THE TOPOLOGY OF ALMOST UNIFORM CONVERGENCE

JOHN W. BRACE

The theorem of Arzela [3, 4, 6] (see Theorem 2.2) which gives
a necessary condition and a sufficient condition for a net of continuous
functions to converge to a continuous function plays an important part
in functional analysis. In the case of linear topological spaces it has
been observed that the quasi-uniform convergence [3] (see Definition 2.1)
which Arzela presented in his theorem is related to the weak and weak™
topologies [6, 9, 20]. With this fact in mind it was surmised that
quasi-uniform convergence would present a useful method for topologiz-
ing function spaces. This paper presents such a topology and displays
some of its properties and applications. The resulting topology will be
called the topology of almost uniform convergence.

In §1 the topology is defined by means of a base for the neigh-
borhood system of the zero function (origin). It should be noted that
there is a similarity between the development of uniform convergence
topologies [17] and the topology of almost uniform convergence. Section
2 shows that convergence of a net of functions for the topology implies
quasi-uniform convergence. A net of functions having the property that
every subnet converges quasi-uniformly will converge for the topology.
In §3 the concept of almost uniform convergence is extended to the
case where convergence occurs on each member of a family of subsets
of the domain space. Section 4 examines the properties of various func-
tion spaces in regard to the topology of almost uniform convergence.
In particular, Theorem 4.3 shows that convergence in this topology for
a net of bounded continuous functions over a regular Hausdorff space
S is equivalent to pointwise convergence of their extensions on the
Stone-Céch compactification of S.

Section 5 uses the topology of almost uniform convergence to obtain
the weak topology for certain locally convex linear topological spaces.
It is necessary in §5 to modify the topology of almost uniform conver-
gence to form a finer (stronger) topology which is called the topology of
convex almost uniform convergence. With this new topology, Theorem
5.6 shows that the weak topology for a function space, which was
originally a locally convex linear topological space for a uniform con-
vergence topology, is the topology of convex almost uniform conver-
gence. Theorem 5.9 parallels a theorem in Banach’s book (page 134)
[5] in giving a necessary and sufficient condition for the weak conver-
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gence of a net (instead of a sequence) from the Banach space of all
continuous on the closed unit interval.

In the same manner Theorem 5.10 gives a necessary and sufficient
condition for the convergence in the weak topology of a net in L.
A similar theorem for sequences can be found in [12; page 89].

1. The almost uniform convergence topology. In establishing the
existence of the almost uniform convergence topology for a collection of
functions, the first step is to determine a class of sets that can be used
to generate the neighborhood system of the zero element of the function
space [7, 15, 19].

1.1 DEFINITION. Let Z°(S, F') be a linear space of functions on
an abstract set S into a locally convex linear topological space F. Then
a subset U of (S, F') has the property (a) in < (S, F') if it satisfies
the condition: for some neighborhood V of 0 in F' it is true that for
each finite subset {f;, -+, fi} of & (S, F) ~ U there is an « in S such
that fi(x) ¢ V e =1, -+, k).

1.2 LEMMA. For each subset U of < (S, F') with property («), there
is a convex circled subset W of U with property («). Furthermore
each U 1s radial at the origin of < (S, F) if and only if f[S] is bound-
ed for each f in (S, F).

Proof. Let V, be a convex circled neighborhood of 0 in F whose
relationship to U is as stated in property (a). Accepting the Hausdorft
minimal principle, there exists a subset of U, call it W, which is minimal
with respect to the property («) for the previously mentioned neigh-
borhood V, of 0 in F.

Observe that a function f is in W if and only if there exists a finite
subset {f;, +++, fa} of €(S, F) ~ W such that for every = in S either
f(x) is in V, or f,(x) is in V, for at least one f,,7 =1, ---, k. For two
functions f and g in W let the two finite sets {f,, ---, f.} and {g,, = *+, 0.}
bear this relationship to f and g respectively. The union {fi, «*+, fm:
g1, **, 9, bears the same relationship to ¢f + (1 — ¢)g for all ¢ such
that 0 <t <1. Thus it is concluded that W is a convex set.

The circularity of W is obtained in a similar manner.

Assume that for each f in <°(S, F) there is a scalar ¢ such that
SISTc ¢V,. This implies that f is in ¢W c ¢U. In other words, U is
radial at 0 in < (S, F).

Assuming each U to be radial and the existence of an f in & (S, F')
such that f[S] is not bounded, there is a sequence {x,} C S and a convex

circled neighborhood V of the origin in F' with the property that % flx,)
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isnotin V for n=1,2,.-.. Let U, = L//(S,F)fv{f, —%—f,%f, }
This is a contradiction because U, has property («) and is not radial.

1.3 THEOREM. Let < (S, F) be a linear space of functions on
an abstract set S into a locally convex linear topological space F'.
Then all the sets of the form U, N --- N U,, where U, has property
(a) in Z (S, F'), form a local base for a locally convex topology. This
topology is called the topology of almost-uniform convergence on S.
Furthermore, it is a linear topology if and only if f[S] is bounded
for each f in (S, F') and it is a Hausdorff topology if F is Hausdorff.

Proof. The existence of the almost-uniform convergence topology
(linear and non-linear) is obtained from Lemma 2.3 [7, 15, 19].

If F' is Hausdorff and f is a non-zero element of <°(S, F') then
there is a point z in S and a neighborhood V of 0 such that f(x) is not
in V. Thus < (S, F') ~ {f} has property («) and the almost uniform
convergence topology is Hausdorff.

2. The convergence of nets. The study of almost uniform conver-
gence topologies is partially motivated by quasi-uniform convergence and
almost uniform convergence for nets of functions [17]. Now that the
topology has been obtained it is time to consider its relationship to the
almost uniform convergence of a net of funections.

2.1 DEFINITION. [3, 6, 21]. A net {f., «€ D} in < (S, F') converges
to f, quasi-uniformly on S if lim f,(x) = f,(x) for each x in S and for
every neighborhood V of the zero element of F and «, in D there is
a finite subset {ay, ay, +-+, @} of D, o, > 0,7 =1,2, ---,n, such that
for every xzin A, fwi(ac) — fo(x) isin V for at least one o;, 7 = 1,2, <+ -, n.

The importance of quasi-uniform convergence stems from the fol-
lowing theorem.

2.2 THEOREM (Arzeld) [3, 4, 6]. If a met of continuous functions
on a topological space X converges to a continuous limit, then the con-
vergence is quasi-uniform on every compact subset of X. Conversely,
if the net converges quasi-uniformly on a subset of X, the limit 1is
continuous on this subset.

Since a net converges in a topological space if and only if every
subnet converges, the following modification of quasi-uniform convergence
is the natural thing to expect.

2.3 DEFINITION [19]. A net {f,,aeD} in Z(S, F) converges al-
most uniformly to f, on S if and only if every subnet converges quasi-
uniformly to f, on A.
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2.4 THEOREM. Let & (S, F') be a function space with the topology
of almost uniform convergence on S. A met {f,,ae D} in Z(S, F)
converges almost uniformly to f, on S if and only if the net converges
to f, in the topology.

Proof. Considering f, to be the zero function, it is assumed that
the net converges almost uniformly to f, without being eventually in
a set U with property («). This gives a subnet which would not con-
verge quasi-uniformly and thus a contradiction.

In order to obtain the converse, assume first that the net which
converges for the topology does not converge pointwise at the point
in S. It follows that there is a subnet {f5, B € D'} and a convex circled
neighborhood V of 0 in F' such that fg(x) is not in V for each B in D'.
This leads to a contradiction because the set < (S, F') ~ {fs, B € D'} has
property («) and the net is not eventually in it.

A similar contradiction is obtained when it is assumed that there is
a subnet which converges pointwise and in the topology, but does not
converge quasi-uniformly.

3. The topology of almost uniform convergence on a collection of
subsets of S. In the above discussion the convergence has occurred over
the entire set S. Without difficulty, the convergence can be restricted
to a family of subsets of S.

3.1 DEFINITION. A subset U of < (S, F') has the property («) over
a subset A4 of S if it has property («) in < (A4, F'), where < (A4, F) is
the linear space which is obtained by restricting the functions in £ (S, F')
to having A as their domain of definition.

The analogue of Theorem 1.3 is now stated.

3.2 THEOREM. Let £ (S, F') be a linear space of function on a set
S into a locally convex linear topological space F' and let 7 be a collec-
tton of subsets of S. Then all the sets in (S, F') of the form
U n -« N U, where each U, has property (o) over some A imn 7,
form a local base for a locally convex topology. This topology of al-
most uniform convergence on members of .. Furthermore, it 1is
a linear topology if and only if f[A] is bounded for each A in S and
each f im (S, F) and it is a Hausdorff topology if F 1is Hausdorff
and for each f in Z(S, F') there is a point x in at least one member
of &7 such that f(x) # 0.

The expected analogues of the theorems in § 1 are also valid. In
analogy with topologies of uniform convergence it is noted that & can
be enlarged to contain all the finite unions of its members without af-
fecting the topology.
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4. Function spaces. It is interesting to note that the subset <7 of
(S, F') consisting of all functions which are bounded on each member
of .o is a closed subspace of Z(S, F') for the topology of almost uniform
convergence on members &4 If S is a topological space it is also clear
that the functions which are continuous on each member of .o form
a closed subspace.

4.1 THEOREM. Let C(S, F) be a linear space of continuous func-
tions on a topological space S to a locally convex linear topological

space F. Then the topology of almost uniform convergence on members
of . and the topology of almost uniform convergence on the members

of a collection composed of the closures of finite unions of members of
& are the same topology on C(S, F').

Proof. Assuming that the subset U of C(S, F') has property («)
over the closure of A, where A is in .o, there is a closed convex
circled neighborhood V of 0 in F such that for each finite subset
1y oo, fu} of C(S, F) ~ U therc exists an x, in the closure of A and

a neighborhood W of x, with the property that f,(W) is disjoint from
V for j=1,.--, k. Since there is an x in W which is also in A4, the

proof is completed by concluding that U has property («) over A.
The following theorems give some indication of the relationship be-
tween almost uniform convergence and pointwise convergence.

4.2 THEOREM. If A is a compact subset of a topological space S
then the topology of almost uniform convergence on A is equivalent to
the topology of pointwise convergence on A for a function space C(S, F)
of continuous functions defined on S with range in the locally convex
linear topological space F.

Proof. It has already been shown that almost uniform convergence
implies pointwise convergence. The converse is immediately obtained
by nothing that Arzeld’s Theorem 2.2 establishes the quasi-uniform con-
vergence of every subnet of a pointwise convergent net in C(S, F').

Theorems 4.1 and 4.2 combine to obtain the following result.

4.3 THEOREM. Let S be a completely regular Hausdorff space. The
topology of almost uniform comvergence on S is equivalent to the topolo-
gy of pointwise convergence on the Stone-Cech compactification [17] of
S for the function space of bounded continuous functions on S with
range vn the complex or real numbers.

A noticeable difference between the uniform convergence topologies
and almost uniform convergence topologies occurs on questions of com-
pleteness. For example, the almost uniform convergence topology on
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the linear space of all bounded real valued functions defined on the
closed unit interval [0, 1] is not complete. If it were a complete topolo-
2y the subspace of continuous function would be required to be complete
in the topology of pointwise convergence (see Theorems 2.2 and 4.3).

5. Adjoint spaces and the weak topology. [2, 8, 11, 18, 19]. Several
people have observed that almost uniform convergence is in some man-
ner related to the adjoint space of a locally convex linear topological
space. The first adjoint space is the collection of all continuous scalar
valued linear functions defined on the linear topological space which is

under consideration. If the adjoint space is topologized it is possible to
speak of the adjoint space of the adjoint space.

The adjoint space E* of a locally convex linear topological space E
defines a natural topology on E which is called the weak topology. If E
is considered as a collection of linear functions defined on E*, the weak
topology on E is the topology of pointwise convergence on KE*.

By interchanging the roles of E and E™* in the above discussion it
is seen that E gives rise to a natural topology on E* which is called
the weak* topology on E*.

The next theorem gives a small degree of insight into the structure
of the adjoint space.

5.1 THEOREM. Constider a linear space < (S, K) consisting of func-
tions with domain S and range in the scalar field K. If (S, K) 1s
gwen a linear topology of uniform convergence on members of a collec-
tion & of subsets of S and <* is the adjoint space of & (S, F'), then
there exists a natural mapping ¢ from the subset U, esxrA of S imto &*
such that for each x € U exA, p(2)f = f(x) for every fe < (S, K) and
for each f* im <* there is an A in o7 and positive scalar ¢ with
the property that cf* is in the weak™ closed circled convex hull of ¢p[A].

Proof. For each z € U erA, d(x) is clearly an element of <™.
Considering an arbitrary f,* in &%, let G = {fe 2 (S, K): | f*(f)| < 1}.
The continuity of f gives a positive number ¢ and an A in . such
that G contains the neighborhood H = {fe < (S, K):|f(x)]| < ¢ for all
x e A}. It can be shown that the set {f* e *:|f*(f)| < ¢ for each
f in H} which contains ¢f,* is the weak* closed circled convex hull of

PLA][8].

5.2 COROLLARY. Let E be a locally convex limear topological space
with an adjoint space E*. If E* is given the topology of wuniform
convergence on the bounded subsets of E then the adjoint space E** of
E* is the unmion of the weak* closures of the images in E** of the
bounded subsets of E wunder the natural mapping of E into E**.
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In the specific case of a Banach space the results presented in the
corollary were proved by M. M. Day [10] and H. H. Goldstine [13].

The weak topology on the Banach space of all continuous functions
defined on the closed unit interval is finer (stronger) than the topology
of pointwise convergence on the closed unit interval. Since the topolo-
gy of pointwise convergence is the topology of almost uniform conver-
gence on the closed unit interval it is clear that almost uniform conver-
gence must be modified if it is to give the weak topology. The following
definition is presented with this purpose in mind.

5.3 DEFINITION. Let <'(S, F') be a linear space of functions on an
abstract set S into a locally convex linear topological space F. Then
a subset U of Z°(S,F) has property B over a subset A of S if it
satisfies the following condition: for some neighborhood V of 0 in F' it
is true that for each finite subset {fi, ---, fi} of (S, F') ~ U there is
a finite subset {x, x,, ---, 2,} of A and a finite set of positive numbers
{ay, ay, <+, a,}, Sii-ia;, =1, such that >7.,a,f,(x;) is not in V for j =
1,2, -, k.

5.4 THEOREM. Consider the function space < (S, F). Then all sets
of the form U, N --- N U,, where each U, has property (B) over some
A in .7, form a local base for a locally convex topology. This is called
the topology of convex almost umiform convergence on members of & .
Furthermore, it is a linear topology if and only if f [A] is bounded for
each A in .o/ and each f in (S, F') and it is a Hausdorf topology if
F is Hausdor{l and for each f in < (S, F) there is a point x in at least
one member of .7 such that f(x) + 0.

The omitted proof of the above theorem is essentially the same as
Theorem 2.4.

5.5 THEOREM. Let S be a linear topological space and let <~ (S, F)
be a collection of continuous linear functions defined on S with range in
a locally convex linear topological space F. If o7 is a family of sub-
sets of S such that <7 (S, F') s a linear topological space for the topolo-
gy of convex almost uniform convergence on members of .07 and if .o/’
is the collection of closed comvex hulls of finite unions of members of
7, then the topology of almost uniform convergence on the members
of &7 is the same topology.

Proof. In collaboration with Theorem 4.1 it is sufficient to show
that a subset U of .&7(S, F') has property (8) over a subset A of S if
and only if it has property () on the convex hulls of A. Because of
the linearity of the members of U the result becomes apparent upon
inspecting Definitions 5.3 and 1.2,
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The theorem which follows shows that it is possible to work with
the weak topology on a function space without knowing anything about
the first adjoint space. In many cases this avoids the necessity of
obtaining a representation of the adjoint space.

5.6 THEOREM. Consider a linear space < (S, K) consisting of func-
tions with domain an abstract set S and range in the scalar field K.
If «<(S,K) is given a linear topology of umiform convergence on the
members of a collection .o of subsets of S, then the weak topology on
(S, K) s the topology of comvex almost uniform convergence on mem-
bers of 7.

Proof. Considering <(S, K) as a collection of scalar valued func-
tions defined on «*, the weak topology on « (S, K) is the topology
of pointwise convergence on the union of the weak™ closed circled con-
vex hulls of the collection {p[A)]: A € .7} (see Theorem 5.1). The weak*
closed circled convex hull of each ¢[A] is weak* compact because it is
the polar of a neighborhood of 0 in <°(S, K)[8]. Since each member of
< (S, K) is a weak* continuous function on < *[8], the weak topology
is the topology of convex almost uniform convergence on the collection
{¢[A]: A e o7} (see Theorems 5.5 and 4.2), which in turn is the topolo-
gy of convex almost uniform convergence on members of .97,

5.7 COROLLARY. If E is a locally convex linear topological space
and the first adjoint space E™* 1is given the strong topology, then the
weak topology on E™* is the topology of almost umiform convergence on
the bounded subsets of E.

Further results of this type can be obtained for a function space or
an operator space whose range is contained in a locally convex linear
topological space.

The above relationship of the weak topology to an almost uniform
convergence topology again displays the restrictive nature of a complete-
ness requirement on an almost uniform convergence topology [16].

In the case where S is a linear space, a topology of almost uniform
convergence on the members of .o is not always equivalent to the
topology af almost uniform convergence on the convex hulls of the mem-
bers of .&7. To clarify this point consider the weak topology on a locally
convex linear topological space E. It is the topology of almost uniform
convergence on the weak* compact subsets of the first adjoint space E*
(see Theorem 4.2) If the weak topology on E was also the topology of
almost uniform convergence on the convex hulls of the weak™ compact
subsets of E* the topology of uniform convergence on the same subsets
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would be a linear topology for F with the same adjoint space. This
leads to contradiction in cases where the new topology would be proper-
ly finer than the Mackey topology on E [18, 19].

In the case of a normed linear space the following theorem due to
G. Sirvint [21] is of interest. The original form of the theorem concerns
sequences and not nets.

5.8 THEOREM. Let F' be a normed linear space. A met {f,, « € D}
in the function space < (S, F') converges almost wumiformly to f, on
a subset A of S if and only if lim,lim, || fu(xp) — fo(xe) || = 0 for every
net {xg, B e D'} in A.

In Banach’s book [5] on page 134 there is a necessary and sufficient
condition for a sequence from the Banach space of all continuous fune-
tions on the closed unit interval to converge weakly. This theorem does
not hold in the case of nets. It is now possible to state a similar
theorem for nets by making use of Theorems 5.6 and 5.8. Let E be
the collection of all sets consisting of a finite number of ordered pairs
{(ay, t), (@y, ty), -+, (@, t,)} of numbers from the closed unit interval
[0,1] with the property that >.7.,a;, = 1. For each veE, = {(a, t,),
(ay ty), + -+, (a,, )}, and each real valued function f on the closed unit
interval define +r(f) to be 37, a,f(t;). With this notation the theorem
can be stated.

5.9 THEOREM. A net {f., a € D} from the Banach space C[0, 1]
converges weakly to f, if and only of lim, limg | \ra(fo) — Va(fo)| = 0 for
every met {\rg, e 7} in E.

A similar theorem is available for the Banach space L'. Let _# be
the collection of all measurable sets from the measure space upon which

the function of L' are defined. The norm ||f|| = supMeMH fdy‘ is

topologically equivalent to the usual norm for L. If L' is viewed as
a collection of functions defined on _~ with its topology determined by
the new norm, it satisfies the hypothesis of Theorem 5.6.

Let @ be the collection of all sets consisting of a finite number of
ordered pairs {(a,, M), (a,, M,), -+, (a,, M)} where M, (t =1,2,---,n)
is a measurable set from the measure space and (a, a,, ---,a,) is a set
of possitive numbers with the property >'7.,a, =1. For eachpe @, p =
(@), -+, (an, M,)}, and for each fe L' define o(£) to be 37, a, SM fdp.

i
This notation makes it possible to state the following theorem.

5.10 THEOREM. A net {f., € D} from the Banach space L' converges
weakly to an element of L' if and only if lim, limg|9a(fa) — @a(fo] = 0
for every met {pg B e ZF} in @,
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A related theorem for sequences can be found in reference [12;
page 89].
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