
ON THE CASIMIR OPERATOR

H. E. CAMPBELL

The Casimir operator is an important tool in the study of associative
[4], Lie [4] and alternative algebras [7]. However its use has been for
algebras of characteristic 0. We give a new definition of the Casimir
operator for associative, Lie and alternative algebras, which keeps
desirable properties of the usual Casimir operator and which is useful
for arbitrary characteristic.

We show that under certain conditions our Casimir operator is the
identity transformation and for non-degenerate alternative (or associative)
algebras we show that it is the transformation into which the identity
element of the algebra maps. We apply our results to obtain the first
Whitehead lemma for non-degenerate alternative algebras of arbitrary
characteristic. We also obtain a special case of the Levi theorem for
Lie algebras of prime characteristic.

1. The Casimir Operator* Let 21 be an associative, Lie or alter-
native algebra with basis eλ, e2, •••, en over an arbitrary field %. For
uniformity we use the notation x~^Sx for a representation of SI, where
if 21 is alternative we mean the Sx part of a representation x-+(Sx, Tx).
If 21 is a Lie or associative algebra, f(x, y)=t(SxSy) where t is the trace
function, is an invariant symmetric bilinear form. In [7, p. 444] it is
shown that if 21 is alternative this form is invariant if g is not of
characteristic 2. For arbitrary characteristic we have

t(SJSyt)=t(SxSyS, + SxTvSt-SxStTυ)

= t(SJSySt+SxTySβ-TvSJS,) = ί(SxySt) .

Similarly t(TxTy) is invariant.
We call 21 non-degenerate if t(RxRy) is non-degenerate where R is

the representation of right multiplications. It can be shown that this
is equivalent to the non-degeneracy of the bilinear form t(LxLy) of the
left multiplications. It is well known that if SI is a non-degenerate alter-
native (or associative) algebra it is a direct sum of simple algebras.
Dieudonne [3] has shown that this is also true for Lie algebras.

If 31 is semi-simple and % is of characteristic 0, the usual Casimir
operator Γ% for the representation S is defined as follows: Let 9ΐ be
the set of all x of 21 such that t(SxSy)=0 for all y of 21. Then 3t=5R® g
where SR and K are semi-simple ideals of 21. Let e[, e2, •••, ek be the
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complementary basis to a basis el9 e2} ••-, ek of (£ such that 2 t(SiS'j) = δi5

(Kroneker's delta). (Note that the complementary basis depends on the

representation.) Then Γ f =
i = l

For arbitrary g w e define a new Casimir operator Γs for each non-
degenerate 2ί. This will include every semi-simple 21 of characteristic
0, since 31 is non-degenerate in this case. We use the same comple-
mentary basis e'l9 e2, , en such that £(22^)=5^ for every representation
(or anti-representation) and define

If 21 is alternative we also define Γτ=ΣJίTιTί .

Unlike Γ*, Γs does not automatically reduce to zero when t(SzSy)=0
for all x, y of 21. In fact it follows from Corollary 3.1 below that for
alternative algebras Γsφ<d if S^O. We note also that for the repre-
sentation x->Rx we have Γ% = ΓR.

Analogous to the corresponding result for Γs for Lie and associative
algebras [4, p. 682] and for alternative algebras [7, p. 445] we have
the following theorem.

THEOREM 1. Let Γs be the Casimir operator (1) for a representation
x -> Sx(x -> (Sx, Tx)) of a non-degenerate Lie or associative {alternative)
algebra 21 over an arbitrary field. Then Γs commutes with Sz (and Tx)
for all x of 2t.

Except for the commutativity of Γs and Tx which will be proved
along with Lemma 3.2, the proof is similar to those in the references.

We also have the following result which follows from the properties
of the complementary basis.

THEOREM 2. Let 21 be a non-degenerate associative. Lie or alternative
algebra over an arbitrary field. Then the Casimir operators ΓR and ΓL

of the right and left multiplications of 21 are both the identity transfor-
mation.

2. Application to alternative (and associative) algebras. Since every
associative algebra is an alternative algebra, the results of this section
hold for associative algebras.

In place of the identities (4) of [6] used in the definition of a
representation x-*(SX9 Tx) of an alternative algebra 21, we will use the

2 For simplification we write Sr. as Si and S£. as Sί .
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equivalent (except for characteristic 2) identities

( 2 ) Sί=Sfs2 , Tl=Tx* for all x of 21,

in order to insure that the semi-direct sum [6, p. 3] or split null ex-
tension @ = SI 4- 9Jί of SI and the representation space 9Jί is an alternative
algebra for arbitrary characteristic.

THEOREM 3. For every representation S of a non-degenerate alter-
native algebra SI, Γs=Se where e=Σeiei is the identity element of SI.

The proof follows from Theorem 2 and the properties of the com-
plementary basis.

COROLLARY 3.1. If S^O the matrix of Γs can be taken to have
the form diag (7, 0). Hence if in addition the representation is ir-
reducible, Γs is the identity transformation.

Proof. By (2), Sl=SP and the result follows.

COROLLARY 3.2. ΓSSX=SX for all x of 21.

Proof. Assume Sφΰ and take Γs to have the form diag(7, 0).
Then the matrix of Sx must have the form diag (S'xf S'x') where / and
Sx have the same order. By identity (4) of [6] we have TXΓS — ΓSTX =
SX-SXΓS. Hence Sή' = O and Tx = diag(Tx, T'J) and so SXΓS=SX. This
completes the proof of Theorem 1, for we also have TXΓS = ΓSTX.

Evidently all of the above results also hold when <5? is replaced by
T.

Now for a non-degenerate alternative algebra SI with neither S nor
T=0 we may apply Corollary 3.1 and Theorem 1 to take

( 3 )

where the superscript (ΐ) indicates the matrix has order kt and each /
is an identity matrix and S^=0('\ T™=0<». Also x-+(S<*\ T™),
( ΐ = l , 2, 3) are representations of S2I with respective Casimir operators

( 4 )

Thus the representation space 2JΪ can be expressed as $ϋi=2W1
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+ 2JΪ3 + 3JΪ.4 where 9K4 is an invariant subspace of dimension kt and hence
is an ideal of the split-null extension @ = 2l + sJTΪ. It also follows that
3Jί2 and 9Jί3 are in the nucleus [2] of @.

We are now able to obtain the following generalization of the first
Whitehead lemma (see [8]) for alternative algebras of characteristic zero
[6, Theorem 3],

THEOREM 4. Let 2ί be a non-degenerate alternative algebra over an
arbitrary field and let x -> (Sx, Tx) be a representation of 21 acting in a
space M. Let @ be the split null extension @=2ί-f Sffl and let h{x) be a
linear mapping of 2ί into 3Jί such that

for all x, y of 21. Then h(x) is an inner derivation of @. If 2ί is not
of characteristic 2 then6

( 6 ) Wχ)=\χ, g\ + Z Σ {[fiί, Rn^Ί + ίLu LΛ(β j }

where g is in the nucleus of & R, L are right and left multiplications
in <2> and e[, e2, , en are a complementary basis to a basis eu e2, , en

Proof If either S or T is zero the theorem follows similarly to
the associative characteristic zero case, so assume neither is. Since 2Jί* is
invariant,

h(x)=ho(x)=h1(x) + hz(

where h3(x) is a linear mapping of 2ί into Wlj (2)?0=9Jί) such that

hj(xy)=xhj(y) +• hJ(x)y=hj(x)Sy + hΰ(y)Tx .

Then we have

n n

hj(x)Γs= Σ {hj{xei)eί-xhJ{ei)*ei} =-

Consequently for j=0, 1, 2, 3

( 7 ) A^/'^a? Σ

Similarly

(8)

3 We use [P, Q] to denote the commutator PQ-QP.

Σ

.(,.}
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By (3) and (4) we have

Hence by (7) and (8) h(x)=xD where

D^ Σ {-W^op— Rn^e^R'i} + Σ

+ Σ g p 3 t

To show that Z) is inner it suffices to show that for x, y in @,
LxLy—RyRx is in the Lie algebra £(©) of linear transformations generated
by the right and left multiplications of @. This is true since LxLy —

Now let 21 have characteristic φ2 and use (7) and (8) to get

Mx){Γs + Γτ)=x\£ [Kι, ΛΛ(β<)] + Σ [L't, LΛ(βi)]J .

Then by (7) and the nucleus property of 5K2 we have4 A2(#)/\ = |>, u2]

where v2= Σ hi(et)ei ^s ίn ^ Similarly A3(a?)/7

Γ=[a;, v3] where v3 is in

W,. But

h(x)(Γg + Γ

hence

where g= (v2 + v3) is in the nucleus of @.

As is the case for similar theorems, the first part of Theorem 4
can be stated in the following form.

THEOREM 5. Let % be a non-degenerate subalgebra of an alternative
algebra 93 over an arbitrary field. Then any derivation of 51 into S3 can
be extended to an inner derivation of S3.

3 Application to Lie algebras. We obtain the following special
case of the generalization of the Levi theorem to algebras of prime
characteristic.

THEOREM 6. Let % be a Lie algebra over an arbitrary field with
radical 3 ΐ ^ £ such that 29ΐ=0 and S/3Ϊ is non-degenerate. Then there
is an algebra @ (which is isomorphic to S/3Ϊ and is a direct sum of

4 This actually =—v-ιX since ίπ;2=0.
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simple algebras) such that 8 is the direct sum 8 =

Proof, Let el9 e19 •••, en be a basis for 8 such that el9 eλy •••, ek

are a basis for a subspace 93 and ek+19 , en are a basis for 9ϊ. Then
the right multiplication of each x of 8 has the form

( 9 )
0

where P x = Q x = 0 if x is in 9i and Px is the right multiplication of the

image x of x in 8/9t. Now if ΓP= Σ-ίV* ί s the Casimir operator (1)

for the representation P of 8/91, then by Theorem 2, Γ P is the identity
/ and hence

Q O

By using the properties of the complementary basis of 8/91 and the
fact that the Lie algebra of right multiplications of the elements of S3
is isomorphic to 8/91 it can be shown that Γ commutes with Rx for all
x of 8.

We now show that the associative algebra 8* generated by the Rx

for all x of 8 is isomorphic to the associative algebra Sβ* generated by
the Px. Certainly by (9) there is a homomorphism of 8* onto φ *
which maps any polynomial p(Rx, Ry, --) into p(Px9 Py, •)• Now
if p(Rx, Ry, )==0 then p(Px, Py, ) = 0 since Γ commutes with
p(Rx,Ry, . . . ) . Hence S* ^ 5β*.

Now 8/91 is a direct sum of simple algebras and therefore [1, Lemma
2], ?fi* (and hence 8*) is semi-simple. Consequently [1, Lemma 2] 8 is
a direct sum of an algebra S, which is a direct sum of simple algebras,
and an abelian algebra 9t le But we must have 911=SR completing the
proof.

It is to be noted that it is easy to give examples of prime character-
istic where all but the non-degeneracy of 8/91 of the hypothesis is
satisfied but for which the conclusion is false.

REFERENCES

1. Λ. A. Albert, The radical of a non-associative algebra, Bull. Amer. Math. Soc. 48

(1942), 891-897.

2. R. H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc.

Amer. Math. Soc. 2 (1951), 878-890.

3. J. Dieudonne, On semi-simple Lie algebras, Proc. Amer. Math. Soc. 4 (1953), 931-932.

4. G. P. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math,

64 (1942), 677-694.



ON THE CASIMIR OPERATOR 1331

5. R. D. Schafer, Inner derivations of non-associative algebras, Bull. Amer. Math. Soc.
5 5 (1949), 769-776.
6. , Representations of alternative algebras, Trans. Amer. Math. Soc. 72(1952),
1-17.
7. , The Casimir operation for alternative algebras, Proc. Amer. Math. Soc. 73
(1953), 444-451.
8. J. H. C. Whitehead, On the decomposition of an infinitesimal group, Proc. Cambridge
Phil. Soc. 32 (1936), 229-236.

MICHIGAN STATE UNIVERSITY






