MINIMAL COVERINGS OF PAIRS BY TRIPLES

M. K. Fort, JR. AND G. A. HEDLUND

1. Introduction. Let F’ be a finite set with n members, n = 3. An
F-covering of pairs by triples, which we abbreviate F-copt, is a set S of
triples of distinct members of F' which has the property that each pair
of distinet members of F' is contained in at least one member of S. If
n is a positive integer, n = 3, then an n-copt is an F-copt for the set
F=1{1,2---,n}. We assume throughout that » > 3.

For any finite set A, let C(4) denote the number of members of A.
An F-copt S is minimal if C(S) < C(S’) for every F-copt S'. If n=1
(mod 6) or » = 3 (mod 6), then a minimal n-copt S turns out to be exact
in the sense that each pair is contained in exactly one member of S.
Such exact coverings are called Steiner triple systems. The existence of
Steiner triple systems for all » (of form 64 + 1 or 64 + 3) was proved
by M. Reiss [2] in 1859.

Let S be a minimal n-copt and let C(S) = x(n). The main result
of this paper is obtained in §2, where we determine p(n) explicitly for
n=3. In §3 we discuss certain properties of minimal n-copts, and
give several methods for constructing minimal n-copts.

2. Determination of x(n). Let S be a minimal n-copt. For each
integer 4,1 < ¢ < n, we define «(z) to be the number of members of S
that contain 4. Then

z:a(q;)zg- a(s) .

Since 4 must appear in members of S with n — 1 other numbers we
have «a(i) = [n/2]. ([«] is the largest integer which is not greater than
x.) Thus,

(1) pn) = CS) = ) [g] .

Since (n/3) [#/2] may not be an integer, we define ¢(n) to be the least
integer which is not less than (n/3) [#/2]. It is easy to compute

n*[6 if » = 6k,

n(n — 1)6 if n =6k + 1 or n = 6k + 3,

(n* +2)/6 if n =6k + 2 or n =06k + 4,

(n* — n + 4)/6 if n =6k + b.
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We may clearly improve (1) to
(3) #(n) = C(S) = ¢(n) .

Our main theorem proves that in (8) equality holds for every n.

Let A, B and C be pairwise disjoint sets, each having the same
number n of members. A tricover for the system (4, B, C) is a set K
of triples (x,y,2), x€ A,y e B,z¢e C such that each pair uv, » and v in
different ones of A, B, C, is contained in exactly one member of K.

LemMMmA 1. If n is a positive integer and A, B, C are pairwise disjoint
sets each of which has n members, then a tricover K for (4, B, C) exists.
Moreover, if a€ A, be B and ce C, then K may be chosen so that (a, b, ¢) € K.

Proof. Let the members of A, B, C be respectively
Ay Qyy =00y Oy 5 blybz"°'ybn; Ciy Cy***y Cp

where a, = a,b, = b,¢;, = c. We define K to be the set of all triples
(a, by, ¢;) for which k=4¢+j—1(mod n), 1 <4,j,k <n. The set K
obviously has the desired properties.

REMARK. Any tricover for (A4, B, C) must have n* members.

LEMMA 2. Let A, B, C be pairwise disjoint sets, each having n
members. Let p be an integer such that 0 < p < n/2. Let A*C A, B*CB,
C* c C be sets, each of which has p members and let K* be a tricover for
(4%, B*, C*). Then there exists a tricover K for (A, B, C) such that
K*c K.

Proof. Let

A:Iaua’z""ya’n}7
B:{blybm"'ybn}y
C:{cbc:zy'°'ycn}'

We can assume that

A = {ay, @y, -+, a’p} ’
B* = {bn bzy °t bp} ’
C* = {e, €5y =+, Cp} -

For 1<4,5<p, let m¥ be the unique integer k& such that
(a;,b,,¢c,) € K*. Clearly 1 <m} <p and the square array (m;) is a
Latin square of order p. It follows from a theorem of Marshall Hall
[1] that there exists a Latin square (m,,), 1 < 4,7 < n, such that m,; = m};,
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1<4,7<p. Let

K: {(a’i! bj! Cmij)ll g ?”.7 g ’i’&} .

The set K is the desired tricover.

In order to produce an inductive proof of our main theorem, it is
convenient to restrict ourselves to a special type of minimal n-copt for
the case n = 5 (mod 6). Also, for » = 3 (mod 6), there is a special type
of minimal n-copt whose existence we wish to establish, and it is possible
to include this result in our main theorem. For these reasons we intro-
duce the notion of ‘‘admissible F-copt.”

An F-copt S is admissible if C(S) = ¢(n), n = C(F"), and :
1)»=0,1,2, or 4 (mod 6);

(2) » =3 (mod 6) and S contains a set of pairwise disjoint triples whose
union is F'; or

(8) n =5 (mod 6) and S contains four elements of the form (a,d, @),
(@, b,9), (@, b, 2), (=, ¥, 2).

THEOREM 1. If n s a positive integer, n = 3, then there ewists an
admissible m-copt.

Proof. Our proof is by induction on n. However, it is neces-
sary to prove independently that there are admissible n-copts for
n=3,5, 7,9, 11, 13, and 15. We accomplish this by exhibiting such
admissible n-copts.

n=3 n=29 n=13
1,2,3) ,2,3) (2,4,9) a, 2, 3) 3, 6,12)
(4,5,6) 2,5,8) 1, 4, 5) (3, 8,13)
(7,8,9) (2,6,7) (1, 6,13) (3, 9,10)
n=>5 (1,4,7) (3,4,8) 1, 7, 8) 4, 6, 7)
(1,2,3) (1,5,9) (3,5,7) 1, 9,12) 4, 8, 9)
1,2,4) (1,6,8) (3,6,9) (1,10,11) (4,12,13)
1,2,5) 2, 4,10) (5, 8,11)
(3,4,5) @, 5, 6) (5, 9,13)
n=11 @, 7,9 (5,10,12)
a, 2, 3 @3, 6,10) (2. 8,12) (6, 8,10)
n=7 a, 2, 4 3, 7,9 (2,11,13) (6, 9,11)
1,2,3) (1, 2, 5) @3, 8,11) @3, 4,11) (7,10,13)
(1,4,5) (3, 4, 5) 4, 6,11) 3,5, 7 (7,11,12)
1,6,7) a, 6,7 @, 7, 8
(2,4,6) a, 8, 9) 4, 9,10)
2,5,7) (1,10,11) (5, 6, 9)
(3,4,7) @, 6, 8) 5, 7,11)
(3,5,6) 2, 7,10) (5, 8,10)



712 M. K. FORT, JR. AND G. A. HEDLUND

n=15

a, 2, 3) (2, 6, 8) (3,12,14) (6, 9,14)
a, 4,14 2, 7,14) @, 5, 6) (6,12,13)
1, 5, 9 2, 9,11) (4, 8,13) (7,8, 9)
1, 6,10) (2,10, 15) 4, 9,10 ( 7,10,13)
a, 7,12) (3,4, 7 (4,11,15) ( 8,11,14)
1, 8,15) (3, 5,11) 5, 7,15) (9,12,15)
(1,11,13) 3, 6,15) 5, 8,12) (10,11,12)]
(2, 4,12) (3, 8,10 (5,10,14) (13,14,15)
(2, 5,13) (3, 9,13) (6, 7.11)

Our proof now divides into six cases. In Case », 0 <r <5, we
assume that n = »r (mod 6), that » > 3 and that there exist admissible
m-copts for 3 < m < n. We then show that these assumptions imply
that there exists an admissible n-copt.

Case 0. Let S; be an admissible (» — 1)-copt having (1, 2, 3), (1, 2, 4),
and (1, 2, 5) as three of its members. If we delete (1,2, 3) from S; and
add '

1,38,n),(2,38,n),4,5,n),6,7,n),---,(n—2,n—1,n),
we obtain a set S of triples which is an n-copt. Since S, has
[(n =1 — (» — 1) + 4]/6 = (»* — 3n + 6)/6
members, S has
(n*— 3n + 6)/6 — 1 + n/2 = n*/6 = ¢(n)

members.

Case 1. We have exhibited admissible n-copts for » = 7 and » = 13.
Therefore we may assume n = 6k + 1,2 > 2.

We consider two subcases.

Subcase i. Either =0 or h=1 (mod 38). Then there exists k
such that 22 +1 =6k + 1 or 27 + 1 = 6k + 3.

Let

A ={1,.-+,2h,n}

A, = {2h+ 1, .-, 4h, n}

A, = {4h + 1, ---, 6k, n}
and let S, be an admissible A4,-copt for j =1,2,3. Let T be a tricover
for ({1,---,2n}, {2+ 1, ---, 4R}, {4h + 1,--+,6R}). We now define

S=8S US,US,UT. Itis easy to verify that S is an n-copt, and that
S has
3. @%1)% + (2h) = Z@,é—_l) = o(n)

members.
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Subcase ii. h =2 (mod 3). In this case there exists k¥ such that
2h +1 =6k + 5. We define A4, 4,, A; as above. Now, for 7=0,1,2,
we let S,., be an admissible A,,,-copt such that S,,; contains a subset
R;., whose members are :

(29h + 1, 25k + 2, 25k + 3)
(24h + 1, 25k + 2, 25k + 4)
(2h + 1, 25k + 2, n)
(25h + 8, 2k + 4, n) .
Let T be a tricover for ({1,---,4}, {2041, .-, 2h 4 4},
{4h + 1, ---,4h +4}), and let T* be a tricover for ({1,---,2h},
{2h +1,.--,4h}, {4h + 1, ---,6Rh}) that is an extension of 7. Since

h > 5, the existence of such a tricover follows from Lemma 2. We
next take an admissible copt U for

{1’°'°74J2h+19"'y2h+4;4h+1’"'74h+4in} .
Finally, we define
S=(S,—R)US,— R)US; — R)U(T*-T)UU.

It is easy to check that S is an n-copt. The number of member of S is

@41y — (20 +1) +4 s
3 { 4:| + [(2h) 16] + 26

=6k + h = n(n —1)
6

Thus, S is admissible.

Case 2. Let S, be an admissible (n — 1)-copt. We define S to be
the set of triples obtained by adding to S, the triples

(1,2;”')’(3’4:%); ---,(n—3,n—2,n),(n—2,n— 1,‘7&).
Then, S is an n-copt and S has

(n — 1)(n — 2) 1

m+2
6

members. Thus S is admissible.

Case 3. There exists % such that n = 62 + 3. Since we have listed

admissible n-copts for » = 3,9, 15, we may assume 2 > 2. We consider
two subcases.
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Subcase i. h=0 or h=1 (mod 3). In this case there exists %
such that 22 +1 =6k + 1 or 22 +1 =6k + 3. Let S, be an admissible
(2h+1)—copt. For each triple (a, b, ¢) € S, we choose a tricover for ({3a—2,
3a — 1, 3a}, {36 — 2,3b — 1, 3b}, {3¢ — 2,3¢— 1, 3¢}). The union of all
such tricovers, together with the triples (1, 2, 3), (4, 5,6),+--,(n—2,n—1, n)
is an n-copt S. The number of members of S is

9. 7@;@1);2@ 4+ @+ 1) = (2h 4+ 1)Bh + 1) = ﬂ(ﬂ'G:l_) :

If follows that S is admissible.

Subcase ii. h = 2 (mod 3). In this case there exists k& such that
2h + 1 =06k + 5. We choose an admissible (2% 4+ 1)-copt S, that con-
tains the triples (1, 2, 3), (1, 2, 4), (1, 2, 5), (3,4,5). If (a,b,c) is any
other member of S,, we choose a tricover for ({8a — 2, 3a — 1, 3a},
{38b — 2,36 — 1, 3b}, {3¢c — 2,3¢c — 1, 3¢}). Let S, be the 15-copt exhibited
at the beginning of our proof. We now define S to be the set whose
members are the members of S,, the members of the chosen tricovers,
and the triples (16, 17, 18), ---,(n — 2, » — 1, n). Sis an n-copt, and the
number of members of S is

35+ 9 [(2}? +1—-@h+ 1)+ 4 _ 4] + “3 15 _ n(n 6_ D

6
Since S has (1,2,8),(4,5,6),+++,(n —2,n — 1, %) as members, S is
admissible.

Case 4. For this case, the construction is exactly the same as in
Case 2.

Case 5. We first observe that numbers of the form 64 + 5, % a
non-negative integer, form the same set as numbers of the form 3s — 4,
s an odd integer and s > 1. We have listed an admissible 5-copt, and
an admissible 11-copt. Thus, we may assume n» = 64 + 5 = 3s — 4, s > b.
We consider two subcases.

Subcase i. There exists & such that s=6k 4+ 1 or s=6k+ 3. In
this case, we let

A =1{1,--+,8— 2}
A, = {s—1,+++,2 — 4}
Ay = {25 — 3, -4+, 85— 6} .

There is a tricover K of (4, A,, 4;) such that (1,s — 1,2s — 3) € K. For
1 =1,2,3 we define
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R, =AU {8 — 5,35 — 4} .

and let S; be an admissible R,-copt such that (1,3s —5,3s — 4) € S|,
(s—1,3—5,33—4)e S, and (2s — 3,35 — 5,3s —4) e S;. We define
S=KUS,US,US,. Itis easy to see that S is an n-copt, and that S
has

5 3s(s — 1) 3s* —9s + 8 n—mn+4
— 2 = _nr—nT=
(s —2)+ 5 2 o

members. Since (1, 3s—5, 83s—4), (s—1, 3s—5, 3s—4), (2s—3, 3s—5, 3s—4),
(1,s — 1,2s — 3) are members of S, S is admissible.

Subcase ii. There exists & such that s = 6k + 5. We define

A =1{1,---,8— 2}
A= {s—1,---,25 — 4}
Ay, = {28 —3,.-.,35 — 6}
and let B, = A, U (3s — 5,833 — 4} for « = 1,2,3. By the inductive hy-

pothesis, there exists an admissible R;-copt S, such that S; contains the
set B,;, where

B, =1{1,2,8),(1,3s — 5,35 — 4),(2,3s — 5,35 — 4),(3,3s — 5,35 — 4)} ,
B,={s—1,8,s+1),(s—1,3s— 5,35 — 4),(s,3s — 5,35 — 4),
(s+1,3s — 5,35 —4)} .
B, = {(2s—3,2s—2,25—1),(2s— 3,3s—5,3s—4), (2s— 2, 3s— 5, 3s — 4),
(2s— 1,33 — 5,35 — 4)} .
Let G={1,2,8,s—1,s,s+1,28— 3,25 — 2,25 —1,3s— 5,35 — 4}.
G has 11 members, and hence there exists an admissible G-copt M.
We choose a tricover T, for ({1,2,3}, {s—1,s 8+ 1}, {2s — 3,

2s — 2,2s — 1}) and extend T, to a tricover T for (A4, 4., 4;).
We now define

S=lS—=B)US,—B)U(S;, —B)UMU((T - T) .

It is a routine matter to verify that S is an n-copt. The number of
members of S is

3 I:S_:é_JF‘_{ _ 4] +19 + [(s — 2y — 9:] - §§2;§§jg§ = @’:%‘té )

Since SO M and M is admissible, it follows that S is admissible.

3. Properties of minimal 7n-copts. Let S be a minimal n-copt. If
n=r (mod 6), for » =0, 2, 4, 5, then the covering is not exact and some
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pairs must be contained in more than one member of S. However, it
is possible to state precisely the way in which this sort of ‘‘multiple
covering > takes place. Our results are contained in the next three
theorems.

THEOREM 2. Let n =6k, and let S be an n-copt for which C(S)= ¢(n).
There exists a partition of {1,2,.--,n} into 3k pairs P, P, +--, Py,
euch of which is contained in exoetly fwo members of S. Ewvery other
pasr (u,v),1 S u < v = n, is contained in exactly one member of S.

Proof. For 1 <j =< n, let f(j) be the number of members of S that

contain j. It is clear that f(j) is at least #/2, so that f(j) = »/2 + 9(5),
9(j) = 0. We obtain

2 1) = 3¢(n) .
Thus

i[g— +g(j)]= 3. % and

J=1

v

LS () =
2 =

ol S

We see that g(j) =0 for j=1,---,n and f(J) = n/2. Since for each
I # 4 there is at least one member of S which contains (j, k), there
must exist j* # j such that (J, 7*) is contained in exactly two members
of S, and (4, k) is contained in exactly one member of S for j = k + 5*.
Moreover, j** =g, and hence the pairs (J,s*) are the n/2 pairs
Pvay "°’P3k~

THEOREM 8. Let n =6k + 2 or n = 6k + 4, and let S be an n-copt
Jor which C(S) = ¢(n). There exist n/2 + 1 pairs Py, +++, Pyyer which
are contained in exactly two members of S. Every other pair is contained
s% exactly one member of S. There exists ar tnteger m which is contained
in exactly three of the pairs Pi, +++, Py, Every other integer is con-
tained in exactly one of the pairs P, ««+, Py

Proof. Let f(j) be the number of members of S that contain the
integer j. Since f(j) = n/2, we can write

f4) = —g +96), 9@)=0.

Then
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WPV z n 4+ 2
S0 ="+ 306) =38 9m) = "2

Thus >7.,9(j) = 1. There exists an integer m such that g(m) =1 and
9(7) = 0 for § + m.

Now suppose j + m. There must exist 55 such that (4, 7*) is con-
tained in exactly two members of S, and (, ») is contained in exactly
one member of S for j # & # j*.

Since there are n/2 4+ 1 members of S that contain m, and each pair
(m, 7) is contained in at least one and not more than two members of
S, there exist a,b, ¢, such that (m, a), (m, b), (m, c¢) are each contained
in exactly two members of S, and (m,j) is contained in exactly one
member of S if j #a,j # b, and 7 + c.

If j is a member of T = {1.---,n} — {m,a,b, ¢}, then j** =j.
Hence T is partitioned into pairs P, P, -+, Po-5., each of which is
contained in exactly two members of S. These pairs, together with
(m, @), (m, b), (m, ¢) form the set Py, -+, P,

THEOREM 4. If n=6k +5 and S is a minimal n-copt for which
¢o(n) = (W* — n + 4)[6, then one pair is contained in three members of S
and every other pair is contained in exactly one member of S.

Proof. For 1 <j <n, we define f(j) to be the number of members
of S that contain j. Clearly f(j) = (n — 1)/2. We define g(j) = f(j) —
(n — 1)/2. Since 37, f(j) = 3¢(n) = (w* — n + 4)/2, we obtain

S () =2.

There exists j, such that ¢(j,) > 0. Since there are more than (n — 1)/2
triples of S that contain j,, there exists j, such that the pair (5, 7,) is
contained in at least two triples (Ji, 7., 73), (41, s, 7.)- The integer j, must
be in triples with n» — 4 integers other than j,, j;, 7., and it requires at
least (n — 8)/2 triples to satisfy this condition. Thus f(5,) = (» + 1)/2 and
9(4)) > 0. We now see that g(j,) =¢(j,) =1 and g(j) = 0 if 4, # j # J.

It now follows that if (u, v) is a pair for which g(u) = 0 or g(v) =0,
then (u, v) is contained in exactly one member of S. Since 3¢(n) =
n(n — 1)/2 + 2, the pair (j,,5,) must be contained in three members of S.

Our Theorem 1 is of a constructive nature, and indicates how
minimal n-copts can be constructed out of minimal m-copts for m < n.
There are other methods, however, of constructing minimal n-copts out
of minimal m-copts for m < n. We give a lemma and theorem due to
Reiss [2] which are useful in this connection. Our final theorem is
analogous to the Reiss Theorem.
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REIsSs LEMMA. Let n be a positive integer. Let
P={u,v)|1=u<v=2n}.

Then there exists a partition of P into sets S, S;, -+ <, Syu_q, each contain-
wng n elements, such that for each 4,9 =1,2, --+,2n — 1, the coordinates
of the n pairs in S; constitute the integers 1,2, «--, 2n.

Proof. Let j be an integer such that 1 <j < 2n — 1. We define

Ty={&b|l<a<b=<j+1and a+b=j+ 2}
and
Ry={@blji+1<a<b<2rnand a+b=j+2n+1}.

Let S,,.,=1T,,_,. For jeven, 1 <j5=<2n—2, let

For jodd, 1 <j<2n — 3, let

S,=T,UR,U {(3 + 12127”, 2n)} .

It may be verified that the sets S, have the desired properties.

REiss THEOREM. Let m be odd and let S be an m-copt for which
C(S) = ¢(m). Then there exists a (2m + 1)-copt T such that T DS and
C(T) = ¢(2m + 1).

Proof. Let P= {(u,v)lm <u<v=2m+1}. We use the Reiss
lemma to partition P into sets S, ---,S,, each containing (m + 1)/2
elements, such that for each 4,7=1,2, ---, m, the coordinates of the
(m 4+ 1)/2 pairs in S, constitute the integers m +1,m + 2, ---, 2m + 1.
We now define

T=SU{@#7J,kI1=i=<mand (j,k) € S;} .
It is easily verified that T is a (2m + 1)-copt. If m =1 or m = 3 (mod 6),
then

c(S) = Mg—l) n m(m2+ 1) _ 4m’ ;- 2m _ (2m —{—61)(2m) —o@m+1).

If m =5 (mod 6), then

C(S) = mi,—,g@fr 1, 7z(zn2+ 1) _ 4m +§m+4

— (2m + 1) f_éim TD+4 _ somt1).
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THEOREM 5. Let n be an even integer and let S be an n-copt for
which C(S) = ¢(n). Then there exists a 2n-copt T such that C(T) = ¢(2n)
and Sc T.

Proof. According to the Reiss Lemma there exists a partition of
the set

P={u,v)n+1=2u<v<2n}

into » — 1 sets A4,, 4,, ---, A,-, such that for each 4,2 =1,2,---, % — 1,
the coordinates of the %n/2 pairs in A, constitute the integers
{n+1,---,2n}. Let 4, = A,-,, and let

T:SU{(’i,j,k)[i:1,2,--°,n; (J;k)GAL} .

It is easy to prove that T satisfies the desired conditions.
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