SUBALGEBRAS OF FUNCTIONS ON A
RIEMANN SURFACE

ERRETT BisHOP

1. Introduction and preliminaries. A set of problems, which has
attracted much attention in recent years, treats the question of what
functions can be approximated in some given topology by a given
function algebra on a given set of points. The classical Weierstrass
approximation theorem, and its generalization, the Stone-Weierstrass
approximation theorem, are well-known results of this type which have
proved very useful in analysis. Very important work has more recently
been done by Lavrentiev, Keldys, and Mergelyan, and their results
generalize the classical theorem of Runge (see Saks and Zygmund [4]
for Runge’s theorem).

The theorem of Mergelyan states that every continuous function on
a compact set C of the complex plane, which is analytic at interior
points, can be uniformly approximated on C by polynomials, if C does
not separate the plane, i.e., if the complement of C is connected. We
prove a theorem which generalizes this result in two respects: the
plane is replaced by an arbitrary separable Riemann surface (without
boundary, but not necessarily connected), and the algebra of all
polynomials is replaced by what we call a total subalgebra of the
algebra R of all functions which are everywhere analytic on the Riemann
surface. The subalgebra R is called total if it contains the constant
functions and if the set {p|pe C and there exists g+#p in C, with f(p)
=f(¢) for all fin R’} U{plpeC and no function in R is one-to-one in
any neighborhood of p}, called the singular set of C relative to R/, is
finite for all compact sets C. (It can be shown that when R’ is not
total, but contains the constant functions, one can identify points on
the surface to obtain a new surface on which R’ is total.)

Our methods are highly measure-theoretic, and we make constant
use of the fact that any bounded linear functional 4 on the space 2(C)
of all continuous complex-valued functions on a compact set C of our
surface can be represented as a Borel measure ¢ on C. This means

that S fdp=A(f) for all £ in QC). We shall somewhat loosely identify
A and g, so that by the value of ¢ on f we shall mean S fdp, and by

saying that g is orthogonal to f we shall mean S Fdp=0. For a compact
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set C, @(C) will denote the set of all continuous functions on C which
are analytic at interior points. We are actually interested in bounded
linear functionals 4 on @(C), but by means of the Hahn-Banach theorem
every such /4 can be extended to 2(C), and therefore can be represented
by a measure # on C. If R is a subalgebra of R, then R'(C) will
denote the set of all continuous funetions on C which are uniform limits
on C of functions in R'. Obviously R'(C)c@(C), and the problem,
roughly speaking, is to determine by how much R/(C) differs from @(C).
We do this via an investigation of those measures g on C which are
orthogonal to R'(C), that is, we see how much these measures miss
being orthogonal to @(C).

We proceed to some definitions, which are necessary to the statement
of the theorem to be proved. If C is a compact set, and if R is a
subalgebra of R, then .(C, R') will denote the set {p| for each f in
R, there exists ¢ in C with |f(¢)|=|A(p)]}. The condition &/ (C, R)=C
is the natural extension of Mergelyan’s condition-that C not separate
the plane-to the more general situation considered here. The bounded
linear functional 4 on @(C) will be called an R'-local differential
operator on @(C), of order not exceeding N, if (1) 4 is orthogonal to
R'(C), and (2) there exists a finite subset S of the singular set of C
with respect to R’, such that f(p)=s(q) for all £ in R’ and all p and ¢
in S, and such that 4(g)=0 whenever ¢ is a function in @(C) which
vanishes at all points of S and vanishes to order at least N at all points
of S which are interior to C. The bounded linear functional 4 on @(C)
will be called a R’-homogeneous differential operator on @(C), of order
not exceeding N, if it is a finite sum of R’-local differential operators
on @(C), of orders not exceeding N. The result to be proved reads :
If R’ is a total subalgebra of R, if C is a compact set with .&/(C, R)
=C, and if 4 is a bounded linear functional on @(C) which is orthogonal
to R'(C), then 4 is a R-homogeneous differential operator on @(C), of
order not exceeding N, where N depends only on R’ and C. Since it
will be easy to show that the only R-homogeneous differential operator
on @(C) is 0, this will have the corollary that R(C)=¢@(C) whenever
F(C, R)=C. In general, we shall only be able to conclude that the
vector space R'(C) (over the complex field) is of finite codimension in
the vector space @(C). It will be possible to describe R'(C) exactly in
case C has no interior points.

Of the six preparatory lemmas to be proved, Lemmas 4 and 6 are
of some interest in themselves. Lemma 6, in particular, seems to be a
very useful tool in the theory of approximation by polynomials, and the
author will give other applications of this lemma elsewhere.

We develop more notation for later use. If C is compact, and if
the function f in R generates the subalgebra R, then $4(C, f) will
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mean .&“(C, R'), so that p will be in the complement .&’(C, f) of
F(C, f) if and only if f(p) is in the unbounded component of the
complement of f(C). If C, has compact closure and if C, is compact,
we say that f in R is schlicht on C, relative to C, if there exists a
neighborhood U of the closure of C, such that no point in U is identified
with any other point of UUC, by f. If C, is void, we simply say that
f is schlicht on C,, and if also C, is a point {¢}, we say that f is
schlicht at ¢ (or that f is one-to-one in some neighborhood of ¢). Since
a separable Riemann surface is metrizable, we assume the existence of
a metric p on the surface. If S, and S, are compact and S;DS,, we
define

o(S,, S;)=sup{inf{p(p, ¢)lg€S.}IpesS.} .

An arc is a homeomorphic image of [0, 1], and an open arc is an arc
minus its endpoints. A closed disc is a homeomorphic image of {z||z| <1},
and a disc is a closed disc minus its boundary.

2. Preparatory lemmas.

LEMMA 1. Let F be a compact set of the complex plane with
connected complement, and let 0 be in the boundary of F. Let N be a
positive integer. Then the function z can be uniformly approximated on
F' by polynomials which vanish at 0 to order at least N.

Proof. 1f there is a sequence {A,} of polynomials whose derivatives
vanish at 0 and which converge uniformly to z on F', then the sequence
{h,—h,(0)} of polynomials vanishes at 0 to order at least 2 and converges
uniformly to z on F. Now assume that z cannot be uniformly
approximated on F' by polynomials which vanish at 0 to order at least
2. Then 2z cannot be uniformly approximated on F' by polynomials
whose derivatives vanish at 0. If we let 2(F) be the Banach space of
all continuous complex-valued functions on F, this means that z is not
in the subspace of Q(F) generated by the polynomials whose derivatives
vanish at 0. Thus there will exist a bounded linear functional 4 on
(F) which will vanish on all polynomials whose derivatives vanish at
0, but with 4(z)=a+0. It follows that A(h)=ak’'(0) for all polynomials
h. We may assume that the bound of 4 is 1 and that ¢>0. Let U
be a simply connected open set containing F', the distance » of whose
boundary to 0 is less than a/16. Let ¢ be the conformal map of |z|<1
onto U, with ¢(0)=0 and ¢’(0)>0. Since the boundary of U contains
points at a distance » from 0, it is known (see [1], page 75) that
¢'(0)<47. If we let ¥ be the map of U onto |7z|/<1 which is inverse
to ¢, then ¥'(0)=[¢'(0)]"'=(47). If we define f on U to be the
analytic function f=(2—¥)"', we have |f(z)|<1 for z in F, so that
14(F)1<1. Also
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Since f is analytic on U, there will exist a sequence {g,} of polynomials
converging uniformly to f on some neighborhood of F. Therefore g,(0)
will converge to f’(0). Thus,

1<alf'(0)|=a lim,|g,(0)|=1lim,|4(g.)|=]4(F) =1 .

This contradiction shows that z is the subspace T, of Q(F) generated
by polynomials % which vanish at 0 to order at least 2. Thus #=z-z
is in the subspace T, of Q2(F) generated by polynomials z-% which
vanish at 0 to order at least 8. Thus all polynomials which vanish to
order at least 2 at 0 are in T, so that T,=T,. Thus z€¢T,. By a
continuation of this process, it can be shown that z is in the subspace
Ty consisting of the closure in Q(F) of all polynomials which vanish at
0 to order at least N. This completes the proof.

LEMMA 2. Let R be a total subalgebra of R, let C be a compact
set with £(C, R)=C, and let S be the singular set of C relative to R’
(so that S is finite). Then there exists a closed C-neighborhood C' of S
and a positive integer N, such that any function in @(C’) which vanishes
at all pownts of S which are interior to C, to order at least N, and which
vanishes at all points of S, is in R'(C"), and such that C' is the wunion
of disjoint closed sets {C,}, each containing exactly one point p of S.

Proof. Let p and ¢ be any two distinct points of S. Let f be any
non-zero function in R’ which vanishes on S but which does not vanish
identically in a neighborhood of any point of S. Such a function can
be found because R’ is total. Let » Dbe the exact order to which f
vanishes at p. Then it is easy to find a closed disc U containing p in
its interior, and an analytic function ¢ which is defined and one-to-one
on some neighborhood of U, which maps U onto {z||z|<c¢} for some
¢>0, which vanishes at p, and for which [¢p(r)]*=s(r) for all + in U.
Since f vanishes on S, we can also find a closed neighborhood H of S
containing U such that f(H)=/f(U). Since R’ is total, we can in addition
take U and H to be so small that S will be the singular set of H
relative to R'. Let ¢, be any point in the component of the interior
of H which contains g, except ¢ itself, with f(q,)#0, and let p, be any
point of U with f(p,)=f(q,). Let ¢ be a primitive nth root of unity, and
let = be the map of U onto itself defined by ¢(zr)=Cd(r). Obviously
Sfr)=f(zr) for all » in U. Since S alone is the singular set of H relative
to R’, there exists ¢ in R’ taking distinet values at the points ¢, o,
and the first n-1 images, p,=7r(1), D.=7(D1), *** » Pu-1=7(Pn-s) of p, under
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7. Note that f(p,)=f(py) for 1<j<n-—1.
Now g¢*, for 0<k<n, can be expanded on U as a uniformly
convergent power series in powers of ¢, which implies that g* can be

n—1
written on U in the form ¢*=T, f..¢°, where f;; is the sum on U of a
i=0

power series in powers of f=¢"” which converges uniformly on U. The
series defining f;; will actually converge uniformly on H, because f(H)
=f(U). Thus we may extend the definition of f;;, to H, where it will
be a function in R’'(H) which identifies all pairs of points in H that are
identified by f. Therefore fi:(p,)=fu(p,) for 0=j<n—1, 0<k<n, and
0<i<n—1, and consequently

7n—1
Lo(p)]*= ;} e )lP(p)] .
This implies that the product of the matrices
(fm(po))r 0=k<n—1, 0gi=<n—1,

and ([¢(p)]), 0<i=n—1, 0<j<n—1, is the non-singular Vandermonde
matrix ([g(p)]F), 0=k=n—1, 0=<j<n—1. Therefore, the function M in
R'(H) defined by M=det(f};), 0<k=<n—1, 0<i<n—1, does not vanish
at p,. Now for each » in U the linear system

n—1
—[g(r)]ea, -+ %gofm(r)wmz 0, 0<k<n,

has the non-trivial solution w,=1, x,=1, &,=¢(®), -+, @, =[p(@)]*"
Thus the function # in R'(H) defined by

-1 ﬁlo et fon—l
-9 Jio J1 na

__gn fnn e fn n-1
vanishes identically on UU. On the other hand, we have just seen that
the coefficient (—1)»** M of ¢ in this determinant does not vanish at

p,. We may therefore write 4 in the form i hyg®, where h, is a function
k=0

in R'(H) which identifies any pair of points which is identified by f,
and where 7,(p,)#0. By substitution of p,, ---, p,-; into this expression
for h, we obtain

0=h(p)= 2 h()lo@)l =3 h@)oP)T"
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since f identifies p; and p,. Thus g(py), ---, g(p.-,) are n distinct roots
of the nth degree equation Z hi(p")2*=0, so that g(g,), which is distinct
k=0

from these roots, does not satisfy the equation. Therefore

ha)= 3, @ o@)l =3 h@lo(@)F#0 .

Thus % does not vanish identically in any neighborhood of ¢, or it
would vanish in the component of the interior of H containing ¢, and
therefore it would vanish at ¢,

Thus we see that for distinet points p and ¢ in S there exists a
closed neighborhood H of S and a function % in R'(H) such that 2
vanishes identically in a neighborhood of p but does not vanish identically
in any neighborhood of ¢. By multiplying together such functions, we
see that for all points p in S there exists a closed neighborhood K of
S, and a function f in R'(K) which does not vanish in any neighborhood
of p, but vanishes in some neighborhood of every other point of S.
With this new function f, whose multiplicity at p we call n, choose
U, ¢, 7, and H in the same way as they were chosen for the old
function f. In addition, we may assume that H is so small that f
vanishes on H—U. We now extend the definition of ¢ to all of H by
defining ¢ to vanish on H—U. Let p, be any point in U distinct from
p, and define p, ps, -+, P, as above. Choose any function ¢ in R’
which takes distinct values at p,, i, -+, Du_:. Let the functions f, be

defined as before, so that g’°=n§_}lfm¢i on U, for 0<k<n—1. (We shall
i=0

not need the equation for g°.) We have seen that the determinant M
defined above is in R'(H) and does not vanish identically on U. Apply-
ing Cramer’s rule to the set of equations for the g*, we can solve them
for ¢, obtaining M in the denominator and some function of R'(U) in
the numerator. It follows that the restriction of the function ¢-M
to U is in R'(U). Now M, being a polynomial in the f;;,, is equal on
U to the sum of a power series in powers of f which converges
uniformly on U. Let the first non-zero term of this power series be
apft. Then f¢/M will be a uniformly convergent power series on some
neighborhood U= {¢|¢ e U,|p(¢)|<c'<c¢} of p in powers of f. Since [
vanishes on H—U, the series will converge uniformly on H'=U"U(H—U)
to a function f; in K'(H’) which equals f/M on U’ and vanishes on
H'—U'. Since ¢-M is in R'(U’), it follows that the function (¢-M)-f,
=¢-fi=¢"* ig in R'(H’). Since f=¢" is also in R'(H’), and since the
exponents n and nt+1 are relatively prime, the function ¢* will be in
R'(H') if 4 is sufficiently large, say if ¢=N. Therefore, any function
in @(H') which vanishes on H'—U’ and which vanishes to order at least
N at p will be in R'(H').
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Now let p be a boundary point of C, and we shall show that the
last statement continues to hold with N=1 if H’ is replaced by H'NC.
From <“(C, R)=C, it follows that none of the components of U'—C
lies interior to U’, since S“(C, R’) would contain such a component.
Therefore every component of U’'—C contains boundary points of U'.
Since ¢ is a homeomorphism on U’, it follows that the complement of
U NC)=p(H' NC)=F"is connected. Since ¢(p)=0, the number 0 is in
the boundary of F, By Lemma 1, there exists a sequence {%,} of
polynomials which vanish at 0 to order at least N and which converge
uniformly to 2 on F. The function 4,0 ¢, for each n, is therefore in
R(H'), by the last statement of the preceding paragraph, and %, o ¢—¢
uniformly on H'NC as n—co. Therefore ¢ ¢ R'(H'NC). By Mergelyan’s
theorem, any function which is continuous on ¢(H' N C) and analytic at
interior points can be uniformly approximated by polynomials 4.
Therefore, any function in @(H'NC) which vanishes at p and vanishes
on (H'NC)—U" can be uniformly approximated by functions of the form
ho¢p, and so belongs to R'(H NC).

It follows from what we have just proved that there exist disjoint
closed C-neighborhoods {C,}, one for each point p in S, whose union
we denote by C’, and a positive integer N, such that any function f in
@(C’) which vanishes on S, which vanishes on C'—C, for some p, and
which vanishes to order at least N at p if p is interior to C, will be
in R'(C"). Since any function in @(C’) which satisfies the conditions of
the lemma can be written as a sum of such functions f, the conclusion
of the lemma follows.

LEMMA 3. Let C be compact, and let R’ be a total subalgebra of R
with & (C, R)=C. Let A be a bounded linear functional on @(C), which
is orthogonal to E'(C) and which can be represented as a measure on an
arbitrary C-neighborhood of the singuler set S of C relative to RB'. Then
A is a R’-homogeneous differential operator on @(C), whose order does
not exceed an integer N depending on K and C but not on A.

Proof. Partition S into equivalence classes S, S, ---, S, by
defining p=¢ to mean g(p)=g(¢) for all g in R'. Then there exist
functions fi, /3, +++, f» in R such that fi(p)=0 for p in S—S; and
fup)=1 for p in S. Thus, by Runge’s theorem, there exist disjoint
closed C-neighborhoods U, U,, ---, U,, of S, S,, ---, S, respectively,
such that, for 1<i<n, there exists a sequence of functions in R’ which
converges uniformly on U=U,JU,U--- UU, to a function g; which has
the value 1 on U, and the value 0 on U—U,. Since A can be realized
as a measure on U, it can be extended to be a bounded linear functional
A on @(U). Obviously 4 will vanish on R'(U). Therefore, if we define
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the functionals 4;, ---, 4, by A(f)=4(fy,), for all f in @(C), we obtain
bounded linear functionals on @(C) which vanish on R'(C) and have sum
A. For each ¢, 1<i<n, let V, be any closed C-neighborhood of S,
which is a subset of U,. By hypothesis, there will exist a measure p
on V=V,U --- UV, which represents 4. For each ¢, 1<i<n, let
{gu) o=, be a sequence of funections in R’ converging uniformly on U to
g;- Then for each f in @(C) we have

A=A (fg)=lim A (fg)=Um A(fg.)
=££nggfgzk d/l=§fgi dﬂ=SU£ S d#:SVE Sdp.

Therefore A; is represented by the restriction of g to V;, from which
it follows that 4, can be represented as a measure on an arbitrary
C-neighborhood of S;. To finish the proof, it is only necessary to show
that 4, is a R'-local differential operator on @(C) of order not exceeding
some positive integer N depending only on R and C. Let the closed
C-neighborhood €’ of S and the positive integer N have the properties
stated in Lemma 2. If we write C;=U {C,|lpe S}, then C; is a closed
C-neighborhood of S; such that any function in @(C;) which vanishes on
S,, and which vanishes at all points of S, which are interior to C, to
order at least W, is in R/(C;). Since 4, can be represented as a measure
on C,, and since ./, is orthogonal to R'(C), we see that A, will be
orthogonal to any function in @(C) which agrees on C;, with a function
in R'(C;,). Thus A(f)=0 whenever f is a function in @(C) which vanishes
on S; and which vanishes to order at least N at all points of S, which
are interior to C. Since g(p)=g(q) for all p and ¢ in S;and all g in R/,
it follows from the definition that A, is a R’-local differential operator
on @(C) of order not exceeding N, as was to be proved.

LEMMA 4. Let C be a compact set whose intersection with a disc U
s an open analytic arc A which divides U—C into components U, and
U, Let R be a total subalgebra of R, and let p be a Borel measure on
C which is orthogonal to R'. Let there exist functions f and g in R
which are schlicht relative to C on U. Let f(A) be in the outside boundary

of f(CU l_];), where U, is the closure of U,, and let g(A) be in the outside
boundary of g(CUU,). Then p vanishes on all subsets of A.

Proof. Consider any open sub-arc B of A4, which has endpoints a
and b in A with p#({a})=p({b})=0. Let B, be any closed sub-arc of A
which contains the closure of B in its interior. Since the analytic arc
f(A) forms part of the outside boundary of A(CUU,), we can find a
function ¢ on f(CUU, which is a uniform limit of polynomials, which
maps f(CUU,—B,)) into {?|J(®)>0}, which maps f(B,) in one-to-one
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fashion onto a subset of the real axis, and which maps the endpoints
of f(B) onto 0 and 1. To find ¢, let J be a simple closed curve about
the set f(CUU,) which has f(B,) as part of its boundary and which has
no other points of f(CUU,) in its boundary. Let ¢ be the Riemann
map of the interior of J into the unit disc. Then by Bieberbach [1],
it follows that ¢, can be extended to be continuous on J and to map J
homeomorphically onto {z||z|=1}. By Mergelyan [3], ¢, is the uniform
limit of polynomials. Then we can find a function ¢, which is analytic
on the unit disc and continuous on the closed unit dise, which maps the
closed unit disc in a one-to-one fashion into {2|(2)=0}, which maps the
arc ¢,(f(B)) in one-to-one fashion onto a subset of the real axis, and
which maps ¢,(f(@)) and ¢,(f(b)) (but not necessarily in that order) onto
0 and 1. The composite function ¢p=d¢,0 ¢, will have the desired
properties. Thus the function f'=¢ o f is the uniform limit on CyU,
of functions in R/, maps (CUU,)—B, into {2|J(z)>0}, maps B, in onet
to-one fashion onto a subset of the real line, and maps B onto the uni-
interval (0, 1). The function f* can be extended to be analytic and
schlicht in some neighborhood of the closure of B because it maps U,
into {2|J(2) >0} and maps B, in one-to-one fashion into the real line.

In the same way we can find a function ¢’ on CUU, which is the
uniform limit of functions in R’, which maps C U U,—B, into {2|J(z)<0},
which maps B, in one-to-one fashion into the real axis, and which maps
B onto (0, 1). As above, ¢ can be extended to be schlicht on some
neighborhood of the closure of B, and the values of the extended
function at points of U, sufficiently near to B will lie in the set
{2I3(z)>0}. Thus both f* and ¢’ have positive imaginary part at points
of U, near B. Therefore f and ¢’ increase in the same direction along
B. We may therefore label the endpoints @ and b of B in such a way
that f(¢)=g¢'(a)=0 and f(b)=¢(b)=1. It is clear that the algebra T
generated on C—{a, b} by f and ¢  is orthogonal to the measure g,
because p({a})=p({b})=0. The function

p=" 0=1
g S-1

defined on C—{a, b}, can be extended to a continuous function %, on
C, because both numerator and denominator vanish only at a and b,
about which points they can be extended to be analytic with simple
zeros. For a>0 consider the function

B f/ gl__l

g —ai 7f";l—l—ai< ’

defined on C. Its absolute value will be less than the absolute value
of %,. Therefore, as a«—0, it converges boundedly to %, on C—{a, b}.
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Now 1/(9'—az) and 1/(f'—1+«i) are uniform limits on C of polynomial
functions of ¢’ and f’ respectively, so that A, is a bounded limit on
C—{a, b} of functions in the algebra T. Therefore all powers of %, are
orthogonal to the measure x. Now f” has positive imaginary part on
C—B,, so that f/(f —1) has negative imaginary part on C—B,. Similarly,
(9'—1)/9’ has negative imginary part on C—B,. Thus it is possible to
define the arguments of f//(f'—1) and (¢’—1)/g’ to be continuous on the
set C—B, and to have values in the interval (—=z, 0). Since these
functions are real on B,— {a, b}, we may therefore define the arguments
on C—{a, b} to be continuous and to have values in the interval (—=,0].
Thus the argument of %, since A, is the product of the functions just
considered, can be defined continuously on C to have values in the
interval (—2r, 0]. Since C is compact, the values will actually lie in
the interval (e —2x, 0] for some e >0. We may therefore obtain the
function log %, on C as a uniform limit of polynomial functions of 4,

flg—1)

g(-1)

part will have values in (—27, 0] and will vanish on B}. It follows
that S log A, dp=0.

For each >0, by an argument similar to the one just given, the
function

so that the real part of log A, will be log and the imaginary

ftai g —1-ai

= f"—1+azﬁ g —ai

will be a uniform limit on C of polynomial functions of f" and ¢, and
will have an argument function with values in the interval (—2r=, 0).
Thus log %, can be defined to be a funetion on C which is a uniform
limit of polynomial functions of /7 and ¢’, and whose imaginary part

has values in the interval (—2z, 0). Therefore, S log A, dp=0. The

real part of log A, converges uniformly on C—B;, to log |A|, as a—0,
because ¢° and f—1 are bounded away from 0 on C—B,. Also the
real part of log £, converges boundedly on B,—{a, b} to the same
function, since the reality of f” and ¢ on B, implies that the absolute

values of the functions fll+ »@; and 9/71:3@ are nearer to 1 on B,
g —ai F—1+ai
than are f;, and |- J%jl respectively. It follows that the real part

of log A, converges boundedly on C—{a, b} to log |k |=NR(log &,). The
imaginary part of log %,, on the other hand, must converge boundedly
on C—B, to J(log A~), because A, converges to #, on C—B; and both
SI(log #,) and J(log %,) have values in the interval (—2z, 0) on C—B,.
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On the sub-arc B of B, f and ¢’ are positive whereas f"—1 and ¢'—1
are negative, so that the argument of %, will be a small positive number,
on B, modulo 27, if « is small, which means the argument of 4, will
be near —2r on B. Thus, as a«—0, we see that J(log k,) converges to
—2r on B. Similarly, we see that J(log 4,) converges to 0 on B,—B
—{a, b}. Thus log &, converges boundedly as a—0 to a funection %, on
C—{a, b}, for which log %,—h, has the value 27¢ on B and the value 0

on C—B—{a, b}. Since S log %, dpy=0, we must have Sh‘, dp=0.

Therefore O=S (log h,—h,)dp=2rip(B). Since this is true whenever g

vanishes at the endpoints of B, it follows that g vanishes on all subsets
of 4, as was to be proved.

LEMMA 5. Let R’ be a total subalgebra of R. Let S be a compact
set and C a compact subset of S. Let q, be a non-isolated point of S—C.
Let g, be a function in R which assumes its maximum modulus for S
at the point q, and at no points of C. Let ¢, be non-constant on every
component of the Riemann surface which contains points of S. Then
there exists a function g in R’ which assumes its maximum modulus for
S at a unique point q, lying in S—C, and there exists a netghborhood
W of q on which g is schlicht relative to S.

Proof. Let
I''={plpe S, g, is not schlicht at »} .

Since, by the hypothesis, the points of S at which ¢, is not schlicht
must be isolated, it follows that /', is finite. Therefore the set I,
defined to be the union of /I, and the singular set of S relative to R’,
is finite. Thus g,(S) is a compact subset of the complex plane, ¢,(C) is
a compact subset of ¢,(S), and g,(q,) is a point of maximum modulus of
9(S) which is a non-isolated point of ¢,(S)—gy(C). Thus gi(q,) is in the
outside boundary of ¢,(S), and since g¢,q) is a non-isolated point of
9,(S), there must exist points z, distinct from g¢,q,) but arbitrarily near
to ¢g) which lie in the outside boundary of ¢«S). By taking z,
sufficiently close to g,(¢q,), we may assume that z, is not in ¢,(C), nor in
the finite set g(I). We may therefore find a point w in the unbounded
component of the complement of g,(S) whose distance to z, is less than
its distance to g(C)Ugy(I’). The minimum distance of w to ¢,(S) is
therefore attained at no point of ¢,(C)Ug,(I"). The function (z—w)~* of
2z therefore attains its maximum modulus for g¢.S) at no point of
9(C)Ugo(I'). Since w is in the unbounded component of the complement
of gy(S), it follows that (z—w)~*! can be uniformly approximated on some
neighborhood N of g¢,(S) by polynomials %. If the approximation is
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sufficiently good, % will be schlicht on ¢,(S) because (z—w)~! is schlicht
on N, and % will attain its maximum modulus for ¢,(S) at a point 2z, in
9o(S)—g(C)—g(I"). Therefore the function g,=h o g, is in R’ and attains
its maximum modulus for S at a point ¢, (any point of S with g¢,¢.)=2.)
of S—C—I'. Since ¢, is not in I, ¢, is schlicht at ¢. Since % is
schlicht on ¢,(S), the function g, will therefore be schlicht at ¢,.

Let the finite set S consist of all those points p in S, except ¢,
for which ¢,(p)=g¢.(q). By replacing ¢, by ¢.+9¢.(q), if necessary, we
may assume that g, attains its maximum modulus for S only at ¢, and
at points of S’. Since ¢, is not in I', we can find a function ¢, in R’
with ¢,(¢)=0, ¢.(p)=—9.(q,) for all p in S. Let e be a positive
number, and consider the function g=g,+ e g, of R’. Since g, is schlicht
at ¢, there will exist a neighborhood U of ¢, such that g will be
schlicht on U for all e sufficiently small. Also there will exist a
neighborhood V of the set S such that |g(p)+9.(p)|<lg:(a,)| for all p in
V, because we have ¢,(p)+9.(p)=g.p)+9.(q)=0 for all p in §. Thus
for all » in VNS we have

lo(0)l =l9:(p) + € g.(P)|=11— €)gu(p)+ € (g:(P) + (P < (1~ €)lg(D)|
+ e lg(@)| =g = sup {lg(r)]|r e S} .

Thus ¢ does not attain its maximum modulus for S on the set V. If
€ 1is sufficiently small, on the other hand, ¢ can attain its maximum
modulus for S only near S’ or near ¢, since g, attains its maximum
modulus only at S and at ¢,. Therefore g can attain its maximum
modulus for S only at points of U, if e is sufficiently small. The
point ¢ of U where this happens may not be unique, but if we take
such a point ¢ and replace ¢ by ¢g-+g(q), then ¢ will be the unique
point where g attains its maximum modulus for S, because g is schlicht
on U. Since g assumes its maximum modulus at the unique point ¢ in
S and is schlicht on U, there will exist a disc W in U containing ¢ on
which ¢ is schlicht relative to S. This completes the proof of the
lemma.

LEMMA 6. If F is a compact subset of the complex plane, and v 1is
a measure on F' which is orthogonal to all polynomials, then for almost
all real numbers x, there exists a measure 3 on the set L= {z|R(z)=x,
and z is not in the unbounded component of the complement of F'}, such
that

S h du:’——g 3 dv:Sh B
Fl FZ

for all polynomials h, where
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F=Fn {zIR(z)=x} and F,=FN {IRE)Zx,} .

Proof. There will exist a measure ¢ on F' which assumes non-negative
values and which dominates the complex-valued measure » in the sense
that |v(s)|<u(s) for all Borel sets S. Let ¢ be the non-negative,
non-decreasing function of the real variable =z, defined by ¢(x,)
=p({r+iylz<x}). Then ¢'(x,) will exist for almost all x,, Assume

x, is such that ¢'(x,) exists. Then the equation S h duz—S h dv is a
F Py

consequence of the equation S h dv=0 and the fact that », because
F

¢'(w,) exists, vanishes on all subsets of F\NF.. By Runge’s

theorem, we will then haveS g dV:_S g dv, whenever ¢ 1is any
I Fo

function analytic on some neighborhood of the set consisting of the
union of F and the bounded components of the complement of F.
Choose e with 0< e <1. Write T= {z=x,+1y| the distance from z to L
does not exceed e}, and V={ylx,+iyeT}. Let 2 be any polynomial,
and write ||2||=sup {|a(2)/|lze T}. For N(z)>x,, define

@)=k | mexe—a-dc

1
)
where the direction of integration along T is upward. For R(z)<wx,, let

@)= | MOE—2dc

)

Then it is well known and easy to see that both %, and A, have
continuous boundary values at points 2z, of 7" which are interior points
of T, relative to the line {2|R(z)=w,}, and that the difference of those
boundary values, A,(2)—h.(2), is h(z). Therefore, if we define #7,(2)
=h(2)+h((2) for R@)<x, and h,(2)=h,(2)—h(z) for R(z)>wz, then by
extending to the interior of T by continuity, we obtain analytic
functions 4, and %, on some neighborhood of the set consisting of the
union of F' and the bounded components of the complement of F, such
that A=h,—h,.
Thus we have

S Flh(z)dV(z) = Splhl(z)dy(z) — SF, ho(2)d(2)
=[, 1m0 +] nede .

We consider the first term of this sum, and obtain
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[ h(z)du(z)'—’s b oe—amac a

IA
>

S [(a— )+ (0— )]+ do dpu(z)

Il
=

IA
=

| S [(@o— )+ 7]+t dp(?)

=\~

I
SF [ He—or+e1ide dpca
I
I

S [(@— )"+ bdt dp(@) ,

where M is some constant not depending on € and where
K=sup{z|R(z)=x, z€ F} .

Since ¢'(x,) exists, the difference quotient [¢p(x)—p(xy)](@—ax)t will be
bounded, so that there will exist a constant 7 such that ¢(a)—d(w,)
<p(x—ux,) for all >a,. Thus the function ¢ defined for all x>z, by

(@) =7n(x—x,) — [p(x) — Pp(x)] is positive. Also
¥ 1
fo=|" [e—ay+e1-ar
is a positive decreasing function of x for x>z, and

P@)f (@) =@ —x,)f(@)—>0 as x—ux, .

It follows by integration by parts that

SK f@)dg(a)=0, or

S:Uf(w) d¢(w)§7752f(w)dw .

Therefore

H h(z2) du(z)‘

S S [(x—x)* -+~ vdt dz .

Now the last integral is finite, as may be seen by transforming to polar
coordinates. Now since a similar estimate can be obtained for

.Sthz(z) dy(z)} ,

we see that there exists a constant @, not depending on €, such that

}Llh(z)du(z)‘:

€, we see that

, for all polynomials #. Since @ does not depend on
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'

IlSF/z(z) dy(z)l§Q sup {h@)lee L}

for all polynomials %. Since the linear functional h—»j (z) du(z) can be
By

extended, by the Hahn-Banach theorem, to a linear functional of bound
Q on (L), we see that the measure (8 exists, as was required to prove.

LEMMA 7. Let C be compact, and p a measure on C orthogonal to
the total subalgebra R'. Let <7(C, R')=C. Let f be a function in R'.
Let a and ¢ be real numbers, a<c, and let D be a closed disc containing
the sets CN {q|R(f(g))=a} and . (C, )N {gR(f(g))=a} ND in its interior,
such that f is schlicht on D relative to C, and such that DN {g|N(f(q))=b}
18 non-void whenever a<b<c. Then, for every b with a<b<e, there

exists a measure [ on CN {qR((q)) b} such that SgdyzSgd,U' for all g
in @(C).

Proof. Define a measure v on F'=f(C) by v(S)=u(f"'(S)). Then if
h is any polynomial, we have Shdvz&hofdﬁ:O, since hofe R'. Now let

xz, be chosen as in Lemma 6, where we may impose the additional
requirement that a<z,<b. It follows that the sets

E=2(C, NN {dR(f@)=a}ND

and C,=Cn {q|R(f(q))=w,} are contained in the interior of D. Write
C,=CnN {qN(flg)) <=}, so that f(C))=F, and f(C,)=F,, in the notation

of Lemma 6. By the definition of v, we see thats hofd/r_—s hdy for
c Fl

1
all polynomials #. Consider the complex number 2z, not in AE) with
R(z)=x,. There are two cases to consider, depending on whether z, is
in f(D) or not. In case z,ef(D), then z,=f(q,) for ¢, in

D—-E)n {dR((@9) =z} <. (C, f)

by definition of E. Therefore, z, is in the unbounded component of the
complement of F'=f(C). In case z, is not in f(D), then z can be joined
to a point z, in the boundary of f(D) by a closed interval I whose
interior lies in {2|NR(z)=w,} —f(D), because {z|R(z)=x,} NS(D) is non-void
by the hypotheses of the theorem. Now F'N {z|R(z)=w,} is contained in
the interior of f(D), because CN {q|R(f(¢))==,} is contained in the
interior of D. It follows that the interval I lies in the complement of
F. Since we have already seen that a point 2z, with R(z)=2, and
2z, € f(D)—f(E) must lie in the unbounded component of the complement
of F, it follows that z, lies in the unbounded component of the complement
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of F. Thus, from a consideration of the two possible cases, we see
that the set {2|R(z)=wx,} —f(£) is a subset of the unbounded component
of the complement of F. It follows that LcCf(E), where the set L is
defined in Lemma 6. Thus, since f is schlicht on D, we may define
the measure a on E by «(S)=p(f(S)), where f is the measure on L

defined in Lemma 6, and obtain Shd,B:Shofda for all polynomials 4.
Thus

SC hofdp— SF hdy— Shdﬁ: Sh fd

for all polynomials 4. Since both E and C, are subsets of D, and since
any analytic function on D can be uniformly approximated on D by
polynomial functions of f (because f is schlicht on D), we therefore see

that S gd/u:ggda for all g in R. Since v vanishes on all subsets of
C
FlﬂFZ,lthen ¢ will vanish on all subsets of C,NC,, so that

S gdp= —S gdy
0y Oy

for all ¢ in R’. We therefore see thatg gd,u:—ggda for all g in K.
Oy

Thus if H is the carrier of the measure « and if ¢ is in R/, we see

that S gd(z—a)=0, and S gd(p+ct) =0.
CUH 2UIT
We now show that «, which we know is a measure on E, is actually a

measure on 2N C, that is, that the carrier H of « is a subset of C. Assume
first that H—C contains an isolated point ». Then » is isolated point
of HUC,, and since f is schlicht on the subset HUC, of D, the point
J(r) is an isolated point of AHUC,). Also R(f(r))=u,<R(2) for all z in
SA(HUC)). Tt follows that the funetion 6 on f(HUC,) which has value
1 at f(r) and vanishes elsewhere is a uniform limit of polynomials.
Thus 6of is in R'(HUC,). By the equation derived at the end of the

Oofd(p—a)=0. This
yurn

contradicts the fact that r is an isolated point of the carrier H of «,
and hence H—C has no isolated points. There exists a function ¢, in
R’ which assumes its maximum modulus for HUC at no point of C, if
H—C is non-void, because .&(C, R')=C. Since HU C is compact, there
are only a finite number of components of the Riemann surface which
intersect HUC.

Since R’ is total, we can find g, in R’ which is non-constant on each
component of the surface which intersects HU C. Therefore, if e is
sufficiently small, the function ¢,=g,+ € ¢, in R’ will be non-constant on

last paragraph, it follows that a({r}):—s
C.
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each component of the surface which intersects HU C, and will assume
its maximum modulus for HUC at no point of C. Therefore, by
Lemma 5, there exists ¢ in R’ assuming its maximum modulus for
HU C at a unique point ¢ of H—C which has a neighborhood on which
g is schlicht relative to HUC. Since ge E—C, we can find an arc B
of {r|lR(f(r))==,} ND which contains ¢ in its interior, which is disjoint
from C, and which lies in some disc NCD—C on which ¢ is schlicht
relative to HUC. We may choose N and B so that NN {r|R(f(r)) >}
and NN {r|R(fA(r))<ax,} are connected. Write S=HUCUB. Then we
can find a point ¢, in N such that

l9(20)| > max {|g(r)||r € B} =max {lg(r)||r € S} .
By moving ¢, slightly, we may actually assume that
Qe N— {”'lm(T)):xu} .

Let U be a disc contained in N and containing ¢, and ¢ such that
UNS is an open sub-arec A of B dividing U—A into components

ULZUO {7'm(f(7))>wu} and Uz:Um {71%(j(7))<x0} ’

with UNS=A, where U is the closure of U. Since f is schlicht on D
relative to C, and since UcD and ScDUC, then f is schlicht on U
relative to S.

Let ¢, be any point of SUU, at which g assumes its maximum
modulus.  Since |g(¢)|=]9(q)| > max {|g(r)lre S}, we have ¢ eU—S.
Thus either ¢,e U, or ¢,e U,, but ¢, is not in U,NU,cAcS. Assume
¢ € U,. Then g(g) is in the boundary of the unbounded component of
the complement of ¢g(SUU), since it is a point of maximum modulus
of g(SUU). Since g(¢) is not in g(SUUT,), it is therefore in the
unbounded component of the complement of ¢g(SUU,). The set
o(U,—B) is connected and disjoint from ¢(SUU,), because U,—B
1s disjoint from SUU, and ¢ is schlicht on U relative to S. Since
9(q) € g(U,—B), it follows that ¢(U,—B) is in the unbounded component
of the complement of ¢g(SUU,). Since g(4)=g(BNU) is in the boundary
of g(U,—B), it follows that g(A) is in the outside boundary of g(Su U,),
in this case. In case ¢, e U,, it similarly follows that g(4) is in the
outside boundary of g(SUU,).

First consider the case in which g(A) is in the outside boundary of
g(SUT,)). Then g(4) is in the outside boundary of g(HUC,UBUU,).
Since the real part of f equals 2, on A and is less than or equal to z,
on HUC,UU,, the open arc f(4) is in the outside boundary of
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AHUC,UBUU,) .

Since S hd(g+a)=0 for all 2 in R’, we can apply Lemma 4, to the

HUC'2UB
compact set HU C,U B, to the measure p+«, to the dise U, and to the
functions f and ¢ in R’, to conclude that the measure pg+a«, and
therefore « itself, vanishes on all subsets of U. Next consider the

case in which g(4) is in the outside boundary of g(SUU,). Then g(4) is
in the outside boundary of g(HUC,UBUU,). Since the real part of f
equals x, on A and is greater than or equal to @, on HUC,UBUU,, in
this case f(A4) is in the outside boundary of f(HUC,UBUU,). Since

hd(p—a)=0 for all » in R', we see by Lemma 4 again that the

HUC;UB
measure p—a«, and therefore «, vanishes on all subsets of U. Thus,

in either case, we see that « vanishes on all subsets of U. This
contradicts the fact that the point ¢ in U is in the carrier H of «. This
contradiction shows that H—C is void, so that « is a measure on
ENC.

Now & (C, R)c~(C, R)=C. Moreover, if ge C—C, then
ge &'(C;, R') because R(f(q))<x,<R((¢)) for all ¢ in C,.. Hence
&(C, R)=C,. If D—C, were not connected, there would exist a
component of D—C; containing only interior points of D (because C; is
a subset of the interior of D), so that $°(C,, R') would contain all
points of this component, contradicting the fact that <7(C,R)=C..
Thus D—C, is connected. Since f is schlicht on D, it follows that
F,=f(C)) has a connected complement. By the theorem of Mergelyan,
every continuous function on F, which is analytic at interior points can
therefore be uniformly approximated by polynomials. From this it
follows that every continuous function on C; which is analytic at
interior points can be uniformly approximated by polynomial functions
of f, so that @(C,)=R/'(C,). Since HCENCcC,, and since we have

already seen that g gd,u=g gda for all g in R’, it follows that
oA "
S gd#=s gda
(oA H

for all g in @(C)). If we define the measure ¢ on

(C—C)UHCC,cCn {qIN(fg)) <b}
by ' (S)=m(S—C,)+a(S), we obtain

Sgd//=g gd/1+g gda:g Qd/H-S gd#:Sgd/J
-0, H c-0, (oA

for all g in @(C), as was to be proved.
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3. The main theorem and its consequences.

THEOREM 1. Let R be a total subalgebra of R. Let C be a compact
set with &7 (C, R)=C. Let 4 be a bounded linear functional on @(C)
which s orthogonal to R'(C). Then A is a R'-homogeneous differential
operator on O(C), whose order does not exceed some positive integer N
depending only on R and C.

Proof. We know that A can be represented as a measure on C.
Therefore the class /', consisting of all compact subsets S of C for
which 4 can be represented as a measure on S and for which &/ (S, R')
=S, is non-void, because CeI’. We construct a sequence {S,} of sets
from I' by taking S,=C, and choosing S,., such that S, ,cS, and

(S, s,m)g; sup (p(S,, S)SCS,, Sel} .

Then p(S,, S,..)—0 as n—, because otherwise the compact set C would
contain an infinite set of points whose mutual distances were larger
than some fixed positive number. Write S=nNS,, and assume that
there exists a point ¢, in S not in the singular set T of C relative to
R’. Then there exists a function g, in R which vanishes on T but
does not vanish on ¢,. Since S is compact, there exist only a finite
number of components of the surface which intersect S. Since R’ is
total, there exists a function g, in R which is non-constant on every
component of the surface which intersects S. Thus, if e is sufficiently
small, g,=g¢,+ e€g, will be non-constant on every component of the
surface which intersects S, and the set K consisting of those points of
S where g, attains its maximum modulus will not intersect 7. If there
exists a point in K which is a non-isolated point of S, then by Lemma
5 there exists a function f in R’ which attains its maximum modulus
for S at a unique point p, and which is schlicht relative to S on some
closed disec D containing p in its interior. On the other hand, if all
points of K are isolated, then K is finite, and since K does not intersect
T, there exists a function g, in R’ which has the value g,(p) at some
point » of K, which has the value —g,(r) at all other points » of K,
and which is schlicht at p. For a sufficiently small positive number €,
it follows that the funection f=g,+ € g, will attain its maximum modulus
for S at the unique point p and will be schlicht relative to S on some
closed disc D containing p in its interior. Thus, if we assume that S
is not a subset of the singular set of C relative to R, we may find f,
p, and D which have the properties described. We may assume also
that f(p)>0.
Let a, be some real number less than f(p) such that the set
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DN {ql%i(f(g))=a}

is non-void whenever a,<a<f(p). For each real number a¢ with a,<a
<f(p), consider the compact sets V,=.S7(S, )N {¢gR(@))=a} ND and
W,=Sn {¢N(f(¢))=a}. The intersection of the V, is V,,y={p}, and
the intersection of the W, is W, ={p}. Thus, if a is sufficiently near
to f(p), the sets V, and W, will be contained in the interior of D.
Having chosen such a value of a, define the compact sets

Vu=2(S, /) N {gRM(fg)=a} ND

and W,=8S,N {¢N(f(g))=a}, for each positive integer n. Since NS,=S,
we have NV,=V, and N W,=W,. Thus, if n is sufficiently large, the
sets V, and W, will be contained in the interior of D. Let b be any
number with a<b<f(p), and choose a value of n for which V, and W,
are contained in the interior of D, for which f is schlicht on D relative
to S,, and for which 20(S,, S,.;) is less than the distance d of p to
{¢IR(f(¢))<b}. Then by Lemma 7, we see that there exists a measure
v on S,N {gN(fq))<b} =S, which represents 4, because there exists
such a measure on S,. Now (S, R)c.<“(S,, R)=S,. Also, if
ge S,—S,, then N(f(¢))>b= sup {N(f(¢))|¢ €S}, so that qge &(S,, R').
Thus .~A(S,, R)=S,, and so S,el’. Also o(S, S)=d>20(S,, S,:.).
This contradicts the choice of S,.,. Therefore S is a subset of the
singular set of C relative to R’. Since NS,=S and since 4 can be
represented as a measure on S,, then 4 can be represented as a measure
on an arbitrary C-neighborhood of S. It follows from Lemma 3 that 4
is a R’-homogeneous differential operator on @(C), of order not exceed-
ing N, as was to be proved.

COROLLARY 1. If C s compact, and of R is a total subalgebra of
R, with &(C, R)=C, then there exists a positive integer N such that
R'(C) contains the ideal I(C, R', N) of @(C) consisting of those functions
in @(C) which vanish on the singular set S of C relative to R’ and which
vanish to order at least N at those points of S which are interior to C.
The ideal I(C, R', N), and therefore R'(C) itself, has finite codimension
when considered as a vector subspace of @(C).

Proof. Choose N as in Theorem 1. Then, by Theorem 1, it follows
that every bounded linear functional on @(C) which vanishes on R'(C)
will vanish on I(C, R’, N). It follows from the Hahn-Banach theorom
that I(C, R, N)\CR'(C). The last statement of the corollary is obvious.

COROLLARY 2. If C is compact, if R is a total subalgebra of R
with A(C, R)=C, and if the singular set of C relative to R s void,
then R'(C)=g(C).
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Proof. This corollary is in immediate consequence of Corollary 1.
This corollary applies to R itself, if no component of the surface is
compact, since then it is known that R is total, and that the singular
set of R relative to C is void, for all C.

COROLLARY 3. Let C be compact and without interior points. Let
R’ be a total subalgebra of R with <“(C, R')=C. Let f be a continuous
Sunction on C for which f(p)=f(q) whenever p and q are points in C
Jor which h(p)=n(q) for all b in K. Then fe R(C).

Proof. Let 4 be a bounded linear functional on @(C) which is
orthogonal to R'(C). We must show that A(f)=0, and the Hahn-Banach
theorem will do the rest. Since 4, by Theorem 1, is a R’-homogeneous
differential operator on ¢(C), and since C has no interior points, we see
that 4 is a finite sum A4=234,, where 4, is orthogonal to R'(C) and has

the form Ai(g)zzi‘ @ 9(py), with p; in C and with A(p;)=h(p,) for
ji=1
1<j<mn, and all 2 in R’. Thus f(p,)=f(py) for 1<j<n,. Since the

function 1isin R/, this implies 3 a,=0. Thus we have
=1

A(f)= gauf(pzj) zg @5/ (0:i1) :f(pn)é a;=0 .

This completes the proof.

The hypothesis that R’ contain the constant functions, which is
made in Theorem 1 (because R’ is required to be total), is undesirable,
since, for instance, it rules out the case of an ideal R’. We now show
that this hypothesis is not necessary to the validity of Theorem 1. To
this end, let R’ and C satisfy the hypotheses of Theorem 1, except
that we weaken the word ‘‘total” by dropping the requirement that
R’ contain the constant functions. Let 4 be any bounded Ilinear
functional on @(C) which is orthogonal to R'(C). Let the original
Riemann surface be enlarged by the addition of the extra disc {z]|2|<1}
as a new component, and let the algebra 7" on the new surface consist
of all functions of the form c¢-f, where ¢ is a constant, and where f
is any analytic function on the new surface which vanishes at the
center z=0 of the extra disc and which agrees on the original surface
with some function in R'. Let H be the union of C and the subset
{ellel =3

2
linear functional on @(H), and obviously the functional 4’ on @(H)
defined by A'(9)=A(g—g(0)) will vanish on 7"(H). By Theorem 1, we
see that A’ is a T"-homogeneous differential operator on @(H) of order

} of the extra disc. Then 4 can be considered as a bounded
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not exceeding some constant N depending on 7" and H (and, therefore,
depending on R’ and C). It follows that 4 is a R’-homogeneous
differential operator on @(C) of order not exceeding N, as was to be
proved.
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