ESTIMATES FOR THE EIGENVALUES OF
INFINITE MATRICES

FuLToN KOEHLER

1. Introduction. In most of the self-adjoint differential eigenvalue
problems occurring in mathematical physics we are concerned with finding
the extremal values of the quotient of two integro-differential quadratic
forms in a certain space of admissible functions. By setting up a
suitable basis in this space the problem can be reduced to that of finding
the extremal values of a quotient of the form (aX, X)/(fX, X), where
« and B are infinite symmetric matrices and X is a veector. The ordinary
Rayleigh-Ritz method of approximating the solutions of the latter problem
is to replace the infinite matrices a=(a,,)? and f=(b;;)7 by their finite
sections a"=(a,;)? and ["=(b,;)’. The extremal values of the quotient
(X", X"))("X", X"), where X" is an n dimensional vector, are the
roots 2 of the equation

(1) det (a"— 28" =0,

and these are taken as approximations to the first » solutions of the
original problem. If the roots of (1) are denoted by i} with 27> >
<.« >, then for any fixed k&, 17 increases monotonically with » and
its limit as n— o is the kth eigenvalue of the original problem. It
should be stated here that the quotient of integro-differential quadratic
forms in the original problem is taken as the reciprocal of the usual
Rayleigh quotient so that the eigenvalues are all bounded.
If we let

(2) A.=1lim 2%,
then the problem arises of estimating the difference 2, —217.

We shall consider this problem under certain assumptions with re-
gard to the matrices a and 5. These assumptions are that « and f are
both positive definite, that the matrix (b,,);,, has a positive lower bound
independent of %, that the matrix (a,,);,; has an upper bound which
tends towards zero as » — o, and that

IimY S a=0, lim3 3 0,=0.
n—oo i=1 j=n+1 n—oo i=1 j=n+1
2. The simplest case, which we take up first, is that in which S
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is the unit matrix. Let X be the orthonormal eigenvectors correspond-
ing to the eigenvalues 2} as defined above. Let numbers ¢, and p, be
defined by

N n o . 1/2
(3) a=(8 Sa)
i=1 j=n+1
(4) s 3 S aea, ) 5o
7 d=n+l d=n+l i=n+1

In general the exact values of the right-hand members of (3) and (4)
will not be available, and [or this reason we define ¢, and p, as merely
upper bounds for these quantities. The more closely these upper bounds
can be estimated, the better will be the subsequent estimates of the
eigenvalues. Tor the cffectiveness of the method it is necessary that
the values of e, and p, can be made arbitrarily small for » sufficiently
large. One method of defining p, is to take it as an upper bound for
( f} i a@)m in those cases where the latter series converges. A

i=n+1 j=n+1
different method is given in the example of § 6.

We shall adopt the convention that, if X is a vector, ()7, then
X" stands for the »-dimensional vector (x,)7. Tt F<<n-"N. By the
minimax principle,

(5) AY = min max (@” X", XT)

N UM =0,i=1,2, e, k=1
ax 0 gy X UD=0=T, 2,

i

Choose the vector U, so that its first » components are equal respec-
tively to those of X{ and its remaining components are zero. Let

X—_(ff,)r , .7/[::(-77%‘*' HAS SRR +'mfv,)]l-z ) ?/3:(-77;1+1+3731+2+ ““““ + m:l\')w2 .
Then
VXN X ) .
< max (X X0 X7 X)) =0, =1, 2, <o, k1
b= e (XN, XN) ( ) y , , It

N

. n N N N
= max l:(aﬂ'!\"”, X" +2% X awr,+ XN ae, »I/(?/H‘ Y3)
X i i

i=1)=n+1 i=n+1 )=n+1

(X7, XP)=0, i—1, 2, -+, k—1

< max BT 2EY Mt Lutfe
", yi s

The last step is justified by use of the maximum principle for the first
term of the numerator and the Schwarz inequality for the second term.

The quantity on the right side of this inequality is the larger root
1 of the equation
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=2 e,

€n Pn"z

=0.

Hence,

< BV (Bi—p) e
- 2

and, since the right side is independent of N,

(6) n< < ROV (B—p )+ 4e;
o 2

If p,< 2}, this inequality gives the simpler, but less precise, one

2
(6a) nn<n+

‘k—{)n

The inequality (6) (or 6a) makes it possible to obtain arbitrarily close
bounds for 1, by taking n sufficiently large.

Better estimates for A, can be obtained if one makes full use of
the available data, namely 1% and X{. With these it is possible to
transform « into an equivalent matrix (one having the same eigenvalues)
a=(a,,), where

Gy =A% (k=1,2, ---, ),

(_,’1,7'20 ('l:! jzlr 2’ e, N Z#j) ’
=0y (@, j=n+1, n+2, ---),
>0h= > ai; (j=n+1,n+2, ---).

._ _ n
The actual formula for « is a=/71""«al’ where ].:(F( 0), =
0 FE

(X, X, -+, X™) and the vectors X{ are orthonormal.
Let

(7) (35 @) (=1,2, -, m) .
J=n+

If any one of the numbers e, is equal to zero, then the corresponding
eigenvalue 27 of «” is actually an eigenvalue of a and the kth row and
column of @ can be deleted before proceeding with any further calcu-
lations. We may therefore assume without loss of generality that all
the numbers ¢,, appearing in subsequent formulas are different from
Zero.

Apply (5) with a” replaced by a” and with U, equal to the vector



1394 FULTON KOEHLER

whose i¢th component is 1 and whose remaining components are zero.
This gives, with y=(a%,,+--- +2%)"

n N
kxk+zk+1mk+l+ + s +2 Z a”x KL'_,-{— > Z ai]xix]
N i= }- j n “n+1] n+]
(8) Ay T e T i
Cwita,+ +9~N

Baid e+ Dk +2 Z mlx ly + Py

R R IR

The maximum value of the quotient

Mawi4 oo + 2’,2:(',, +2 Z sma',y + oy
' RN iy

can be attained when the variables x,, ---, x,, ¥ are restricted to non-
negative values. Hence /) cannot exceed the largest root 2 of the
equation

=2 0 ce 0 ks
0 ii— A eee 0 €n it

(9) 0 0 0 0
O 0 cte ZZ_)‘ Enn
Enk Enk+1 M Enn A()n_)‘
n 572;]—1()“"))

—(e=) [Le=p= 5 T

If a number » appears m+1 times in the set 2%, A%, ---, A%, then
this number is an m-fold root of (9). If p>pm>--->pn are the
distinet values in the set 2%, 2%, ---, 2%, then (9) also has roots
Py ¥y vy ey, wWhere o < <wr, <,u_< - <y, <#..,. The latter
roots are all the roots of the equation

n 2

9a A= p,= g
(%) r ;:Zu—xy

3. As a simple example illustrating the estimates of the last section,
let us take the problem of finding the eigenvalues A defined by
yY'=—A1+x)y, (0z<1),
y(0)=y(1)=0 .
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The reciprocals of these will be the extremal values 1,>4,>1,>---
of the quotient

Q)= (+apds /| v

in the space &/ consisting of all functions y(x) with sectionally continu-
ous first derivatives and with y(0)=y(1)=0. As a basis for this space
we take

ga,b(x):]/? Sm’fﬂ‘l’ (n=1,2, --+)
nw
and let
f i=7,
1 2’?:272'2 ! ¢ 7
a;=\ (1+a)¢e,de=1< .
7 S“ " AL=1)~'=1] 4 i£]
n.t(,iz__jz)z E
1 .,
biyz.\o(PiSpj dx:aij .
If y:ixm, then
X, X)
Q(y)=(a . 12
(BX, X)

where a=(a;,)7, A=), X=(x,)7", so the problem is reduced to one
of the type for which the estimates of the last section apply.
Let n=3. The equation for 2, 2}, 25 is

3 _, 0
2 9t
8 3 P 8
_ 3 S R
9 87 257t
o -8 3 5
257t 18n*

The eigenvalues and eigenvectors are :
23=.1527 0819 , X®=(.99684, —.07935, .00192) ,
2=.0377 8273, X»=(.07869, .98480, —.15482),
2=.0163 7316 , X®=(.01040, .15449, .98794) .
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We make the following estimates

S VIR |
BU= 2 4rs1y

af1 .1 1 & 1
<6"s["1+ SR PL I -“]

7L 156" 35' 63! =5 (30Y)

64[ 1 1 1 1 S"" dw] _q
< T - =
< 151—!— 35L—I— 63‘+81 L 1.8389 x 107,

. 1
= }r = [(20+1):—4]"

<64[ Ly1,1,1 Sw(]—x]z.%éﬁxm“‘,
Lot a5 7 256) o
- 24_64 =1
D PRI
4{'1 1 1 IS”dx] o —
w11 L{Tde 1 _og 934510+,
<elrtert e Tel) "
- 64 & 1
S LS
2 0= 2 4 1) (40— 9):
64[1+1+1‘+de’|
1557 85027 6355 81)i a7 |
j}:_,a Oy == L ay 03;=0,

S (a, +ak,+al) < 29.991 x 10T =,
j=1

=, 9 &1 ,128&% & 1
>, ai,=- " + = }4 rrrrrr ,
z,?:‘la’ 4#?:4 ot T P [(2n+ 26 + 1) — 4n?]
+128 g 1
7 iz i [(2n + 20) ~(2n+1) ]‘
o9 &l 1281 & & 1
< , + 0T S
o~ At 621 ot Prad {nz; [ n(1+2(i)]l
T
i i [22n+1)(20—1)]'
9 41,8 & 1 {‘” 1 <
=" +, }J + B
471"025:1 o 7 d= (1+ 20) nz—"(Zn)L n=z(2n +1)‘f

=6.206 x 10"
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© 1 [ 9 8 7[‘] " s
% T 200017 9117 4%
& ool 96 .

v=.013 3835 .

If the matrix « is transformed into the equivalent matrix « in which
the upper left hand 8x3 malrix is diagonalized, the formulas for the

U ;=.99684 «,;—.07935 a,;+.00192 a,; ,
a,;=.07869 «,,+.98480 u,;—.15482 a,; ,
a,,==.01040 «,,+.15449 a,;+ 98794 a;; .

Hence,

S, 1895 % 107 <€,
Stad < 1042 x 107 =€, |

S, < 27,630 x 10~ "=, .

=1

.

The first three extremal values of the quotient Q(y) can now be
estimated by cither (6), (6a), or (9a). From (6) we get

152 708 < 2, < .162 730,

016 373 =L 2, =< .017 167 ;
whereas (9a) yields the following more precise estimates:
1562 7081 << 4, << .152 7092 ,

037 7827 < 2, < .037 7871,
016 3731 < 2,<<.017 1139 .

4. Returning to the general problem, let as assume that, by a
preliminary transformation, the matrices « and 8 are already diagonalized
in the nxn upper left-hand corner; that is, that

=2, by=1 (t=1,2, .-+, m),
ai.i:bil:O (7’! 7:17 2y e, Ny @#7) .

Let the bounds p, and e, be defined by (4) and (7) (with @, replaced
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by a;,): In addition let bounds o, and r, be defined by

oo 1/2
10) ow=( 5 ) (=12, -+, )
j=n+1
(11) r<linf S S bgaas ) S at .
@; t=n+1 j=n+1 i=n+1

We assume that all these bounds exist, that

(12) 7'n> 214 371/0 ’

and that e, +9,,7%0 (k=1, 2, ---, n) (see remark foilowing (7)).
By the minimax principle with &t <n <N,

a® X", X" -
= min max ((ENXN' T EXNUI=0 =12, ke

Proceeding as before, let U; be the vector whose ith component is 1
and whose remaining components are zero. Then

n N N N
B < S S S 0t e S S S e
N i=k j=n+1 i=n+1 )=n+1 o
A < max W N N
“i 4o Han+2 Z >y by, 4+ S, S by,
i=k j=n+1 d=n+1 j=n+1

iAo e+ 22 +2 3 elasly + ooy’
< max R )
T T e @2 3 Oy + 1y
i=k

where y=(a2,,+a%,.,+ -+ +23)"". The condition (12) is equivalent to
the positive definiteness of the denominator of the last expression.
Hence, 2 and therefore 2,, cannot exceed the largest root i of the
equation

=2 0 .

0 oo =1 Ennt+ A0pn
Enp, T /:(Snlc ter &gt Zﬁnn Pn— l/rn

(13)

n " Zl;j}; (zn — ))
Z(‘O" —)u’l/'n) 1__[ ()‘? - Z) - 2 (enj + 25”]) '7117 - =0 7
i=k =% 2 X
which is the same thing as the largest root of the equation

7 2
(13a) PP ol CTR O
= A=A
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To analyze the location of the largest root of (13a), let

D=3 (eny + 2005)" .
¢(4) ;Jk i

Then

ey <a | 260, (e, +20,,) (&g +X§,,)‘]
7)== [ &y T 1) Ay T AOni)
¢'(A)= >, e Gy

=%

" x, 20,)
N=2°S (6M+”Lm

¢ (=22, G 1y

’

lim ¢"(2)=>. 47, .
A->00 j=k

For 27> ¢, ¢”(2) >0, and therefore in this range the graph of ¢(1) can
intersect that of the function »,1—p, in at most two points. Since

lim ¢(4)=+ < and since, by (12), 7., —p, > ¢(2) for all 1 sufficiently
A= A

large, there must be exactly one point of intersection, that is, one root
of (13) or (13a), in the range A >2?. This root is the upper bound
which we obtain for /.

Let us now assume that

for all »n sufficiently large, and that

(15) lim S (¢, 4 6%,)=0 .

Nn—o0 J=1

Then, for any «_>0, and for » sufficiently large, ¢(i;+¢) <7, (Z+e)—p,
and so the largest root of (13) or (13a) is less than A7+e. Therefore,
(14) and (15) are sufficient to ensure that the method gives arbitrarily
close bounds on 2,, for any k, by taking n sufficiently large.

5. To illustrate the method of the last section let us consider the
problem :

d dy\_
2 (asn P )=—y 0<z<1),

¥(0)=y(1)=0 .

The reciprocals of the eigenvalues .1 of this problem are the extremal
values of the quotient
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Uy)= \:7/ dm/ S;(l +a)y* dw

on the space of functions y(x) with sectionally continuous first derivatives
and with y(0)=y(1)=0. If {¢,(x)}7 is a basis in this space and

1 1
aifzgu%‘ﬂf dw , bi,l:S (L+2)pigsda
0
then the problem is reduced to that of finding the extremal values of

the quotient (aX, X)/(#X, X), where a=(a;,)?, F=(b,)".
Let the sequence {¢,} be defined as follows:

3
Pr== ZC,—;Sinjﬁ’x (Z_lv 2’ 3) ’
J=1
! sin ga .
g, =V 2 8my (i >3),
i

where the constants ¢,, are chosen in such a way that
(b )i=E,

.0696 820 0 0
(a;,)i= 0 0173 553 ¢
0 0 00738 9145

The values of the constants ¢;, are given by the table:

©\J 1 2 3
1 3713655 0378935 0039777
2 —.0189824 1828646 0301791
3 .0007276 —.0197241 1199722

We now apply the method of the last section with n=2. Since the
matrix « is of diagonal form, e, and e, may be taken as zero and p,
may be taken as the maximum of the elements «; (¢ >23), namely
ty,=.0073 9145.

For 7=1, 2 we have

>, b= 2 b
J=3 Jj=4
0 1 2
=23 <S (1 +x)(e;, cos mx+ 2¢,, cos 2rx + 3¢ €os 3na) cos Jaw dw)
0

oo 1 2 ri 2
=21 3 [cfl(s (1+ x) cos mx cos jna da:) + 40'5’2(3 (1+ ) cos 2w cos jnx da;)
0 0
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D 1 . 2 1 .
+ 90536 (1 + ) cos 3rx cos jrx dx) +6¢;,C5 (S (1+2) cos nx cos jna dw)
0 0

X (Sl(l + x) cos 3rx cos jrx dx)]

- 8‘-’[% i (L+do) | ge; S (44 (20+ 1))

P — 1y R (204 1= 4)
L& O+ (1+45)(9+40%)
T2 (ggy t Oonc > L (40— 1) (40" —9)}

We make the following estimates :

s, (W)t AT, 87, 65 1§ 1 gor1zr22,

2 (45— 1) 151 357 63 15 75 o

4+ (20410 53, 85, 5 &

S (44 (20 + 17 DO —.00541918 ,
(204 1) — 4) <, 21* T 2: (20 1)*

S O+doy 260, 460, T8, 1 S 1 og514737

2 (4r—9) < Tt et g B

& (L4409 +40%) <17 25, 37-45 6573 | 1 & 1
7 (4o —1)(40*—9)* O 15%.7 Taseor 63557 8 S

=.04125482 .

This gives

fRd

b, < .0011490 =52,

IL

e

b2, <7 0023514 =02, .

.
]
w

.
To obtain a value for r, we let F(x)= 3, x;¢;(x), where (x;)y is any
i=s

given vector. Then
1 1 N
[P da—ai| o+ Sa
0 0 i=4
=.,646936x2% + Z z; > .646936 }_, T,

Sl (1 +2)F"*(x) de= ZV', Z\: by -
0 i=37=3

Hence,
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S Sbowa, | (L o)F @) do
AR S (646 936) > .646936 .
>\ S F"(x)dx

0

i=3
Since the bound on the right side is independent of N we may take
r,=.646936 .

The use of equation (13a) now gives the following results, where
2; and 2, are the reciprocals of the first two eigenvalues of the original
problem : \

.06968 < 1, < .06984 ,

01735 < 2, << .01754 .

6. In conclusion we shall show how the method would work on
the two dimensional problem of an oscillating square membrane of
variable density; namely,

Uy + Uy = — dgu in R,
u=0 on C,

where R is the region 0<a <1, 0<y<1, C is the boundary ~"
and g is a nonnegative function with the derivative g¢,, sectionalily
continuous in R+ C. The reciprocals <" the eigenvalues 4 are the ex-
tremal values of the quotient

Q) =§:§: gu dzdy | Ho(u +u2)de dy

in the space of functions u(x, y¥) with sectionally continuous first deriva-
tives in B+ C and vanishing on C.
As a basis for this problem we take the functions
2 sin mzz sin nry

i e m, n=1,2,8, «+-,
n(m"+n“)‘“ ’

and arrange them in a sequence ¢,, ¢,, ¢;, -+ ordered according to the
value of m*+n*; that is,

2 sin m;zmx sin n;w . )
g = 2SI SN NTY o= (mi+ )"
TTGZ

01,—.<:‘72:,<—_(73 cec
As N o, oy=0(/N). Let
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11
au=gogog<pi% dx dx ,

b<,=glgl( 09 690-7_;_ 09; 690,1> dxdy==:;; .
Yo b\ bx ox 0y oy )

If u= imi%, then
i=1

Qu)=(aX, X)/(pX, X)

where
C(:(aw);” ’ /9:(5&1)7 ’ }(=(xi);o .

In order to show that the method will give arbitrarily close esti-
mates of the eigenvalues, we must show that the quantity defined in
(4) can be determined and made arbitrarily small, and that i i ai, can

i=1 j=n+1
be made arbitrarily small by taking » sufficiently large. The estimate
¢, can be managed by noting that (4) is equivalent, in the present
case, to

On == SUpP glgl gv'dx dy/ SISI Wi+l dady ,

vE a, 0Jo 0

whe' n, is the set of admissible functions which are orthogonal to
@i, @u vty ¢u Let g<AM in R. Then we may define p, by

(16) ), — sup Mﬁ’v‘z dardy / Slgl(viwg) dody
776/1,71 00 0J0
and this gives
M 1
1 = =0 -
17) = e (n)

since the funections {¢,} are the extremal functions for the quotient in
(16).
Next, the numbers a;, satisfy

la;,| < Q Ai_ijm

704
where C is an absolute constant, and

1

e it m;#m;,
4,,=1{ Imi—m] ‘

1 if m,=m,,
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O I
4;,= l’nz-nl
1 if n‘t == nj .
Hence, for 1 <7< n,
Sk < ¢ S8
j=n+1 R aiot j=n+1 pee
- i““n+1
and
O ogah< (1425 1Y
>, Man<(1+23 ),
j=m+1 s=1 8
so
> C
a?r/ L
DI i(n+1)
Therefore,
Loz C, logn
3OS a8 (n>1),
i=1 j=n+1 n

where C, and C, are absolute constants.
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