RECURRENT MARKOV CHAINS

S. OREY

In this paper Markov chains {X;}, 1=1,2, ---, which stationary
transition probabilities are considered which take values in some measura-
ble space (S, <77) and satisfy

(*) The Borel field <7 is separable and there exists a sigma finite
measure m on (S, <% ) such that Plentering E at some time [X;, = 2] =1
for all x € S and all Ee < with m(E) > 0, where P is the underlying
probability measure.

Such chains were introduced by Harris in [6], [7]. Let P"(x, E) be
the n-step transition probability, P'(x, E) = P(x, E/). In [7] it is proved
that there exists a unique (up to constant factor) sigma finite measure
@ which is stationary in the sense that Q(E) = S P(x, E)Q(dx).

Section 1 establishes some preliminary results. The relationship
between (*) and Doeblin’s condition is investigated. The results of
Harris [6], [7] are summarized and extended. Note that many nota-
tional conventions used throughout the paper are introduced in § 1.

In § 2 it is shown that after the deletion of an inessential @-null set
the process splits up into a finite number, d, of disjoint cyeclically mov-
ing classes.

Section 3 studies the asymptotic behavior of P”(x,-) in case the
stationary measure @ happens to be a probability measure. The approach
is the ‘“direct ’”” approach of Markov and Doeblin and Doob [4]. It is
shown that if d =1, the total variation of (P"(x,-)—@Q) approaches 0 as n
approaches oo; for d > 1 the convergence statement must be modified
in an obvious way. For the relationship of these results to those of [3]
see the beginning of § 3.

Section 4 considers the asymptotic behavior of

U = 5P| S7(X) =],

where f is a measurable function from S into the positive integers. If
S f(@)Q(dx) < oo, U(n) is for large n approximately a periodic function.

The period depends both on the {X;} process and on f; this period may
be greater than 1 even though the d associated with the {X,} process
is 1 and f(x) =1 for a set of 2 of positive Q-measure.

Section 5 is concerned with the behavior of normed sums,
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where f is a real-valued measurable function on S. Neither the method
of Doeblin (exploited and developed in [2]) nor that of Bernstein (used
in [1]) is directly applicable to processes merely satisfying (*) and
Q(S) = 1. Nevertheless, ideas from both those methods combined with
the results of the previous sections make it possible to give conditions
under which such normed sums obey the central limit theorem and even
obey the Erdiés-Kac-Dongker invariance principle. Results from [1] are
made use of. As indicated at the relevant places, ideas of [2] and [8]
are also used. The work of this section naturally leads to some prob-
lems related to recurrence times, and these are discussed in § 6.

1. Preliminary results. Let m be a measure satisfying (*). If v is
any measure on (S, <7) p?(x,-), P2(x,-) are to denote, respectively, the
absolutely continuous and singular component of P" with respect to v.
Superseripts will be omitted when » = 1. It will be assumed that p? is
measurable in (x,y) in the product space S x S; this assumption is
justified by Doob [4], p. 616. It will also be assumed that for all posi-
tive integers s and ¢

P (e, 0) = | pite, v, )

holds for all x and y; that such a choice of densities is always possible
was shown in Doob [4], p. 146.

When the subscript v is omitted it will be assumed in this section
that v is m; in all the other sections the omission of v will mean v = Q.

If A is a Borel set, m(4) > 0, ““ the process on A’ will have the
same significance as in [7], i.e., if X, X, -+ are the successive mem-
bers of the sequence X, X, --- with values in A4, {X,}, +=0,1, .-+ is
the process on A. This is a Markov process with transition probability

.1 P.(w,B) = P(x, E) +| _P(z,dyP(, )

N

+SS—A SS—A P(x’ dy)P(y, dZ)P(Z, E) + ..

for every Borel subset E of A and xz € A.

The process on A will also satisfy (*). Notions defined for the
original process can thus be relativized to A; notationally this is indicated
by a subscript A4, e.g., pi(x, y) is defined like p"(x, y) but using P, (x, E)
in place of P(x, E).

If 0 < m(A) < o, v belongs to the open interval (0,1), and j is
a positive integer, K(A, v, 7) is to be the set of all xe A such that
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! 1
m{ye A: hzlp‘(x, y) > 7} > vm(4) .

By the convention explained above K,(A, v, j) is meaningful whenever
C is a Borel set including A (the definition now involves p} in place of p').
Harris observed that if m(4) < oo,

A=UKA,r k)
k=1

easily follows from (*), for every re€(0,1). Lemma 1.1 is a modification
of a lemma in [7].

LEMMA 1.1. Let A, B be Borel sets such that m(B) > 0, m(A4) < oo,
B < K(A, v, k) for some ve(0,1) and some positive integer k. Then
K(B, r, k) = B provided (1 — r) = (1 — v)m(A)/m(B), where re (0, 1).

Proof. For every xe B,

i} < (1 — v)m(A)

fm{yeB: épi(x, Y) < k

_ _ .y m(4) _
_{a v) wdmm<a rym(B)

if the proviso of the lemma holds.

LEMMA 1.2, Let A= K(A,r, k), re(0,1), k a positive integer, A
a Borel set of finite m-measure. Then there exists a probability measure
@ on A and numbers a,ne(0,1) such that P**(x, E') <1 — 1 whenever
EcCc A Fe &z ,p(F)=aand zeA.

Proof. Let 7 be any number such that 0 < < rm(A)k=3. Let x
be some point in A. Define

C:{zeA:épi(x,z)>—llz} J ; }
Then
g@immm>mw.

Let E be a Borel subset of A, and suppose P+'(x, E) >1— 1.
Then

7 >1— Pz, B) = P+, S — E) = % 5 S P, ) P=i(y, S — E)ym(dy)
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= 2], Porws — By = - 35 @ = Py, Bymdy)
= Lrmid) = 3 P, Bymy)|
=L rm(a) — 1] S P, Eyy) |
Let
) = ) S P, Bymdy) and o= T8 2

The inequality above yields ¢(E) > «, proving the lemma.

COROLLARY 1.2.A. Let A, C be Borel sets, m(C) < o, A< C and

A =KJA, r, k), where re(0,1) and k 1is a positive integer. Then there

exists a probability measure ¢ on A and numbers «,ne (0, 1) such that

i (x, W) =1 — 1) whenever x€ A, and E is a Borel subset of A with
P(E) = a.

Proof. Since the process on C also satisfies (*) the lemma applies
to it, yielding the corollary.

COROLLARY 1.2B. If A, C, r, k are as in Corollary 1.2A the process
on A satisfies Doeblin’s condition.'

Proof. A = K, (A, r, k) since K (A, r, k)= KA, r, k). So the con-
clusion of Corollary 1.2A applies with P, for P,; but this gives Doeblin’s
condition for the process on A.

Let <7 be the collection of Ae <# such that the process on A
satisfies Doeblin’s condition.

It will be seen that <7 is an important collection. In [6] Harris
announced a result which, slightly extended, asserts that when (*) holds
one has for all z,ye S

}__‘P"(x E) QE)

Spw Y0

and N—— o

(1.2)

\IVZ IS

for all Borel sets E, F with E S F, Fe . In this connection see also
Theorem 1. In [7] the question of more general validity of (1.2) was
raised. If merely E, Fe &7 ,0 < m(F) < o is assumed, (*) does not

1 It is actually Doob’s generalization of Doeblin’s condition that is referred to. See [4],
p. 192, Hypothesis (D).
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imply (1.2) for all x,ye S. It is easy to give examples of chain satisfy-
ing (*) and with denumerable state space where (1.2) is violated even
in the special case where x =y or where E = F. On the other hand,
when S is denumerable one shows easily that, regardless of whether or
not the process satisfies (*), one has for x = v,

S Pz, E)
P[X, = y for some positive i|X, = 2] < liminf 220
e nZ=OP"'(y, E)
N
S Pz, E) 1
< lim sup 2=° =

N %(]P”(y, g PlXi=o for some positive ¢|X, = y] -

n

It follows that (1.2) will hold for every pair of x and y belonging
to the same recurrence class. In particular in case (*) holds and S is
denumerable (1.2) will hold for all # and y outside a fixed Q-null set.
It would be interesting if this could be shown to hold even when S is
not denumerable,

Harris showed in [7] that if A = K,(A, r, k) the process on A has
a stationary probability measure; this also follows from Corollary 1.2B.
Whenever the process on some Borel set B has a stationary probability
measure it will be denoted by @,.

LEMMA 1.3. If A,Be %, BS A, Ac &7 then Be .

Proof. Assume the hypotheses of the lemm. Then there is a posi-
tive function ¢(n) such that

Men) < oo

n=1

and Pi(z, E) < QF) + ¢(n) for every Borel subset E of A. Let N be
an integer such that

i 1
n;,ve(n) < T

Then there exists an integer M such that for all xe B and Borel sub-
sets K of B,

Pi(z, E) = ENP[XBNe B Xpy = Xl X0 = @]
N u .
<.§l,vP[XBNeE; XBN = Ai] +%<Z§V[QA(E) —[—5(@)] _|_%

So when Q,(E) < 1/(4(M — N)), Pi(x, E) < 3[4 proving the lemma.
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LEMMA 14, Let 0<r<l, Ae 2 and m(A)<c. Then AS (A, r, k)
for some k.

Proof. If the lemma is false there is for every k an x,€ A such

that if
;c—{l/ -i=1p Imy:%[r

m(E,) > (1 — rym(A). Let E| satisfy E| < E,, m(E— E}) =0, and
Pj(x,, E) =0,7=1,+--, k. So

u ’ 1 ’ 1

>, Py, Ef) = —m(E) = —m(4),

j=1 k k
and the last term approaches zero as k approaches o. Therefore, Q,(E))
approaches zero. Since @, and m are finite on A and m is absolutely
continuous with respect to @,, m(E,) must tend to zero, which results
in a contradiction.

The restriction m(A4) > 0 or m(4A) < « appeared frequently above.
Note that there always exists finite measures ¢ having the same null
sets as @ and therefore satisfying (*). If such a ¢ is chosen for m in
the preceding lemma the hypothesis m(4) < o« may be dropped and the
conclusion may be weakened to A < K(S, r, k) for some k. Letting
S, = K(S, r, k), where r is fixed, 0 < » < 1, the preceding sentence can
be restated thus: Ae & implies A £ S, for some positive integer k.
Clearly S, < S+, k=1,2,---. By the remark preceding Lemma 1.1
S= U, S,. Lemma 1.1 asserts that

K(S,, v, k) =S, if 1 —7") =1 — q(S)/q(Sy).

For & sufficiently big such a choice of # will be possible, since S,
approaches S. So then by Corollary 1.2B such S, belong to <. Now by
Lemma 1.3 all S, and all their Borel subsets belong to <. This
proves the following theorem.

THEOREM 1. If (*) holds S can be represented as a union of Borel
sets S;,,t =1,2, .-+ such that S; & S,., and a Borel set A belongs to
Z if and only if A S S, for some k.

Harris showed that if 4 is a Borel set such that the process on A
has a stationary probability measure @,, Q, can be extended to a sta-
tionary sigma finite measure on S, Q,. Q. (E) is the expected number
of visits to E up to and including the first return to A if the process
starts with the initial distribution @,. Analytically

(L.3) QUE) = | QudvP.a, B)

where P,(x, E') is defined by (1.1) (regardless of whether £ & A or not).
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The process {X,} is determined by the function P(x, E) and the
initial distribution. It will sometimes be convenient to indicate the
initial distribution as a subsecript on the expectation operator E, or on P.

Let Ae <, and suppose {X,} possesses a stationary probability
measure @, Let V be the least positive integer such that X, e A. It
is not hard to verify that if f is any measurable function from S into
the positive integers one has

Vv i
(1.4) B, {500} = | s@)@uda)
where both sides are infinite if either one is.?

2. Cyclic decomposition. In this section it is shown that the argu-
ments applied by Doob in [4] to processes satisfying Doeblin’s condition
can be extended to the case where only (*) is assumed. In particular there
exists a Borel set C with positive @ measure such that g 1 b p*(x, y) >0

for some positive integer a. This leads at once to the des1red decom-
position. The only place where it is necessary to deviate from the treat-
ment of [4] is in the proof of Lemma 2.1 below (Lemma 5.3, p. 200
of [4]).

LEMMA 2.1. If (*) holds there exist A, Be <7 and a positive integer
n such that Q(A) > 0, Q(B) > 0 and g.le.b. p"(x, y) > 0.

YEB

Proof. Let De <7 satisfy
k 1
Q{yeD: > '@, ) >I} >r>0,

for all xeD. By section 1 such », D, k exist. Then there exists
a D, e B and a positive integer n, such that D, < D, Q(D,) > 0, and

c ™ 1] r
Q{y-p (W.y)>7y> k

for all xe D,. Also there must exist D,e B, and a positive integer =,
such that D, £ D, Q(D,) > 0 and for all xe D,

Q{y "z, y)>% and szeD p"(y, z)>—} %} —ky—;—
Let

2 This is part of the assertion of Lemma 6. The discrete analogue of this formula is
formula (A) of the appendix to [2]. Cf. also footnote 7.
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H = {(w, y):we Dy, p"i(x, y) > 71“ and Q'{ZGD: ey, #) > 112

’

}>

——

r
k
and

ﬁ} = {(y, z)e D x D: there exists an x such that (x, y)eﬁf1

n, 1 ]
and p™(y,2) > -5 .

Let Q be the product measure @ x @ in the product space D x D. Given
any Q-null set N of D x D it is clear that it is always possible to choose
two points (x,, ¥,), (¢, %) in (D x D) — N such that (z,,¥,) € ﬁl, (%, y,) € }L
and y, = x,. From here on the proof follows that of [4], middle of p.
201. Since the v of Doob corresponds sometimes to 7, and sometimes to
7, in an obvious way, the conclusion here will be that p™i*™(z, ) is bound-
ed away from zero for xe A, ye B. The lemma follows if n =n, + n,.

THEOREM 2.1. If (*) holds there is a Ce <7, Q(C) > 0 and a posi-
tive integer a such that g.l.b. p“(x,y) > 0.
z,Y€0

Proof. This follows easily from the preceding lemma. For details
see [4], Lemma 5.4.
Let C satisfy

g.L.b. p“(x,y) > 0.
€rYEC

It is known (cf. [4], p. 202) that if d is the greatest common divisor of
I(C) = {a: %}612 p(z, y) > 0}

then all sufficiently large multiples of d belong to I(C). With no more
essential variations from the development as given in [4] one obtains:

THEOREM 2.2. Suppose (*) holds. Then there exists a unique in-
teger d such that whenever Ce <7, Q(C) >0 and I(C) non-vord then d
is the greatest common devisor of I(C). There exists a partition of S
into Borel sets C, C, -+-,C,_,, F, such that Q(F) =0 and for xe C,
P(x, C;.\) = 1, where the subscripts are integers modulo d.

3. Convergence of P"(x, £) when Q is finite. In this section it is
assumed that (*) holds and that Q is a probability measure. The basic
method used here goes back to Markov and Doeblin; in detail, however,
this presentation leans on Chapter V of Doob [4].

In [3] Doob investigated Markov chains possessing stationary prob-
ability measures. To see that under the assumptions of this section
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Theorem 5 of [3] is applicable one needs only to check that Pj(x, S)— 0
as n— o for all xeS. For (cf. [3], p. 409) if for m =1,2,.--, A4,, is
a Q-null set such that Py"(x, S — A,,) = 0,

P[X,eA,|X,=2] = P[X,eA, X,e A, ---,
X, e A, X, = x] .

So if P[X,eA,|X,=2x]>¢ >0 for all =,
P[ever entering S — l:leilX0 = m} <1l-—¢,
i=1

contradicting (*). Theorem 3 below, however, shows somewhat more
than would follow from an application of Theorem 5 of [3] since it
proves, say when d = 1, that the variation of (P"(x,-) — Q) approaches
0 when n approaches oo while [3] gives only (P"(z, E) — Q(F)) ap-
proaches 0 as n approaches o for every Fe <7.

If ¢ is a totally additive set function on S, ||¢]| is to be the total
variation of @ on S. To (T"p) will denote the measure

| P@ e ([ Praea) .

LEMMA 3.1. Suppose there exists a Borel set C of positive Q-measure,
an € >0 and for every x,yeS a positive integer w(x,y) such that
pe(x, 2) > ¢, p°(y,2) >¢ for all ze C. Then for any two probability
measures @, p, on S there is an n such that ||T"p, — T "p,|| <
(1 — Q)2 9, — .

Proof. Note that ||T"¢, — T"¢,|| is nonincreasing in n. Let p, be
the measure such that p(E) =1 (0) if xe £ (xeS — E), Ee -%. Con-
sider first the case ¢, = p,, and write ¢ for @,. There exists a unique
real number a and measure v such that ¢ =v 4+ ap, and v({z}) =0.
Let o=(1 — a)p,. Let A, = {y:w(x,y) =1}. So the A, are disjoint
and UrAd, =S. Let

o - RO~ a)
4
and choose N so large that
(0, 4) <<

Define the measures vy;, p; by v(E) = v(E N A;) and p; = ||v;]|p,. Then

N
”V - 2y
=

<ol <<
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Now
|72(20) = T (S0 = ST - Tl = ST~ T

From the definition of v; and p, it follows by an obvious argument that
the densities of Ty, T'p, with respect to Q@ are equal at least to ¢||v;||
everywhere on C, from which it follows immediately that there is enough
cancellation to insure ||Ty, — T'p;l| < 2|{v;[|(1 — ¢Q(C)). So

T — Tl < |3 T — S T |+ 20 < 21vii(1 - <42,

i=1

proving the lemma for this special case.

Now let ¢, and @, be arbitrary probability measures. Let p(zs,) be
the positive (negative) variation of ¢, — ¢,. So ¢, — @, = pt, — pt,. Let
a;, v; be the unique real number and measure such that /1, = v, — a,0,,
yviiz} =0,t=1,2. Let o= |lmllp,. For all big enough n and 7 =1,2
one has by the above:

17" — Tl =l — ol (1 = £Q(O) = 2l (1 — SXE)).

So
TP, — @)l = | T"(1ts — )l < (| T, — T 0|
+HW%~1WM§2mMu+WHN1~E%D>

= 2llp, — o1 — LKD)

LEMMA 3.2. Assume (*), and Q a probability measure and the hypo-
theses of Lemma 3.1. Then ||T"p — Q|| approaches 0 as n approaches
oo for every probability measure ¢.

Proof. Assume the hypotheses of the lemma, and let » be a prob-
ability measure. For every n one can find an m such that

lW@—WW<@_é§Q

by repeated applications of the previous lemma. Since ||T%p — T*Q]|| is
nonincreasing in k and T*Q = @ for all k the lemma follows.

LEMMA 3.3. Assume (*) and that d =1 in the decomposition of
Theorem 3.2. Then there is an ¢ > 0, a Borel set C of positive Q-measure,
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and for every x, y € S a positive integer w such that p*(x, 2) > ¢, p“(yz) >¢
forall ze C.

Proof. Assume the hypotheses of the lemma. Let C be a set satis-
fying Theorem 2.1, so that g.l.b. p(x, y) > 0, Q(C) > 0. Suppose first
x,YyEC
that
(3.1) there exists a positive integer N, a & > 0, and for every z, ye S
an integer v such that

Y+N Y+N .
S P, C)>8, S Py, C) >
=Y+ i=Y+1
Let M be a positive integer such that
g.L.b. p"(x,y) >0
x,YEC
for all » > M. By (3.1) there exist positive integers 3(x), B(y) such that
B(x) < N and P+ (x, C) > 6/N and B(y) < N and P"*Ff®(y, C) > §/N.

Then for ze {x, y}, ue C one has

P (2, u) = S PR (v, w)PTHPE(2, dv)
(%

v
Z|

g.Lb. p" FOw,u) = 2 min g.Lb. p"(v, u) .
v, u€C N Msnsn+n zgg
Thus to prove the lemma it suffices to prove (3.1).

Let &' be a positive number less than 1. Let

A, = {z: g}lP‘(z, C) > 3'} .

Clearly A, < A,., and by (*) Q(4,)—>1 as n— «. Let Q(4,) > 3/4.
Under the present hypotheses the ergodic theorem shows that for every
2 and y there is an m, such that for n > %, P[number of visits to A,
in n steps > 3n/4|X, ==z] > 3/4 for ze {x,y}. Let m be an integer
greater than n, divisible by four. Let a; (b;,) = P[entering A, for the
kth time at ith step|X, =z2],z=2( =y). For k=1,2, ---, 3n/4,

3 & 3
2%>—4-.me >Z-

=1 =1

Let

3/4n 3/4n

;= 2y, by = Dby .
i=1 k=1

Then
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9

n n 9
;ai > ﬁn’ %bz > —16—’ﬂ .

Now a,(b;) < Plentering A, at step i|X, =2] <1, z=2(z =y). This
together with

i(az + b)) > ‘g‘n

proves that for some v < n both a, > 1/8,b, > 1/8 holds. So P(x, Ay) >
1/8, P'(y, Ay) > 1/8. Then

yiv Pi(z, C) >S iPy(z, dv)Pi(v, C) > —é—S’ for ze {z, y} .
Y

i=y+1 N =1
This proves (3.1) with § = &'/8.

THEOREM 3. Assume (*) and that a stationary probability measure
@ exists.

If d =11in Theorem 2.2 || P"(x,-)— Q|| approaches 0 as n approaches .
More generally, if d=1, and Q,(A)=QANC), k=0,1,---d —1,
for all Ae <7, and d, C, as in theorem 2.2, and if for any initial
distribution @ one defines ay(p) = limP [X,,€ C;l,1=0, --+,d—1, one has

|

where the subscripts are integers modulo d,k =0,1, -+, d — 1.

approaches 0 as n approaches o ,

Tndw(p —d g_(l)(ai(q))ka‘i)

Proof. The first assertion follows from Lemmas 3.2 and 3.3. The
reduction of the second assertion to the first one is trivial.

Obviously P"(x,-) cannot converge if @ is not finite. It may be
conjectured that in this case P"(x, E)— 0 whenever Q(&) < «; such
a result would be very useful. So far no proof of this conjecture has
been found, not even under the additional hypothesis Fe <.

4. A renewal theorem. Let {X;} satisfy (*) and assume {X;} has
a stationary probability measuae Q. Let f be a measurable function
from S to the positive integers. Let

Um) = P[5 7X) =n],

where @ is the initial probability distribution.
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Let S = {(x, k): ze S, k a positive integer}. Let <7 be the smallest
Borel field such that for every Ee <7 and every positive integer

k{(x,k):xe E} e . Let {Xi} be a Markov process with values in
(S’,.@z) having the following transition probabilities:

P((x, ), {(x, s+ 1)) =1for i =1,2,-++,f(x) — 1 and €S,
P((x, f(x)), E'} = P(z, E) if E' = {(z,1):2e E}, Ee <7,
P((z,7), {(x,1)}) = 1 for i > f(x) .

For Fe <z let E°= {(z,f(2)):2€ E}. Let ¢ be the probability
measure on (S, <) defined by H(E°) = ¢(E), (S — S°) = 0.

Note that one has
(4.1) Uy(n) = P;[X,eS"] .

Assume now that
|, f@ae) < - .

Since P(x, E) = Po((z, f(x)), E°) for all #eS and Ee.7, {Xw} has
a stationary probability measure @So. {X}} satisfies (*), so Q¢ can be

extended to a stationary measure Q for {X’i}. From (1.1), (1.3), (1.4) it
follows that

AS) = | f@ad) .,

which was assumed finite. So

Q= —H
|, f@aaa)

is a stationary probability measure for {Xi}. Apply Theorem 2.2 to {Xi},
obtaining an integer d and classes C,, ---, C,, F. Let

a(P) = lim P;[X,,,€ C}] .

Mm—>oc0

Then
U(nd + 7) approaches d (ilai((/'))@—(SO nC;.)
i=0

by 4.1) and Theorem 3. Let C;/ = {xeS; (x, f(x)) = Cb} and let d’i(q_)) —
a(p) for 1 =0,1, ---,d — 1. Then clearly
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a—1

4.2) &(p) = lim Pq,(]L;JO I:X € Cluy 35 f(X) = jmod d)])

n—oo

where the subsecript on the C’ is an integer modulo d.
These arguments establish the following theorem.

THEOREM 4. Let {X,} satisfy (*) and assume there is a stationary
probability measure Q for X,. Assume | f(x)Q(dw) < . Then S can
be partitioned imto Borel sets C!, «--, Cl, I;E" such that P(x, F’) =0 for
all xe S — F',Q(F") =0, and for any initial distribution ¢ of the {X;}
process one has

d S a(9)Q(C).,)
lim U,(nd + j) = —=" ,7=0,1,---,d—1,
|, FQ)

where &,(p) is defined by (4.2) and the subscripts are integers modulo d.
If the {X,} are independent (and then automatically identically
distributed), S = C; and the theorem yields

d _ 4.
GO

U.(nd) —

in this case U,(nd + j) =0 for j=1,---,d — 1. This is a result of [5].
It seems plausible that U,(n) approaches 0 as » approaches o in case

[, f@a@ = .

This would follow from a proof of the conjecture made at the end of
the previous section.

5. The invariance principle. Let f be a real-valued measurable
function on the state space of the Markov chain {X;}. Under certain
conditions the sequence of sums

S 7(X)

is known to behave like a sequence of partial sums of independent ran-
dom variables, e.g., the central limit theorem holds for suitable norming
constants. Two devices are available for proving results of this kind.
The first method, which is due to S. Bernstein, uses the fact that in
certain cases the dependence of X,., on X, ---, X, diminishes quickly
as k increases; this method is applicable if {X;} satisfies Doeblin’s con-
dition. The second method is applicable to certain cases in which the
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state space is denumerable; the idea in this case, due to Doeblin, is that
if V, is defined to be the ith nonnegative integer » such that X, = z,
where z is a fixed state, the sums f(X, .,) + --- —i—f(X,,m),i =1,2,.--,
are independent and identically distributed. If {X;} is merely assumed
to satisfy (*) and have a stationary probability measure @ neither method
applies. However, it will be shown below that a combination of the
two methods may be used in this case.

Assume now that {X,} satisfies (*). Let Ae .7 have positive Q-
measure. Let V, (or V,(4)) be the ith nonnegative integer v such that
X,e4 ie, Xy, = Xy4-»,9=1,2,--+. Let Y, (or Y;(4)) be the vector
( Xy, o0 Xpjare e -,X,,m), 1=1,2,.... Form=1,2,..- an m-tuple (x,,---,%,,)
with components in S will be called a path. On the set of all paths
impose the smallest Borel field containing for m =1, 2, ---, all m-dimen-
sional cylinder sets with one dimensional base set in 7. Then 1Y} is
a Markov process; indeed one obviously has

P[Ynﬂce Wl Ym ttty Yl] - P[Yn+k€ Wl Yn] = P[Yn+k6 WlXVn]

for every Borel set W. {Y,(A)} will be called the A-path process. The
property of path processes that will be exploited is the following: f
Ae 2, {Y,(A)} satisfies Doeblin’s condition; the proof is obvious.

If f is a real-valued function defined on S, f* is defined on paths
by the relation f*((x,, ---, %,)) = f(@,) + -+ + f(®,),m=1,2,.--. Uis
to be the function identically equal to 1 on S. For n=1,2, ---, define
L, (or L,(A)) to be the random variable such that L, is the biggest w
such that V, < n.

The reference in the hypotheses of the following two theorems to
some A may seem unsatisfactory. This point will be discussed at the
end of this section and the results of the next section are also relevant.

Before proceeding to the theorems it will be useful to state a lemma.
This lemma will serve in the present context in place of Lemma 7.2,
p. 224 of [4]; since the lemma follows easily from Theorem 3 and the
argument is similar to the corresponding one in [4] no proof needs to
be given. If {X;} satisfies (*) the process is acyclic (cyclic) if d = 1(d>1)
in Theorem 3.

LEMMA 5. Assume {X,} satisfies (*) and has a stationary probability
measure Q. Let w(k),k=1,2,---, be a sequence of positive integers
diverging to infinity. Let M be a positive number and for k=1,2, ---,
let F, be a real-valued random variable measurable on X,y Xuco s ** *s
such that |F.| is bounded by M. Let T be the shift operator, i.e.,
X(w) = X(Tw), and let TF(w) = F(Tw),k=1,2, «--.

If either {X;} is acyclic or for k=1,2, ---, and every x €S
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lim E{F, — TF,|X, = x} = 0.

k—co

then
}61_2: (Ew{Fk} - E(Z{Flc}) =0

for every initial probability distribution ¢.

Since the process {Y,} is determined by the distribution of X, it
is natural to indicate the distribution of X, by a subscript on the P or
E when these operate on sets or random variables measurable on the
{Y,} process.

THEOREM 5.1. Let {X,} satisfy (*) and have a stationary probability
measure Q. Let Ae &, Q(A) >0,Y, =Y, (A),1=1,2,---. Let § >0,
f a real-valued measurable function on S. Let E,o{(f*(Y,)*"} < o,
m = E, {f*(Y)}. Let f=f—mQAU and ¢* = EQA{(J—”(YI)P}. Let

S, = 2 7(X), B, = 0v/n-Q(A) .

Then the distribution of S,/B, approaches the normal with mean 0,
variance 1.

Proof. Let V,= V(A),L,= L,A), Z, = f*Y,),1,2, ---. Let [a]
denote the largest integer in @ for a > 0. The argument follows [2]
and [8]. In particular the following decomposition is used:

5.1 Sn _ 1 ' X 1 ” be 1 ["Q(A)]Z
(5.1) Bn—EiZﬂf( i)+ Bni”%'n“ﬂ i)+ B, ZZ‘=1 ;
1 1
+ L %z L meum—- v, + 7).
B, i-1ngcay1+1 n

The distribution of the third term on the right tends to the desired
normal by the central limit theorem for Markov chaings satisfying Doeblin’s
condition (see [4], p. 228 or [1]).® So it suffices to show that each of
the other terms approaches zero in probability. The corresponding facts
were shown in [2] and [8], but some new arguments are needed in the
present case; on the other hand, much of the following argument is
due to [2] and [8].

The first term on the right causes no difficulty. That the second
term approaches zero in probability follows from (5.2), which will be
proved.

3 These references consider only the acyclic case, but an easy modification works in
the general case.
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(5.2) lim P[(n — Vln) > w] = 0 uniformly in =.

Suppose first that {X;} is acyclic. By Theorem 3 there exists a func-
tion 8(w) tending to zero as w approaches infinity and such that one
has for h =0,1, ---:

S\ PLV, = jI X, = @lP[X,-. da]

(5.3) k‘%P[n —V, =k = ig j

k=0

B

[l

k’=0 SA]%H P[V2 = jIXo = x]Q(dx) —-I—ké' 8(n — k)

Il

QS| S PIV. = i1 X, = 41.de) + 3800 — k).

k=0

Now
1 . © ©o . .
Q(A) QA(S) k=0 SA J=k+1 [ : J l 0 x]QA(dx) )

Let ¢ > 0; there then exist h. such that the first term of the last mem-
ber of (5.3) exceeds 1 — ¢/2 for A = h.. Choose 7. so that

ILE
S 8(n — k) < %

for n = n.. Then

hg
> Pn—V, =k]>1—c¢
k=0

for » > m.. Clearly one can find A. such that

’
/LS

S Pln—V, =k]>1—c¢
k=0

for all ». So for A = h! P[n — Ve, >hl<e for all n, as had to be
shown. If {X,} is cyclic a simple variation of the above argument can
be used to prove (5.2) provided A is included in one of the cyclic classes.
Clearly (5.2) for arbitrary A with positive A-measure follows.
Obviously (5.2) also shows that the last term in (5.1) approaches
zero in probability.
Note that

no Ve Vi an—V, +V

L,—1 L,—1 L,—1
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L -1
SUCY)  w-v, 4V, v

L,—1 + L,—1 L,—-1

In the last member the middle term approaches zero in probability by
(5.2), and the last term obviously tends to zero in probability. So the
law of large numbers, valid for processes satisfying Doeblin’s condition
(see [1] or [4]),® applied to the first term leads to

(5.4) approaches - ——— in probability as n — oo .

1

Write [a] for the largest integer in a for « > 0 and define
v(n) = [Q(A)n(1 + ¢)] and Mn) = [Q(A)n(1 — €)] .

Let ¢ > 0. (5.4) shows that there must be an n, such that Ply(n) <
L,—1=<xn)]>1—c¢ for n >n, Thus to show the fourth term on
the right in (5.1) approaches zero it needs only to be shown that

1

n

max

v(n)ss=aln)

S\ Z,

i=v

(5.5)

approaches zero in probability.

To prove (5.5) assume temporarily that {Y,} is stationary, which
will make {Z;} stationary. Then (5.5) is equivalent to

S Z,

i=1

(5.6) %— max approaches zero in probability.

n 0<S<A(R)=v(n)

The expression in (5.6) equals

S

YD P DI I —
—T ( 0< s<A(R) =¥ (n) 1/)\,(7’[,) — y(n)

Z} .

b1

=1

The distribution in the expression in braces approaches a limiting dis-
tribution by the Erdés-Kac-Donsker invariance principle, which is ap-
plicable here by [1],® and the corresponding fact for independent identically
distributed random variables with normal distributions of mean 0. Since
the quantity preceding the braces approaches zero (5.6), and hence (5.5),
holds in this case. That (5.5) holds for any initial distribution follows
from Lemma 5. So the theorem is proved.

In [1] Billingsley showed that the invariance principle of Erdos, Kac,
and Donsker is applicable to certain sequences of dependent random
variables. The following theorem extends these results to processes
satisfying (*). The terminology is that of [1].

3 These references consider only the acyclic case, but an easy modification works in
the general case.
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THEOREM 5.2.* Under the conditions of Theorem 5.1 the invariance
principle holds for the sequence {S,} with morming factors {B,}.

Proof. As in the proof of Theorem 4.1 of [1] it suffices to verify
two conditions, (i) and (ii).

The verification of (i) in the present case is reduced to verifying
the corresponding condition in the case where Doeblin’s condition is
satisfied in the same manner that the central limit theorem, Theorem
5.1, was reduced to the central limit theorem for processes satisfying
Doeblin’s condition. When Doeblin’s condition is satisfied the argument
of [1] applies.?

Verification of (ii) is carried out as in [1], except that Lemma 5 is
used in place of Lemma 7.2, p. 224 of [4].®° The fact that
lim Ej S | exists and is finite

B2

n—->00

n

is also needed; this is easily reduced to Lemma 7.3, p. 224 of [4] by
using the decomposition (5.1) and the fact, proved above, that in the
right member of (5.1) all terms other than the third one approach zero
in probability.

As remarked above the hypotheses of Theorems 5.1, 5.2, have the
unsatisfactory feature that they refer to some Ae <z, In [2] there
are analogous hypotheses referring to some state of the denumerable
state space; there, however, the hypotheses are proved invariant in the
sense that if they hold for some state they hold for each state. In the
present situation there exists no similar invariance. Indeed, it is very
simple to give examples of a Markov process satisfying (*) and Doeblin’s
condition and of a function f such that the conditions of Theorem 5.1
are true for some Ae <z but not for 4 =S.° Such examples show
also that even when dealing with processes satisfying Doeblin’s condition
the theorems above may be applicable when the result of [1] is not.

Though the existence of moments of random variables of the form
(Y (A)) or g(Y,(A)) does depend on the choice of A certain facts can
be established. This is the subject of the following section.

6. Relations between path processes. In this section {X;} will satisfy
(*), @ will be the stationary measure, A4, De <2, D S A, 0 < QD) <o,
and g will be a positive, real-valued, measurable function on state space.®

3 These references consider only the acyclic case, but an easy modification works in
the general case.

4 It is clear that in the special case where S is denumerable and 4 has only one point
as member the conditions ¢ > 0 may be dropped, i.e., 0 may be zero.

5 Example 3 of [2] illustrates this.

6 The condition that g be positive can be relaxed. See however footnote 7.
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Let
G, = g(Yi(4))
and for ¢ = 2,3, ---,
G, = g(Y,(4)) if XVJeA — D for 7 =2,38, ---,17 = 0 otherwise.

If 2=(x,+--,%,), 9 = (¥, -+, Y,) are two paths z + 'y is to stand
for the path (x, «--, %, ¥, ***, Yu)-

The conventions concerning measures appearing as subscripts made
§ 5 will be used here. For example, E, {G,} is the expected value of
G, when X, has the measure @, associated with it. In case a prob-
ability measure concentrates all its weight on some point it will be
convenient to use this point as a subscript; e.g., E,(G,) is meaningful
when x e A.

LEMMA 6.7
Bo, |5 Gif = SAEv{GI}Qr)(dw (=E, (G}Qu(A) if QA) < «).
If A=S and g = f* (1.4) results.
Proof.

B, (B(GIX) = 3 EAGIQudo)

i=1

-
W

E61Q,do) + | (| BiGIPw, dv)

S S Py, dyl)S
A-=D i=2 A-D A

o PO 0BG Pl ) = | By G0t

DPA(yU dyz) e

the last equality following from (1.1), (1.3) with A for S, therefore P,
for P, and D for A. By |[7] Q. and @, differ only by a constant factor,
if Q(A) < . Then Q,(4)=1 and @, = Q,-Q,(A). The equation in
parenthesis follows.

If g=f* and A =S one hag
[ BG1@aw = | || roPw, dol@ @

7 This lemma may be considered a generalization of (A) of the appendix to [2]. As
in [2] the condition that g be positive can be weakened. Chung showed in Example 3 of
[2] that even the special case (A) is false if no condition on g is assumed.
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_ SM { f(@) Sw P, dac)éy(dy)} - L A(@)0,(da) .
THEOREM 6.1. (a) If 9(Z) + 9(¥) = 9(Z + ') for all paths Z and ¥,
then

3G < g(Y(D)) and E,, [ {(Y(D)} = LEy{f( Y,(A))} @(dy)
(= B, {f(Y(ANIQAA) if QA) < ).

(b) If 9(@) + 9(¥) = 9(& +'Y) for all paths & and ¥, then

o

3. G = f(Y(D)) and E, {f(Y\(D))} = L E,{f(Y.(4))}Qu(dy)

i=1

(= Eo, {/(Y(A))}Qu(4) if QA) < o).

Proof. The theorem follows immediately from Lemma 6.1.

Note that for p =1 (0 < p < 1) the function f(Z) = (U*(Z))? satisfies
condition (a) (condition (b)) of the theorem. Call U*(Y,(B)) the recur-
rence time to B when Be 7 ; and if furthermore Q(B) < o, p = 0 call
E, {(UX(Y(B)))’} the pth stationary moment of the recurrence time.
It follows that when Q(S) =1 (Q(S) = «),p >0, and Be <% (Be . %
and (B)) < =), the pth stationary moment of the recurrence time to B
is finite only if the same is true for every Borel superset (subset of
positive @-measure).

The hypotheses of parts (a) and (b) of Theorem 6.1 cannot both be
satisfied by the same g unless g is a constant multiple of U*. The
theorem below, on the other hand, is such that for a wide class of func-
tions both the hypotheses of (a) and (b) may be satisfied.

With reference to the hypotheses in Theorem 6.2 observe that if
Be <% the three statements

(a) E.{g(Y(B))} is uniformly bounded for all x€ B,

(b) E,{g(Y\(B))} is uniformly bounded for all probability measures
@ on B,

(¢) E, {9(Y(B))} < o« for all probability measures ¢ on B,
are all equivalent.

THEOREM 6.2. Let Ae &,

(@) Suppose (i) ¢ > 0 and f(@ +'Y) = c(f(@) + f(W)) for all paths &
and y, and (i) M >0 and E,{f(Y.(A)} < M for all xe A. Then
E{f(Y(D))} is uniformly bounded for all xe D.

(b) Suppose (i) ¢ > 0 and £(T) + f(y) < ¢f(x +'y) for all paths T
and y, and (i) M >0 and E {f(Y(D)} =M for all xeD. Then
o {f(Yi(A))} < o .



826 S. OREY

Proof. Assume (i) and (ii) of (a) and let xe D. Let v be the first
n such that n = 2 and X, weD, so that G, = 0 for 7 > v. Using (i) of
(a) repeatedly, and (ii) of (a), one has,

EAf(Y(D)} = S ELf(V(A) + Yi(A) + -+ + YAy =k} Plv=k|
< ic[”gz’”“Ex{iGilv - k}P[u — k= glc“%'z’”“/cMP[v — k.

Since Ae &, P[v = k] decreases exponentially and (a) follows.
Assume (i) and (i) of (b). Let v have the same significance as
above. One has then, by Lemma 6 and repeated applications of (i) of (b),

’?_;IEQD{f( Y1(A) 4 eee ’YL(A))lIJ = IC}P[p — k]c[10g2k]+1
> EQD{:ZIG, = k}P[u = k] = E,,] i Gt} — B, (F(Y(A)}@A) .

Note that when v =k Y (D) = Y,(A) + -+ + 'Y (A); so assumption
(ii) of (b) ensures that in the inequality above each of the expectations
in the first member is at most M. Since Ae & P[y = k] decreases ex-
ponentially. This proves (b).

As an application consider the following situation: there exist Borel
sets D and C each of finite positive Q-measure and each containing only
one point. Let A be the union of D and C. If g satisfies (i) of (a) in
Theorem 6.2 and (i) of (b) in the same theorem, one has E’QD{g( YD)} <
oo implies B, {g9(Y,(A)} <o, E, {g(Y, (A)} < oo implies B, {g(Y.(C))} <
o, gince (ii) of (a) and (b) are now automatically true. In particular, g
will always satisfy (i) of (a) and (i) of (b) if ¢(Z) = (U*@))?, p > 0.
This gives again the result of Chung [2] that for two points, each of
finite positive Q-measure, the pth moment of the recurrence time exists
for both or neither,
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