ON NONLINEAR POSITIVE OPERATORS

H. H. SCHAEFER

Introduction. The purpose of the present paper is to apply the well
known Schauder fixed point theorem, in its general from due to Tychonov
[8], to the situation of nonlinear (or rather, not necessarily linear) maps
defined on (or on a subset of) the ¢ positive ’’ cone in a partially ordered
locally convex linear space. Throughout this paper, no use is made of
possible linear properties of the maps under consideration. As far as the
author is informed, there is little history to the study of such mappings;
the only work done seems to be contained in papers by Krein-Rutman
[2], Rothe [9] and Morgenstern [3]. In [2], the Schauder theorem is
largely applied to linear maps (where it can be avoided) and a few non-
linear cases!. In [4], the author paid attention mainly to the case of
linear compact maps in general locally convex spaces. At the end of
that paper, with a somewhat sketchy proof, a general nonlinear theorem?
is stated which however seems to need some improvement.

In this paper, the essential proposition resulting from the fixed point
theorem is stated in the form of three different theorems to throw some
light on potential ways of argument. While Th. 1, depending on a special
convexity argument, is of a different character, Th. 2 is almost a special
case of Th. 3. But as Banach spaces with normal order cones (with
which Th. 2 is concerned) seem to be the most important ones in non-
linear analysis, it might be useful to have the theorem stated separately,
a much simpler proof than that of Th. 3 going with it. Applications
have been selected so as to furnish a non-trivial example to each of the
three theorems, the one to Th. 1 showing that it is not always fruitful
to restrict attention to normed topologies. It is understood that each
example constitutes a new result in its respective field.

Preliminary material. In the present section, we are going to collect
some theorems and definitions on which argumentation will be primarily
based in the sections to follow. The main tool will be the

FIXED POINT THEOREM (Tychonov). Let E be a locally convex linear
space, M a convex compact subset of E. If T is a continuous map on
M into M, then T has a fixed point x,e M.

Received September 29, 1958, and in revised form February 11, 1959.

1 Also, considerations are restricted to Banach spaces.

2 Satz 3.1. This is restated and proved in this paper as Th. 3. The additional as-
sumption to be made in [4] may be any one of hypotheses «,f stated with Th. 3 of the
present paper.
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For the proof, see [8]. To make this theorem more easily applica-
ble to mappings that carry sets not necessarily compact into compact
ones, we state the following slightly more general

FIXED POINT THEOREM (2nd form). Let M be a complete convex set
wm K. If T is continuwous on M into M such that T(M) is relatively
compact, then T has a fixed point x,e M.

Proof. Let M, be the closed convex hull of T(M). As M is com-
plete, M, is compact (Bourbaki [1], p. 81) and since obviously T(M,) C M,,
Tychonov’s theorem yields the desired result.

Let £ be a linear space over the real scalar field. A partial ordering
of K is a binary relation ‘“ <’ such that

1 x < x for all xe & .
2 e<y&y<zel e <z.
3 e<y&y<al=x=y.

Such an ordering is said to be compatible with the linear structure of
FE if in addition

4 {>0&N2=0} =N >0.
5 e>Y=>c+z2>Y+2 for all ze E .

The set of all x € E such that « > 0 is a convex cone C which con-
tains its vertex 0, and which is proper (i.e. C N — C = {0}). C will be
referred to as the positive cone with respect to a given partial ordering
of E?®). Conversely, each cone in E with the listed properties defines
a partial ordering satisfying axioms 1 through 5, x <y meaning y — x € C.

Let E be a linear space, partially ordered by some such cone C.
If T is a mapping defined on a subset of C, we will say T is positive
whenever the range of Tis in C. If E is, moreover, a topological space,
T will be called strictly positive if T(x,) — 0 implies x,—0 for any
sequence {z,} in the domain of T\

Examples.

1. Let E be Hilbert space L, (0,1) in its natural order, i.e. the
positive cone C consisting of all elements f:f(t) = 0, t € [0, 1]. The positive
mapping, defined on all of E,

t
7(5) = | ri)as
3 In this paper, all orderings are understood to be compatible with the linear structure
of the space involved. Also, we exclude the trivial case C = {0}.
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is not strictly positive. Take f, =1/ nt*', then ||f.|l =1. Now as

nm=wmwnm=7§%an.

2. Let E be the B-space of continuous functions on the unit in-
terval, with its natural partial order. Let K(¢,7) be = 0 (but = 0) and
continuous on the unit square. If P(z) is a polynomial with non-negative
coefficients,

1
7(f) = | K(t, PLAENE
is strietly positive if and only if the constant term in P is > 0.

3. Denote by {E,} a collection of topological linear spaces, each
E, being partially ordered by some positive cone C,. Then the product
space E = [[,E, is ordered by C = [[,C,. Let A, be a positive map
on E into E,, and consider the map

A(x) = ("'v Aa(x)r "')

on E into E. Then A is strictly positive on C if and only if to each
«, there is a pB(a) such that Ax(x) > 0 (in Ej) implies 2, — 0 (in £,).
In particular, if A.(x) = A.(2,), then A is strictly positive if and only
if each A, is.

I. Morgenstern’s theorem. If E is the Banach space L,, partially
ordered by the positive cone C = {f: f(t) = 0}, it turns out that the
intersection of C with the unit sphere S = {f:|lf|| =1} is convex.
This is true for any abstract L-space or, more generally, for any normed
space in which the norm is additive on C. To this situation Morgenstern
[3] applied Schauder’s fixed point theorem. He obtained the following

THEOREM (Morgenstern)!. Let K be a Banach space, partially order-
ed by a positive cone C which s closed and on which the morm is addi-
tive. Then if T is continuous and strictly positive on C N {||x|| = ¢},
¢ >0, mapping this set into a compact one, there is some X\ >0 and
x € C such that e = T(x), ||z]] = c.

The proof is readily obtained by applying the fixed point theorem
(2nd form) to the map ¢T(x)/||T(x)|| on the set C N {||lz|| =¢c}. How-
ever, it may be so arranged as to yield a much more general proposition.

¢+ The theorem is stated in our terminology and a slightly more general form.
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THEOREM 1. Let E be a locally convex space, partially ordered by
a complete cone C, and let T be a continuous, strictly positive transfor-
mation on C, mapping bounded sets into compact ones. Assume H: f(x)=1
is a closed hyperplane meeting C in a nonvoid, bounded set. Then to
each ¢ > 0, there is an xe C and N > 0 with

e =T(x), flx)=c.

Proof. 1t follows from our assumptions that the continuous linear
form f(x) is >0 at every non-zero point of C. For assume there is
an x,e C, x, = 0, with f(z,) = 0. Then if y,e H N C, we would have
f, + px,) =1 for all £ = 0 which contradicts the hypothesis that H N C
be bounded. It is now also clear that f cannot be < 0 on C. Apply-
ing the fixed point theorem (2nd form) to the map c¢T(x)/f[T(x)] on the
set H N C, we get the desired result letting N = f[T(x)]. ¢~

REMARK. We should point out the relation between Morgenstern’s
theorem and Th. 1. If, under the assumptions of the former, the norm
coincides on C with a continuous linear form, then Morgenstern’s theorem
is a corollary of Th. 1. (This is the case in L, e.g.). Assume then,
still under the assumptions of Morgenstern’s theorem, that there is no
such linear form. Now C N {|lx|| = ¢} is convex (¢ > 0), so there is a
closed hyperplane H separating this set from a convex open neighborhood
of 0. Obviously H N C is bounded and Th. 1 can be applied provided T
is compact, continuous and strictly positive on C.

II. Banach spaces with normal positive cones. We will now extend
Morgenstern’s theorem to ordered Banach spaces in which the norm is
not necessarily additive on the positive cone C. This assumption will be
replaced by the weaker hypothesis that C is normal. A convex cone of
vertex 0 in a normed space E is normal [5] if the topology of E is
generated by a norm which is monotone (with respect to the order in-
duced in E by C) on C. In terms of the given norm on E, 2 — ||z]||,
this amounts to saying there is a constant v > 0 such that

e +yll = vllyll for all xeC,yeC.

It can easily be checked that for all classical Banach spaces, the positive
cones pertaining to their natural partial orders are normal ([5], p. 130).

THEOREM 2. Let E be a normed space, partially ordered by a com-
plete normal cone C. Let T be a strictly positive transformation, which
18 continuous and maps bounded subsets of C into compact ones. Then
to each ¢ > 0, there is e C and N > 0 with

o= T(@), |lzll=c.
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Proof. Consider the mapping
€ — Syx) = T(x) + ¢ — ll=ll |y

for fixed 0 = ye C and ¢ > 0. This is a continuous map carrying bound-
ed subsets of C into compact ones. T being strictly positive, we have

inf {HT(x)II:x eC&llz|| = %c} =¢ > 0. Hence, C being a normal cone,

we obtain
inf [ S,@)ll = v - inf sup (I 7@, [e — eIl 1yl]) = vsup(e, Lellyll)> 0.

Thus = — R.(x) = ¢S/x)||S.(x)]]* mapsC N {||z|l < ¢} into a compact
subset. So by the fixed point theorem (2nd form) there is an « in this
subset with # = R,(x). Clearly ||z]|| = ¢, and letting A = ¢7'||S.(x)|| we
have xx = T(x). Since ¢ > 0 is arbitrary, the proof is complete.

III. A third theorem. The theorem presented in this section weakens
the assumption in Th. 2 that £ be normed and removes the hypothesis
that C be a normal cone. Instead, we require either one of conditions
a, B of hypothesis H (s. below) to hold. As the conclusion is only
established for some continuous semi-norm x — p(x) on E (which, how-
ever, may be assumed to generate the topology of E if E is normed),
Th. 3 is not a generalization of Th. 1 or 2. We start out with a

LEMMA. If E is a locally convex space, C a closed proper convex
cone im E of vertex 0, then there exists a continuous linear form on E,
non-negative on C and >0 at a given non-zero element of C.

Proof. Let 0 +yeC. Since Cis proper and closed, there is a con-
vex open neighborhood U of — y such that C and U,.,AU do not in-
tersect. Hence there is a closed hyperplane H separating C and U...\U.
Obviously H contains 0, so has an equation f(x) = 0. After a potential
change of sign, f will meet the requirement.

Now let E be any locally convex space, partially ordered by a com-
plete positive cone. A mapping T, defined on a neighborhood of 0 in
C into C, will be called of type ‘“ P’ if it satisfies:

1. T is continuous and strictly positive.

2. There is a neighborhood U of 0 such that the image under T of
U n C is relatively compact.

Consider

HyroTHESIS H. We will say that hypothesis H is satisfied if one of
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the two following statements is true:

a. To each compact subset of C, there exists a continuous semi-
norm which is > 0 at each non-zero point of that set.

B. T is positive-homogeneous of some degree ¢ > 0, i.e. T(\x) =
AN T(x) for xe C and N > 0.

For instance, condition « is automatically fulfilled if there exists
a continuous norm on E (or even on C)’. Condition 8 is of course satisfied
if T is a linear map.

THEOREM 3. Assume hypothesis H holds and T 1is a mapping of
type ‘“P’’. Then there exists a continuous semi-norm p such that for
each 0 < ¢ <1, there are an xe C and )\ > 0 satisfying

e = T(x), plx)=c.

Proof. Let U= {x:q(x) <1} be a closed neighborhood of 0 such
that T(U n C) is relatively compact. Second, let q, be selected, accord-
ing to which one of conditions «, 3 in H is satisfied, as follows:

Case . Let ¢, be a continuous semi-norm strictly positive on
T(U n C).

Case B. Let ¢, = q,.

Third, by the lemma, we may choose an y e C and a continuous linear
form f such that £ =0 on C while f(y) > 0. We may further suppose
that sup {q.(¥), ¢.(v), f(¥)} = 1.

Put p = sup {q,, ¢, | 1} and consider the set U, = {xe C: p(x) < ¢},
¢ being any fixed real number between 0 and 1 (1 included). For any
positive integer n, form the mappings

T (x)=T(x)+ |1 —pTx)|-n'y
and S,(x) = ¢T,(®)/p[T(x)]. Obviously, S, is a transformation of type
“ P”, mapping U, into itself, provided the denominator p[7,(x)] has
a positive lower bound. To show that this is true, consider first all

x e U, such that p(T(x)) = % Then

MRWD%HRMHEi%ﬂ@#O.

For the remaining elements x e U, we have p(T(x)) > 7:);-, hence

PT(@) = HT@) — 11— pT) @) >3 -+ =

5 Condition « can be weakened so as to require the existence and continuity of the
semi-norms involved only on C.
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Applying the fixed point theorem (2nd form) to S,, we are sure there
is an x,¢ U, satisfying x, = S,(«,), p(x,) = ¢. Letting )\, = p(T,(2,))-¢7,
by definition of S, we obtain

(*) ann = T(xn) + l]- - p(T(mn))ln—ly .

{T(x,)} being relatively compact, it follows that {)\,} is a bounded sequence.
Assume, for the moment, that {\,} has a positive lower bound. Then
as the right-hand side of our last equation is relatively compact, so is
{=,}. (Here we may remark that for a convergent subsequence of
{x,}, the corresponding subsequence of )\’s converges automatically to
some A > 0.) Hence for each limiting point of a subsequence of {\,z,},
such that A, — X\, Az = T(x) and, by continuity, p(x) = c.

All that remains to prove is that », > 7 > 0 for all n. Suppose there
were a subsequence {\,} tending to zero. From this it would follow
that p(T(x,)) —> 0 which, by definition of p, in turn would imply
qT(x)) — 0. On the other hand, T being strictly positive, 0 is no limit-
ing point to the sequence T(x,) because of p(x,) = ¢. Thus if a of His
satisfied, we arrive at a contradiction. Now assume H holds by virtue
of condition 3. Letting 2, = M2, {2,} has a limiting point 2z, say. Be-
cause T is strictly positive, we must have z = 0. Multiplying equation
(*) by \g, we get

Nz = T(z,) + o(%)y :

Now if there were any subsequence {\,} of {\,} such that \,— 0, we
would obtain (as A\ — 0) T(z) = 0 for some ze C, 2z + 0. This again con-
tradicts the hypothesis that 7T be strictly positive, and the proof is
complete,

REMARK. Hypothesis H was needed to prove that {\,} does not
have 0 as a limiting point. The proof of Satz 3.1 in [4] is essentially
the same as the one presented here, but is incorrect at the point where
it says “x > 0" (Le., p. 329, line 3 f.h.).

Applications. The remainder of this paper is concerned with a num-
ber of applications to the preceding theorems.

1. Consider the linear space w of all real sequences x = (2;, s, =+ ),
partially ordered by the positive cone C = {x:2, =0, =1,2,---}. In
the product topology (i.e. considering w the product of countably many
real lines) w is locally convex. Let » >0 be a fixed integer and let
k = (k. k,, --+) denote any sequence of non-negative integers such that
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Sk, = 7" Since the set {k} of all such k is countable, we may
arrange it into a sequence; hence consider {k} as ordered by the natural
order of subscripts.

Further, denote by «* the product [Ls,,, 2" Now if to each k and
each positive integer ¢ there corresponds a real number a;, = 0 such
that

Zailc < C ’
)
where C is independent of ¢, the equations

Yi = >, 0;,x"

(k)

define a mapping y = A(x) on the subspace of all bounded sequences
into itself such that each y; is a homogeneous form of degree » in the
variables x,, «,, --+ (If » =1, then A defines a bounded linear map on
the B-space (m)).

Consider the properties

a. There are n rows in A (the first n rows, say) such that

Y%

iaik i for all k and all j >n .
i=1

s. i y, — 0 implies 2"] xz, — 07,
=1 i=1
We prove the following theorem:

If a mapping A of the above mentioned type satisfies o and /3, there
are a v >0 and an x > 0 for which

e = A(x) .

REMARK. If » =1, then the point spectrum of the bounded map
A on (m) contains a positive real number.

Proof. Consider in w the cone C,=C N {x: 37,2, =x;,5 > n}.
Owing to «, A(x) is defined on the cone C, into itself. Since w is com-
plete and C, closed, C, is a complete cone in w. Next we show that
A, which is in general not defined but on a dense subset of w, is con-
tinuous on C,. Let z,— x in C,. It follows from the definition of C,
that all coordinates of all the xz, are uniformly bounded, say by some

6 A more general theorem results if we admit all & such that >k << 7.
i<

7 Cf. Example 3 in the preliminary section.
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constant M = 1. Given ¢ > 0 and any fixed subscript 7, we can find
a k, such that

&
2% < g

Then if y, = A(z,) and y = A(x), we obtain

{(yn — il = D lauxs — axt] + Sy D at .
K=k, KSR, KK,

)

The last two righthand terms are, by the choice of k, each less than
1

§€' The first righthand term will be less than -é—e for n > mn, if n, is
large enough, since there are only finitely many coordinates of both x,
and z involved. Thus we have |(y, — ¥),| < ¢ if » > n, and continuity
is established.

Now f(x) = ;:,acz is a continuous linear form on w. The intersection
of the hyperplamle1 f(x) =1 with C, is certainly bounded as (0 =) x; =
1,2 =1,2, .-+, in that intersection. Moreover, a set {x} is bounded in
o if and only if |x;| < M, uniformly on {x}. If M, can be chosen in-
dependently of 7, then the set is relatively compact by the well known
Tychonov theorem. Thus on C, closed bounded sets coincide with com-
pact sets, and A transforms bounded sets into compact ones on C,.

By hypothesis 3, A is strictly positive on C,. (Conditions more ex-
plicit than B may be obtained eagily by applying the reasoning of Ex-
ample 3, preliminary section.) Hence A meets all the requirements of
Th. 1 and the proof is complete.

2. In a recent paper [7], Sehmeidler proved the existence of an
eigenvalue to the homogeneous algebraic integral equation of order =

) pry(s) — gﬂﬁy"(sm(s, »=0, 0=s=1)

where n is an odd integer > 0 and
1 1
aﬁ(s, y) = SO oo SOKB(S’ t, oe-, tv)?f“l(tl) oo y““(ty)dtl cee dt\,

are homogeneous integral forms with continuous kernels Kg(s,t, -+« t)
such that (8 + 1)(v +1) =n + 1 and the K’s are symmetric with re-
spect to all their arguments. Schmeidler shows (*) to be the natural
generalization of a linear Fredholm equation with continuous symmetric
kernel. In an earlier paper [6], a theorem was stated by Schmeidler
that generalizes the well known Jentzsch theorem on linear Fredholm
integral equations with positive kernel. The proof of that theorem of
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Schmeidler’s, however, appears to be incorrect’. We are going to show
that the theorem yet is correct and holds under weaker conditions than
the ones stated in [6]. Let us call (*) an algebraic integral equation
with non-negative coefficients if n is any positive integer and

1 1
ag(s,y) = >, SO eee SOKB‘“ e (s, by, e, E)Y(E) - - - Y(E,) ML, - - - d,
1

teedw,=n—B
are homogeneous integral forms of order » — B with continuous kernels
Koo (8 by 200, t,) = 0. We will prove this theorem:

If some «g contains a term SK(S, Ly, =, EY(E) - - y(t,)*dt, - - - di,
such that a is the highest power occurring in any og, and if

SIK(s, ty o+e, t)ds =8 >0 for (ty, -+, t,)€[0, 1];
0
then (*) has an eigenvalue p, > 0 with eigenfunction yys) = 0.

Proof. We first state a

LEMMA. Consider the mapping @: (ay, ««+, a,_,) — 2, where z, is the
greatest real root of
(1) o — St =0,

B=0

Then @ is defined and continuous on the set {0, =20;0 <3 <n — 1}C k"

It is clear that z, = 0 if and only if ¢y =a, = -+- =a,_, =0, and @
is continuous at that point. At any other point, however, 2, is a simple
root which implies continuity of .

Recalling that « is the highest power of y in any az; we observe
that as(s, ¥) (0 = B8 <n — 1) exist for all y(s)e L,(0,1). Moreover, each

ag(s, y) is a continuous map on [0, 1] x L, into the space C(0,1) of con-
tinuous functions on [0, 1]. For

(2) ]aﬂ(s’ ?J) - aﬁ(tv ’y)l é Iaﬂ(s’ y) - (lf;(S, y)l + laﬁ(sr ?}) - aB(t’ ’y)l

where the first ri;ghthand term can be estimated by expressions of the
form

I= S Klyt) — gl 4 «« - glt)")y(to)™ « « - y(8,)™dt, - -+ dt, .

Using Holder’s inequality we arrive at an estimate

|[I] < const - |ly — gllP(llyll, I7ll)

where P(u,v) is a homogeneous polynomial of order n — 8 — 1 in u, v

8 The treacherous point is that the mapping 7 — y, [6] p. 2562 above, is not continuous.
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and || || denotes the norm in L,. Thus, axs, y) — ax(s, ¥) — 0 uniformly

in sas y—y in L,. The second righthand term in (2) can be estimated
by terms

IT= S [K(s, b+ o+ £) — K(t, b, -+ £)J(E)" -+ - Y(E)dt, « -+ di.;
so if |s — t] < 8(¢), the K’s being continuous, we obtain

I < e S J(t)dt, - - S@(t»wvdt., = e||g||"?

1 1 «®
remembering that a, + -+« -+, =n — B and \ y'dt < < y“dt) if yZa.
0 0

This proves continuity of a, on [0,1] x L,. But from the above rea-
soning it is obvious that {as(s, y)} is an equicontinuous, bounded set of
functions if % runs through any bounded set of L,. Hence, by the
lemma, we have established:

The mapping y(s) — z(s), 2, being defined as the greatest real root
of (1) for each se[0, 1], maps any bounded subset of the positive cone
in L, onto a set of equicontinuous, non-negative and uniformly bounded
Junctions over [0, 1].

Thus the map y — z, satisfies the assumptions of Th. 2 if we can
show that it is strictly positive. For that end, let ||z|| — 0. If K is
the kernel mentioned in our present theorem, we get by (1)

1
0

24(8)" = 2(s)° S . S K, by »+ o, b)) -+ y(t)dt, - - - dt,

where va 4+ 8 =n. Since z, is the greatest real root of (1), there
follows

2(s)"F = S o S K(s, ty, « -+, t)Y(E)* « - - y(t,)odt, - dt, .
0 0

Integrating this last equation, we obtain

(3) [ atsrds = 8 | wetyat | = slyi=.

Now assume first that y is bounded in L, as z,— 0. Then 2z, runs
through a uniformly bounded set of continuous functions and hence, as

it converges to 0 in measure, 1zo(s)“"”ols — 0. By (3) this implies ||y || — 0.
9

This excludes that |[y||— « as z,— 0, for division of z and y by ||yl|
(remember that (*) is homogeneous) would lead to ||%|| = 1 while 2z, — 0.

9 In general, ag are not continuous for the weak topology on L.
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Thus y — 2, is strietly positive and the application of Th. 2 ends the
proof .

3. Let 2 be a compact region in Euclidean n-space, C(£2) the B-
space of continuous functions on 2, and D(2) the space of continuously
differentiable functions on 2 in the topology of uniform convergence of
the function and its first order derivatives. Assume a kernel K(s,t) =0
is given on 2 x Q and a real function f(s;u, p,) of 2n + 1 arguments
(letting s = (x,, - -+, x,)) such that these conditions are satified:

1°. K@) =\ K(s, t)y(t)dt is a compact linear transformation on
C(9) into D(Q) v;hich has an cigenvalue )\, > 0 with an adjoint eigen-
function ¢(s) that is = 0 and bounded except on an Q2-subset of (Lebesgue)
measure 0.

2°,  f is a continuous real valued function, defined for s 2, u = 0,
|p;| < 0o (1 =1,---,7n) and such that

. fay if 0 = u <34,
FE3u D) Z ki 5 <y |

where «, 8, K are three suitably chosen positive constants. Then the
following theorem holds: )
Under conditions 1°., 2°. the nonlinear integro-differential equation

uls) = SQK(S, ) f(t; u(t), %(t))dt

has for each ¢ > 0 at least one solution w =0 with N = Mu) >0 and
Hull = ¢, where || || denotes a suitably chosen morm of D(2). Moreover,
Mu) satisfies the inequality N = A, « inf (a, Ke™).

Proof. D(9Q) is partially ordered by the positive cone C = {u:u =
0 on 2} but we note that C is not a normal cone (cf. sec. II). For any
¢ > 0, the transformation®

T (u) = XQK(S, t)[f(t; “, g:: )+ s}dt

i

is, due to the continuity of f and condition 1°., compact and continuous
on C into C. For all ue C we have

SQ T.(w)ds = SS K(s, t)edtds = ¢ SS K(s, t)p(s)dtds = e\, S @(s)ds > 0

10 The following proof shows how cases may be handled where strict positiveness of
the map involved cannot be verified. (7% is not necessarily strictly positive by Example 2
of the preliminary section if ¢ =0.)
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if sup ess ¢(s) = 1. Hence T. is strictly positive and we may apply
Th. 3, hypothesis H being satisfied through condition «. Following the
notation of the proof to Th. 3, choose for q, any norm generating the
topology of D(2), let ¢, = max |u| and write p = || ||. (Obviously p is
a norm generating the topology of D(R); it is also evident that, in the
present case, the statement of Th. 3 holds for all ¢ > 0 instead of
0<c¢<1) Thus, ¢ being fixed, to each ¢ > 0 there is a #. = 0 and
e > 0 such that

(1) Nelhy = Ts(ue) s ”us“ =cC.

We are going to show that A. has a positive lower bound for & > 0.
Multiplying (1) by @ and integrating, we obtain

(2) XESngr/)dt - SS K(s, t)p(s)[ (b)) + eldsdt
= | POLA@a(t) + eldt > x| o) T ole

Now £ is the union of two measurable subsets 2, and £, such that
% < 6 in £, whereas u. > 8 in £,. On account of condition 2°. we have

S pflu:ldt = aS pudt
Q Q

1 1

and

S pflucldt = K j v)dt?:—K—S Pudt ,
Q, Q, cy Jo,

where v <1 is a constant such that max|u| < v||ul||l for all ue D(Q)".
Hence for the last integral in (2),

g @ flu]dt = ag pu.dt + K S pu.dt = inf <a1£>s Pudt

Q Q cy Jo, cYy /IR

and we finally obtain

(3) xgginf<a,—li>-xl for ¢ >0 .
cY

Now let ¢ > 0 in (1). As ||u.|] = ¢ independently of ¢, the righthand
side of (1) is a relatively compact sequence and so is the corresponding
sequence of u. by (3). Thus for a common convergent sequence of \.
and ., the limit function  satisfies Mu = T,(u) and the proof is complete.

1 p=sup{qy, qs, |f|} (Th. 3) implies y =< 1. If f does not depend on any p;, the proof
may be carried via Th. 2 and we will have y = 1, ||u|| = max |#].
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REMARK. If f(s;u, p;) is such that § may be chosen arbitrarily
large (e.g., if f=au + g(s;u, p;) with g = 0), then we will have 2,
void and A will satisfy the inequality

Mu) = ax, .

We apply the preceding theorem to the following problem.

Let 2 be a compact region in 3-space such that Green’s function
for the first boundary problem of potential theory exists. It is then
well known that this kernel G(s, t) satisfies condition 1°. of our theorem.
It f(s; u, p,) is Holder continuous with respect to all variables, then the
equation

us) = SQG(S, ) f(t; ", g;‘ >dt

is equivalent to the boundary problem

*) Au+k‘1f<s;u,§7“b—>:0,u:0 on 902 .
x

]

Hence, if f satisfies condition 2°., we have:

The nonlinear boundary problem (*) has, for suitable values » > 0,
solutions w = 0 such that max w attains any positive real number. If,
moreover, f = u + g(s; u, p;) (g = 0), then for each such \

Mu) = N,

where \, is the largest eigenvalue of the corresponding linear problem.
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