Λi , \ dy
dx V dx

The reciprocals of the eigenvalues A of this problem are the extremal
values of the quotient
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on the space of functions y(x) with sectionally continuous first derivatives
and with y(0)=y(l) = 0. If {φn(x)}7 is a basis in this space and

Jo " Jυ

then the problem is reduced to that of finding the extremal values of
the quotient (aX, X)l(βX, X), where α=(αc,)Γ, β=φt,)T.

Let the sequence {φn} be defined as follows :

3

Ψι^= Σ ct1 sin jπx ( i ^ l , 2, 3) ,

where the constants cn are chosen in such a way that

.0696 820 0 0

(«„)?=[ 0 .0173 553 0

0 0 .0073 9145

The values of the constants cV] are given by the table :

ί\:i

1

2

3

1

.3713655

-.0189824

.0007276

2

.0378935

.1828646

-.0197241

3

.0039777

.0301791

.1199722

We now apply the method of the last section with n=2. Since the
matrix a is of diagonal form, e,t and eaa may be taken as zero and p.A

may be taken as the maximum of the elements au (i]>3), namely
c^-.0073 9145.

For ΐ = l, 2 we have

c o s ^^ + 2c,;, cos 27r.τ 4- 3ci3 cos 3τrα;) cos jrr^ dx

— 2πz Σ c*i ( I (1 + ̂ *) c o s πx c o s i 7 1 ^ ' ^ ) + 4c|2( I (1 + x) cos 2τr̂  cos /TΓX dx)
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+ 9cfJ I (1 4- %) cos Sπx cos jπx dx j + 6c uc i 3 Π (14- x) cos 7r# cos i7r^ dx \

(14- x) cos 3 ra cos jπx dx)

0 / J

_ 8 Γ a ^ ( 1 4 - 4 ^ 4 2 ^ ( 4 + (2,7+ I) 2) 2

π'l UcΓri ( 4 ^ - I ) 1 ^ ( ( 2 r τ + l ) 2 - 4 ) }

A (4^-9)4 ^(4^_i)^(4^_9yJ

We make the following estimates :

Σ ^ t - M 8 < - Γ / 2 + 3 ? 2 + 6 5 3 +-^- Σ ^- = .00712722 ,
^ (4ua-1)1 151 351 631 15 ί=ί ^

y ( 4 + ( 2 ^ 1 ) T < 29̂  53̂  85» + 53 85 + 5 £ 1 __SBS#00541918
451 77; 4 - 5 (2^+ iy

2 5 - + 4 5 j + _732_f 1 ^ 1 = .26514737 ,
7 ι 27 1 55{ 8 <χ=5 ^

) .17-25•,37^45^ 65-73 1 A 1
ja" 1 5 ^ 35-272 βS2"-"^ 8 oέl o

[

-.04125482 .

This gives

Σ 6ϊ7<.0011490=^ ,

Σ 65j<.0023514 = % .

To obtain a value for r2 we let F(x)= ΎiXiψix), where (x^ is any
ί = 3

given vector. Then

ί
i ri

F'2(x)dx=xl\ φ'^dx+
ϋ JO

ί = 4

= .646936^ + Σ ^ > .646936 Σ %l ,
ί=4 ί=3

Hence,
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Σ,Σ,bt,xtx, \{l + x)F'\x)dx
^ J 3 ^ J u - (.646 936) ^ .646936

Since the bound on the right side is independent of N we may take

τ2=.646936 .

The use of equation (13a) now gives the following results, where
λΎ and lz are the reciprocals of the first two eigenvalues of the original
problem: *

.06968 <L*!<^ .06984 ,

.01735 <Lίz<L.01754 .

6. In conclusion we shall show how the method would work on
the two dimensional problem of an oscillating square membrane of
variable density namely,

uxx + uyy-= — Agu in R ,

u=0 on C ,

where R is the region 0 < C # < l , 0<^?/<Cl> ^ ^ s ^ n e boundary n'
and g is a nonnegative function with the derivative gxy sectionally
continuous in R-hC. The reciprocals <~" the eigenvalues A are the ex-
tremal values of the quotient

r i p I ciri

Q(u) = \ \ gu2 dxdy / \\ (μl + ul) dx dy
Jojo / Jϋjϋ

in the space of functions u(x, y) with sectionally continuous first deriva-
tives in R + C and vanishing on C.

As a basis for this problem we take the functions

2 sin mπx sin nπy Λ 9 q

and arrange them in a sequence φL, φ2, φ-ό, ordered according to the
value of mz + ri*; that is,

^ 2 s i n τ ^ s J

As Λ^->oo, (7^=O(i/iV) Let
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- Yj)dxdy=didy )JoJϋVθa? dx dy dy

If u= "ΣχXιψι, then
ί = l

Q(%)=(αZ, Z)/(/?X, X)

where

In order to show that the method will give arbitrarily close esti-
mates of the eigenvalues, we must show that the quantity defined in

(4) can be determined and made arbitrarily small, and that X 2 ah c a n

i=l j=n+l

be made arbitrarily small by taking n sufficiently large. The estimate

pn can be managed by noting that (4) is equivalent, in the present

case, to

gifdxdy/ \ \ (vl +ιή) dx dy ,

o / Jojo

wheίv, an is the set of admissible functions which are orthogonal to
ψu ψf> β *» Ψn Let g<LM in R. Then we may define f>n by

ΰ
ι /Ciri

v1 dx dy \ \ (vl 4- v2

v) dx dy ,
o / Jojo

and this gives

(17) ft.-,^ —

since the functions {̂ J are the extremal functions for the quotient in

(16).
Next, the numbers al3 satisfy

|cU<: c j j

where C is an absolute constant, and

1
if Ύπi φrrij ,

1 if τnί = m, ,
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Hence, for 1 <I i <C n,

if Ui φ γij ,

V //2 //2

— 2LJ niinn

and

SO

Therefore,

Σ «l c
ι(n+1)

Σ Σ α ί , < C

ί = - l 7 - W + l

where C, and C, are absolute constants.
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